
390 TUGboat, Volume 10 (1989), No. 3

References our attention to plain techniques which are easily

[l] Appelt, W. (1988): Typesetting Chess.

TUGboat 9#3, pp. 284-287.

[2] Rubinstein, Z. (1989): Chess Printing via

METAFONT and w. TUGboat 10#2,
pp. 170-172.

o Zalman Rubinstein
University of Haifa
Department of Mathematics and

Computer Science
Mount Carmel
Haifa 31999 Israel
Bitnet: rsrna4078haif auvm

Editor's note: This article uses a new METAFONT

chess font produced by Prof. Rubinstein and his
colleagues.

Bibliographic Citations;
or Variations on the Old Shell Game

Lincoln K. Durst

This is the first of several tutorials designed to

introduce users to some of the subtler parts of w,
t o show how to construct tools to make w do

things you might like to have it do for you, and

to encourage you to take off on your own with the

construction of other tools you would find useful.

These pieces are no substitute for reading The
m b o o k ; in fact they may be considered successful

if they get you to study parts of some danger zones

you may have been reluctant to wander into before.

We describe ways p la in may be used to
perform various clerical functions, useful for authors

of papers or books who choose to do their own w
coding as they create the "manuscript". There

exist excellent, finely-tuned, and versatile systems

ready to use "off-the-shelf" made by Michael Spivak

(AMST@) and Leslie Lamport (I P W) which do

some of the kind of things we shall be discussing (as

well as much more). Newcomers to W may find

parts of AMS-rn and I P W code hard reading,
especially if they try to make changes in order to

adapt them for their own needs. Our task is not to

reinvent the "wheel"; rather it is to explore ideas

that may help users understand how some parts
of such "wheels" might work. Here we confine

modifiable and can be adapted or improved by

users to address situations of special interest to

them. The code printed here is given in fragments

to illustrate underlying ideas one or a few at a time.

In the first of these columns we consider the

question of constructing bibliographies and lists

of references in mathematical or other articles

or books. The objective is to make w do

as much of the "clerical" work as possible (or

reasonable). In particular, the numbering of items
will be automated so that, as revisions are made and

material is changed, interpolated, deleted, or shifted

around, the citations will be adjusted properly when
the text is composed.

There are at least three forms for lists of items

cited. Chemists and physicists frequently list items

in the order cited, as do historians and others,
using superior figures in the text in order to refer

to them. In these cases, the lists may appear

either as endnotes or as a "list of references cited."

In mathematical articles and books, on the other

hand, references and bibliographies most commonly

are listed in alphabetical order by authors' names,

and occasionally in chronological order by date of

publication. Mathematicians tend to put citations

in the text within square brackets [as parenthetical

remarks, like this one], treating them as asides

to the reader. A bibliography, in contrast to a

list of references, may include items not actually

cited. See, for example, Concrete mathematics by

Graham, Knuth, and Patashnik (Addison-Wesley,
1989).

There are some curious, if not notorious, ex-
amples in which items are listed in an apparently

random order. See, for example, Mathematics

Magazine, 61#5 (December l988), pages 275 - 281.

This interesting article by Ivan Niven is about what

it takes to win at twenty questions when the person

giving the answers is allowed to lie. (THEOREM:

One lze is worth five extra questzons.) The bibliog-
raphy (mislabelled "References") surely deserves an

award for innovation.

The Chicago Manual of Style, "thirteenth edi-

tion" (University of Chicago Press, 1982), contains.

in chapters 15- 17, exhaustive discussions of end-

notes, bibliographies, etc., and serves as a source of

information on the kind of results desired, as well

as suggestions for avoiding many problems, some of
which no longer exist, especially for users of T@.

