
TUGboat, Volume 10 (1989), No. 3

A . dvi File Processing Program

Stephan v. Bechtolsheim

Introduction. This article discusses .dvi file pro-

cessing programs (or DFPs for short). I will discuss

such programs in general and the DFP (dvi2dvi)

which I developed in particular. I will show that

there is a variety of problems which can be solved

with a DFP in a very elegant way. In particular

these are: the insertion o f change bars into a

document, the insertions of rules underlining tex t ,
the overlay of .dvi files, and the extraction of

positioning information from a .dvi file. And to

prove my claims, I include a figure generated with

the help of dvi2dvi.

What is a DFP?

A DFP is a program whose input consists of one

or more . dvi files. The DFP processes these . dvi

files either to generate a new . dvi file or to extract

information (in particular, positioning information),

or both.

The important observations in this context are

the following:

1. One way to look at DFPs is to regard them

as a device independent way to extend drivers.

DFPs may evaluate \ spec ia l commands (in
other words commands written to a .dvi file

by T@ using \special). DFPs offer the

advantage that no driver needs to be modi-

fied to evaluate these \ spec ia l commands (in

particular, not every driver used at a specific

site must be extended). Instead, a DFP is in-

voked performing the requested functions. The

DFP may remove \ spec ia l commands within

a .dvi file, outputting a new .dvi file modified

as per these \specials .

A DFP may be regarded, therefore, as a

filter program that is positioned between the

'QX program and the driver program used to

print a document.

2. I will also show applications of DFPs which

actually generate textual information, in many

cases the TEX source for another TJPJ execu-

tion.

One case which falls in this category is where

a DFP extracts positioning information from a

.dvi file. There is no straightforward way in

'QX t o determine at the time a page is written

to a .dvi file at what position a certain item

will be printed. It is fairly straightforward,

though, to let a DFP do such positioning

computations and to let it write the position of

an item marked by a \ spec ia l command to a

text file.

Existing DFPs

It should be mentioned here that three separate

.dvi file processors are already available in the

TEX community. dvise lec t (Chris Torek) is

well known and is a program which allows the
selection of specific pages from a .dvi files (my '

DFP contains this functionality). There is also

dvipaste, described in TUGboa t 10#2, p. 164

(my DFP contains three different types of overlays,

which is what I called it). Finally there is ivd2dvi

[m h a x digest, vol 89, no. 251 (I will add the

functionality of this DFP later to my DFP). I do

claim that dvi2dvi is by far the most powerful and

versatile among all currently existing DFPs.

As noted before, my DFP is called dvi2dvi and

therefore any \ spec ia l command to be recognized

by dvi2dvi must start with "dvi2dvi:".

The remainder of this article will discuss some

of the applications mentioned above and will also

show an example.

. dvi File Overlays

dvi2dvi defines three types of overlay:

1. Selective overlay. In this case the master input

. dvi file contains \ spec ia l commands which

instruct dvi2dvi to print another .dvi file's

page on top of the current page of the master

input . dvi file. Parameters of this \ spec ia l

include offset values to be applied (so the page

which is being "pulled in" can be positioned

properly), the file name of the .dvi file to be

pulled in and the page number of the page from

the pulled in .dvi file which should be selected

by dvi2dvi.

I used this feature of dvi2dvi writing my
book "TEX in Practice." In this book I de-

scribed output routines and I wanted to include

sample output generated by these output rou-

tines. I left an empty page in the main text

of my book, and then used dvi2dvi to "paste

in" the output contained in a separate example

.dvi file.

2. Every page overlay. In this application the

assumption is that there is one .dvi file with

exactly one page. This . dv i file may print the

version number and the date of the draft of
some document on top of the page. This one

page .dvi file is then overlaid on top of every
page of the master input .dvi file.

TUGboat, Volume 10 (1989), No. 3

Parallel overlay. In this case two . dvi
files which have identical page numbering are

printed on top of each other (page i of the first

and the second .dvi file overlaid form page i

of the output .dvi file). Later you will see

an application of this type of overlay (I used

it originally to insert change bars, where the

change bars were contained in the second .dvi

file and the main document in the first .dvi

file, but I found a more elegant way of solving

the change bar problem to be discussed below).

Extracting Positioning Information

The very first version of dvi2dvi was a modified

driver. I removed all the code which generated

output for the original output device, and then I

replaced the reading of pixel files by reading in

. tfm files (a DFP needs to be able to keep track of

the current position). I then added the feature of

actually writing an output .dvi file (at this stage

of course an exact copy of the original input .dvi

file).