The construction of FIGURE 1 provides an

example of one way the desired results may be

obtained using p l a i n . tex, with the numbering of
sections, displays, references, etc., done automati-

cally. Prior to running off final copy, the macros

TUGboat, Volume 10 (1989), No. 3 391

1. Fermat numbers \ s ec t . Fermat.

Fermat considered numbers of the form 2'" + 1, which are now known as the
Fennat numbers, F,, and he may or may not have asserted [3, pp. 23ffl that he
had proved they are primes for all natural numbers n. Subsequently Euler found
that the sixth Fermat number,

is a multiple of the prime 641. (Early results of this kind will be found in Dickson's
history [2, volume i] and more recent results in a book by Brillhart, et al, published
last year [I].)

Euler7s result for F5 follows from the elementary facts given in displays 1.1 and
1.2:

641 = 5 . 27 + 1 = 24 + s4 (1.1) \ d i s p . ~ o v e r s .

hence

I learned this arithmetic trick from Olaf Neumann of Friedrich Schiller Universitat,
Jena, D.D.R.; he did not tell me who invented it. LKD

2. References \ s ec t .Refs

1 Brillhart, John; Lehmer, D. H.; Selfridge, J . L.; Tuckerman, Bryant; Wagstaff, \ref .bri l lhartFOB.

S. S., Jr. Factorizations of bn zk 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers,
American Mathematical Society, Providence (Contemporary mathematics 22,
second edition), 1988.

2 Dickson, Leonard Eugene. History of the theory of numbers, three volumes, Car- \ ref . d i c k s o n ~ ~ ~ .

negie Institution of Washington, Washington, D. C. (Publication number 256),
1918, 1920, 1923. (Reprinted by Hafner and Chelsea.)

3 Edwards, Harold M. Fermat's last theorem, Springer-Verlag, New York, Heidel- \ref .edwardsFLT.

berg, Berlin (Graduate texts in mathematics 50), 1977.

used may be printed in the margin, as shown, to
facilitate making cross references during revision. In
this installment we describe how the second section
and the first paragraph of the first section were
composed in a single pass. In the next installment,
we describe how the ideas used here can be sup-
plemented by others to handle forward references
to displays, exercises, theorems, sections, chapters,
etc., without having to typeset the text twice.

First we construct a separate file containing
definitions for items to appear in the bibliography;
call it b ib l iog . f il:

0 . .

ALL bib1iog.f il %%%
\def\dicksonHTN{ . . . I
\def\edwardsFLT{ . . .)
\def\brillhartFOB{ . . .)
. , .
\endinput

The dots in the definitions represent the text to
appear when the bibliography is printed (author
name[s], title, publisher, date, etc.). This file could

contain other items as well as those required for this
occasion, including others related to the current
topic (though not actually cited) and any others
the author may anticipate wanting to cite in this
work or in others on related subjects. Those which
prove to be unnecessary can be dropped at the last
minute from files to be constructed from this one.
The order in which the definitions appear in this
file is irrelevant.

We consider first lists of references printed in
alphabetical order by author names. If there are
not very many items to be cited, it would be easy to
construct by hand another file from bib l iog . f il,
say b ib l iog . ord, which contains the lines: . * .

ALL bibliog.ord %%%
\bibmac{brillhartFOB)
\bibmac{dicksonHTN}
\bibmac{edwardsFLT)
\endinput

sorted into the order in which items are to be
printed in the bibliography. For larger cases, this

392 TUGboat, Volume 10 (1989), No. 3

process can be automated in part in a variety of

ways: One may take advantage of keyboard macros

or write a program in a high-level language to

extract the necessary parts of bib1iog.f il and

perform the required sort. (w can be made to

do part of this work, as indicated below.) At or
near the beginning of the file containing the text to

be composed, include the line \ input b i b l i o .prp,
which reads in the following file:

a * *
ALL biblio.prp %%%

\newcount\bib \bib=O
\def\bibmac#l{\advance\bib by 1

\expandaf ter
\xdef \csname #l\endcsname{\the\bib))

\input bibliog . ord
\def\ref.#l.I{\bf\csname#l\endcsname}}
\endinput

What happens when this is w e d ? First a
counter, \bib, is allocated and initialized. Then, as

b i b l i o g . ord is read in, new definitions for macros

named \bril lhartFOB, etc., are constructed using

\csname [see The w b o o k , page 401. These

new definitions assign the numbers to be printed
in the text a t places the bibliographic items are

cited, so that, at least temporarily, we have what

amounts to \def \brillhartFOB{l) and, therefore,

\ r e f . br i l lhar tFOB. is just C\bf 11, etc. The
citation itself is made in the text by writing, for

example,

he may or may not have asserted
[\ref. edwardsFLT. , pp. -23f f I . . .