I then added a command line option to dvi2dvi

which allows me to specify a text file to which

positional information may be written. To be more

precise: if the input .dvi file contains a \special

command like

\special<dvi2dvi : posit ion XXX)

then dvi2dvi writes a line to the positioning text

file which consists of a macro call to macro \XXX

with the current page number and the current

position (horizontal and vertical coordinates) as

parameters.

Let me now discuss an application. When

composing the index for a document it is very

useful to list all index terms out in the margins of a

document. I did so by adding an additional param-

eter (an index term) to the positioning \special

command which would become an additional pa-

rameter for \XXX. The position text file (generated

from the main .dvi file) is created by dvi2dvi, and

this file is fed to simply for the purpose of

writing all index terms out into the margins of the

document (this .dvi file contains no other text).

The resulting . dvi file and the .dvi file of the

main document are then merged together using the

parallel overlay (discussed previously) in another

dvi2dvi execution. Note that, by omitting this

step, the main document without the index terms

printed in the margins can be generated, and there

is no need to process the main document by
again.

Inserting Change Bars Into a Document

Let me now address the issue of change bars. I

use dvi2dvi to insert the change bars directly.

In other words it is dvi2dvi which pastes in the

change bar rules. The user triggers the insertion

of the change bars using macros \ChangeBarOn and

\ChangeBarOff. Preceding use of these macros,

a \ChangeBarAdvice macro call advises dvi2dvi

of, for instance, the thickness of the change bar

rules to be inserted. This call is also used to

instruct dvi2dvi about the horizontal placement of

the change bars. As you can see in the example

figure on the opposite page, change bars can be

placed to the left and to the right of the pages of

a document (pages with odd page numbers of a

double sided document appear on the right hand

side and change bars are typically inserted into the

outside margins; any other horizontal position could

have been chosen by the user).

Macros \ChangeBarPush and \ChangeBarPop

are used to turn off and back on a potentially

existing change bar around floating bodies (figures

and tables) or other insertions. Within those

entities a change bar can be inserted if this is so

desired. In other words dvi2dvi will automatically

interrupt a change bar if the current text marked

by a change bar is "interrupted" because a figure

is inserted. dvi2dvi will also handle change bars

correctly which start on one page and end on

another page.

Using an algorithm similar to that used in

programming the change bar problem, I was able to

solve another problem which occurs when typeset-

ting classified documents. In documents with mixed

classifications (i.e. documents containing pages with

different security classifications), dvi2dvi can be

used to determine the proper classification of each

page and then pages can be marked with their

security classification very easily.

Font Underlining and Replacement

One other feature of dvi2dvi is the underlining of

text. If dvi2dvi discovers a font definition in a

.dvi file where the name of the font starts with

pu- (which stands for ~ r i n t and underline) then the

output in this font is replaced by the output to its

"master font" with an underlining rule added to each

character of this font. Note that the master font of,

for instance, pu-cmrl0. tfm is obviously Computer

Modern Roman 10 point (cmriO.tfm). Note that

pu-cmrl0. tfrn and cmrl0. tfm are actually identical

(pu-cmrlO.tfm is generated by making a copy of

cmri0. tfm). There is also the possibility to replace

TUGboat, Volume 10 (1989), No. 3

Ok, here is some text. And now it's

time for a change bar. So as we go on there

will be a time where the change bar is

turned off. Which is right here and there.

Change bar off. And now let me continue

this paragraph. Actually it is time to finish

it.

Now let me show that dvi2dvi also

handles the following case properly. First

of all I will start the change bar right

here. In addition to that I will now pro-

duce a \ top inser t . The vertical size of

this \ topinsert is such that it will ap-

pear on top of the next "mini page." Note

that the \ top inser t text contains its own

change bar.

Well, how about another paragraph.

By the way the change bar of the main

text is still in effect. And we will leave it in

effect a little longer. More text is needed.

Well, how about another paragraph.

By the way the change bar of the main

the change bar now. The change bar ends

at the end of this paragraph (but could end

at other positions too, of course).

Now let me show the underlining func-

tions of dvi2dvi. First of all one must de-

clare two fonts (details can be found in

the article). Here are the two font declara-

tions:

\f ont\purm = pu-cmrl0

\f ont\urm = u-cmrl0

Now let me use font \purm: This is

SQme text lzh.xe lh fnnt \purm is d.
Now let me use \urm with the identical

text: - - \urm

- -.
The font modifications shown here can

be applied to any font and are in no way

restricted to the font used in this example.