So far we have had two quite different defi-
nitions for the macros \bril lhartFOB, etc. (first

those in b i b l i o g . f il, which we haven't really used

yet, and now the new ones just constructed). Before

we are finished we shall see several definitions for

the macro \bibmac and other treatments of the

bibliographic definitions, some of which will appear
in the closing moves of this shell game.

At the place in the text file where the bib-

liography is to appear, insert the line \ input
b i b l i o . s e t , which reads in the following file:

9 I I LAX biblio.set %%%
\def\bib1#1#2\endbibl{ ...I
\bib=O

\def\bibmac#l{\advance\bib by 1
\bibl{\bf\the\bib}%
{\csname#l\endcsname)\endbibl)

\input bibliog . f il
\input bibliog . ord
\endinput

The first line here contains the definition which

specifies the shape of the paragraphs in the list
of references (e.g., hanging indentation), type size,

leading, parskip, etc. Next we reset the counter
\ b i b and change the definition of \bibmac so

that, when b ib l i og .o rd is read in again, \bibmac

actually typesets the bibliography.

For a list of references printed in order of

citation, we construct a file to play the r61e of
b ib l i og .o rd as the text file is being processed

by w, and we shall require a revised version of

b i b l i o . s e t .
Here we must construct a new file, to replace

the file b i b l i o g . ord used in the previous example,

which contains the bibliographic macros listed in

the order of their first appearance in the text.

Instead of using b i b l i o .prp, we replace it by

c i t a t i on .p rp :

%%% citation.prp %%%
\newcount\bib \bib=O
\newcount\Bib \Bib=O
\newwrite\bibliolist
\immediate\openout\bibliolist=citation.ord
\def\bibmac#l{\advance\Bib by 1

\expandafter\def\csname
#l\endcsname{\the\bib})

\input bibliog.ord
\def\ref.#l.{\expandafter

\ifnum\csname#l\endcsname=\the\bib

\ifnum\the\bib<\the\Bib % not done yet
\advance\bib by 1%
\immediate\write\bibliolist

{\noexpand\bibmac{#l))%
\expandaf ter\edef \csname

#l\endcsname{\the\bib}%
\fi\fi
{\bf\csname#l\endcsname}}

As in b i b l i o . prp, we begin by allocating a counter,

\bib, and set it to 0. This time we allocate another

counter as well, \Bib, which will count for us the
number of items in the list of references and, in

addition, we allocate a file into which we shall
write things and then open it with the name

c i t a t i o n . ord. [For information on reading and

writing files using m, see The w b o o k , pages
217-218, 226-228.1 Next we redefine \bibmac so

that it sets every one of the bibliographic macros

equal to \ the \b ib (the value in the counter \bib)
when b i b l i o g . ord is read in, which is what happens

next. (Instead of b ib l i og . ord one could use the

file b ib l i og . uns described below, since neither the

order of its lines nor whether it contains items which
will not be cited are relevant in this case.) The

first subtlety here is in the definition of \bibmac,

which uses a plain \def for the new definitions of

\bril lhartFOB, etc., which are first defined all to
be 0. Use of \def here, instead of \edef, means
that each time a reference to one of these macros
is encountered and \b ib is advanced, the value

assigned to each of the macros is increased by one.

What follows next is a procedure that will fix the

value of the current argument of \ r e f . # I . , while

TUGboat, Volume 10 (1989), No. 3 393

the others will still be permitted to grow. The
definition of \ re f . # I . does this by using \csname

again, but this time with an \edef instead of \def.

If we introduce an \if-switch we can combine
the two ways for handling references when it is time

to print out the list. If the following code is tucked

away somewhere near the beginning of things

\newif\ifOrdCited \OrdCitedfalse
\def \Ref sInOrderCitedC\0rdCitedtrue)

we can adopt a more general form of b l b l i o . s e t :

Thus, one may insert the lines

r/.1 \Ref sInOrderCited
\ifOrdCited\input citation.prp
\else\input biblio.prp\fi

following the definition of \Ref sInOrderCited and

either include or not include a percent sign before
the first of these three lines to obtain the references

in alphabetical order or in the order of first citation,

respectively. Here we have a good example of

the value of computers and software such as w :
Authors shouldn't have to fuss over questions at this

level of detail, they have more important things to
attend to when preparing their ideas for publication.

On the whole, it's up to the designers of books and

journals to determine the order in which references

should be listed, not authors, nor even-for that
matter - editors.

There is a practical problem which deserves

attention. Suppose typographical errors exist in

arguments of \ re f . # l . ; how can they be caught?

For this we could exploit a trick discussed by

Stephan v. Bechtolsheim in a Tutorial in TUGboat,

volume 10, number 2 (July 1989), page 205. The
idea is that, unless \csname #l\endcsname has

previously been defined, its value is \ re lax . Using

this fact we can test the argument of \ r e f . # I . to
see if \csname #l\endcsname actually was defined

by \bibmac; if the test fails, we can arrange to have

w make a fuss that is not liable to be overlooked.
Readers may wish to try their hand at constructing

such code. (See the Note at the end of this article.)

At the beginning, we claimed that a short list

of references cited could easily be handled manually,
as far as constructing the file b ib l iog .ord , given

the file b ib l i og . f i 1 . In the general case, there

are three or four steps in this task, two of which

can be automated more or less satisfactorily. The
original file b ib l iog . f il can be converted into one

whose entries look like those in b ib l i og . ord and

then sorted. If there are entries to be eliminated

(items neither cited nor to be printed in the
"bibliography"), some judgment should be exercised

about when and where to do this. Further judgment

may be required to compensate for inadequacies in

the choice of strings to name the bibliographic

items and in the sorting process employed. The

ideal procedure will surely result from a trade-
off between manual effort and how much fancy

automation one is willing to concoct.

One step is easy, fiendishly simple, using

code suggested by Ron Whitney for the purpose:
I I I

/.I/. bibmac.tex %%%
\newurite\outfile
\immediate\openout\outfile=bibliog.uns

\def \gobble#l() % TeXbook, p 308, ex 7.10
\def \dropslash{\expandaf ter\gobble\string)
\def \makebibmac#l#2{\immediate\write\outf ile

~\string\bibmac{\dropslash#l)~}

\let\def=\makebibmac
\input bibliog.fi1
\immediate\write\outf ileC\string\endinput}
\closeout\outfile

\bye

This makes a nice quiz with which to end. No-
tice that \gobble eliminates the following token

only, while \makebibmac eliminates everything that

follows except for the very next token. The first
argument of \makebibmac is therefore the macro be-

ing defined in b ib l i og . f il, so \dropslash nibbles

off the backslash (the first token of \ s t r i ng# l) and
the rest of it is written into the file b ib l iog .uns

wrapped up inside \bibmac, which is just what we

want.

Next we have to sort the file bibl iog.uns. If
you work with UNIX or MS-DOS, use the command

p:sort <bibliog.uns >blbliog.ord

Here p : represents the path to the file s o r t . exe.

If you don't have UNIX or MS-DOS, look up sorting

in your system manual, or write a program in some
high level language to do the job for you.