Now let me present another example

which shows that the positioning of the

rule used to underline any text is arbi-

trary and under complete user control. All

Some text here.

Some "changed" text here.

Some text here.

text is still in effect. And we will leave it in

effect a little longer. More text is needed.

This is the second silly text paragraph.

Well, how about another paragraph.

By the way the change bar of the main

text is still in effect. And we will leave it in

effect a little longer. More text is needed.

This is the third silly text paragraph.

Let me finish the text now and turn off

the user has to do is to issue an L'advice

\specialx to dvi2dvi and the position

of the underlining rule will be changed.

Here is some text using \purm again, but

with a different positioning of the under-

line rule: Here is some more text using

\purm, with a differently placed underline

this time though. --
Well, I may as well also show some

underlined italics text to show that the

approach works with other fonts too.

is fun as far a? _I am concerned. -

TUGboat, Volume 10 (1989), No. 3

text in some specific font by underlining rules only

(no text). For that purpose use a . t f m file like, for

instance, u-cmrl0. t f m . See the figure of this article

for an example.

dvi2dvi also supports font emulation where

output in one font is replaced by output in a

different font when the document is printed. This

capability is not shown in this article.

Concluding Remarks

I hope that I was able to demonstrate the usefulness

of DFPs in general and dvi2dvi in particular.

Note that I have not discussed all the features of

dvi2dvi. A 60 page long document describing

dvi2dvi contains the description of all features

plus additional macros which should be useful in

applications of dvi2dvi.

I hope that I can encourage people to buy my

DFP (yes, it costs a little money), and to port it to

other operating systems (give me a call in case you

are interested). Contact me at the address below

and I think we can work something out. dvi2dvi

is written in "standard C" and runs currently on a

SUN running OS 3.5 (BSD 4.2). There should be

no problem to port it to other operating systems

with a C compiler.

Finally I would like to thank Ron Whitney for

his cooperation: he had to transfer the .dvi file

for this article to my computer to process it by

dvi2dvi and then back to the AMS's computer for

printing, a little additional inconvenience.

o Stephan v. Bechtolsheim

2119 Old Oak Drive
W. Lafayette, IN 47906

317-463-0162

svb@cs.purdue.edu

Notes on Russian 7&X

Dimitri Vulis

By combining the new Cyrillic fonts from the

University of Washington in Seattle with my hy-

phenation patterns, I've been able to create a usable

Russian-language version of m.

Coding Cyrillic letters

The customary way to represent Russian letters

in an ASCII computer is to use 8-bit coding, with

capital Russian letters A-Ya in 176-207, followed by

lower case a-ya in 208-239. This scheme, commonly

known as GOSTCII (pronounced GOST-ski), is

formally defined by the standards IS0 8859 part
5 [2] and ECMA 113. I use GOSTCII to code

Russian text on my personal ~ 0 m ~ u t e r . l I use this

coding in my Russian TE$ files, but a convenient

way of entering transliterated Russian text using

only 7-bit ASCII (unfortunately, different from the

elegant AMS scheme that uses ligatures) is also

available.

Hyphenation patterns

To create the patterns, I ran PATGEN on a dictionary

of over 50,000 fully hyphenated Russian words with

inflections. Remarkably, PATGEN found all the good

breaks and no bad breaks, outputting 4204 patterns.

I keyed in and hyphenated most of the dictionary

by hand; some words were supplied by Alexander

Samarin, for which I am grateful.

I started by keying in the Russian part of a

pocket Russian-French dictionary, hyphenating the
words manually. I then ran PATGEN to examine

the patterns, and also tried them on Russian texts.

I saw that the patterns did not handle inflected

words well because I keyed in only the nominative/

singular/masculine/infinitive (whichever are appli-

cable) forms. Hence I inflected a number of words

representative of different classes, and continued

this practice when I added words later.

I also noted that a number of patterns were of

the form

(vowel) 1 (consonant) (vowel)

Rather than seeking words containing all such

combinations, I preloaded to PATGEN patterns of the

form

This can be achieved with any MS-DOS

PC that supports code pages; the required soft-

ware can be FTPed from SIMTEL20 .ARMY .MIL as

PDl:<MSDOS.SCREEN>CYRILIC2.ARC.