The next question is how near are we to our des-
tination at this point in our trip from b ib l iog . f il
to bibl iog.ord? Part of the answer depends on
how clever you were naming the bibliographic con-

trol sequences. Several options are at hand: Be

very clever choosing the names; exert much effort
devising clever sorting algorithms; spend a little

TUGboat, Volume 10 (1989), No. 3

effort studying the results so far and rearrange by
hand any items not yet in proper order. Sooner or

later, automated activity must end, and some other

kind of thought is indicated.

If you prefer the references listed in chrono-
logical order, rather than alphabetical order, you

might use macro names like \ B J I I b r i l l h a r t , etc.,

substituting A , B , . . . I , J for the digits 0, I ,

. . . 8, 9 in dates of publication (with more such
"digits" at the end to cope with authors having

more than one item per year). Then the same sort-

ing process may be used to make the first (rough)
sort of b ib l iog . uns as before.

Some authors, especially historians, favor end-
notes that are much more extensive than mere

bibliographical citations; for endnotes of this kind,

some of which may consist of several paragraphs

(and may contain cross references to one another),
the scheme described above is quite inappropriate.

Such endnotes are typographically equivalent to

solutions for exercises. How to handle solutions for
exercises and discursive endnotes are topics for a
later tutorial in this series.

In the next episode, code will be described
to produce cross references and marginal notes.
In particular, we shall give another version of

b i b l i o . s e t containing provision for displaying the

marginal notes shown in FIGURE 1.

Note. A disk (5.25 DSDD) containing source text

for FIGURE 1 and the code files used to produce

FIGURE 1 is available for MS-DOS users who are

members of the m Users Group. In addition,
code is included for trapping typographical errors in

the bibliographic citations as well as identifying (for
the case of alphabetical order) bibliographic items

not actually cited. The disk also contains source
text, including the code samples displayed, for draft

versions of other tutorials in the pipeline for this

series. Send $6 (which includes a royalty for the

7&X Users Group) to the address below. Outside
North America, add $2 for air postage.

It is a pleasure to acknowledge the generous
help and encouragement of Barbara Beeton and
Ron Whitney, without which these ideas would not
have been developed.

o Lincoln K. Durst
46 Walnut Road
Barrington, RI 02806

Macros for Indexing and
Table-of-Contents Preparation

David Salomon

Introduction

Two macros are presented and described in detail.

The first is very useful for the preparation of an

index; the second prepares a table of contents (toc).
It should be noted that UTEX has macros for similar

purposes. Ours, however, are different. Our index
macro can produce both silent and non-silent index

items, whereas U m ' s only generates silent ones.

Our toc macros can easily be modified by the user

to specify any format for the table of contents.

Another important aspect of the macros is that

they are described in detail, thereby illustrating

the concept of a multi-pass job and the use

of several advanced TJ$ features, such as active

characters, file input/output, \edef, \ f u t u r e l e t ,

and \expandaf t e r .

The Index Macro

A good index is important when writing a textbook.

So much so that Knuth, on several occasions (see
reference 1 pp. 423-425, and reference 6), said that

he does not believe in completely automating the
preparation of an index, and he always puts the

final touches on his indexes by hand. As a result,

"h i s books t end t o be delayed, but the indexes tend

t o be pretty good."

Index preparation by computer is not a simple

problem. References 1-2 discuss certain features

that a good index should have, and how to incor-

porate them in m. The macro described here

is relatively simple (even though some readers may

not think so) and implements only one advanced
index feature namely, silent index entries. However,

as an example of a macro it is very inter-

esting because it illustrates the use of the features
mentioned above.

The macro accepts an index item and writes it
on a file, for the future generation of an index. Its

main feature is the use of optional parameters. The

macro accepts either one, two, or three parameters,

of which only one is mandatory. The main parame-

ter should be delimited, as usual, by braces, and the

optional ones, by square brackets ' [' '1 '. The macro

writes all its parameters on the index file, as one

string. However, only one parameter, the main one,

is typeset. The optional parameters are treated as

silent index items, items that should appear in the

index but not in the text itself. A good example is
a sentence such as:

