
222 TUGboat, Volume 10 (1989), No. 2

A new font selection scheme for
macro packages - t h e basic macros

Frank Mittelbach
Rainer Schijpf
Johannes Gutenberg Universitat Maim

Abstract

We have implemented a new font selection scheme for ' and its macro packages. This scheme allows font
family, series, shape, and size to be specified independently. Additionally, it is not necessary to preload all
math fonts.

Contents

1 Introduction 222

2 T h e User Interface 222

. 2.1 Selection of a new font 223

. 2.2 Changing the math version 223

3 Setting up a new format 223

3.1 Defining a new family/series/shape

combination 223

. 3.2 Preloading fonts 224

. 3.3 Defining math groups. 224

4 Concept of the implementation 225

1 Introduction

4.1 Handling the font tables
4.2 Fonts for math
4.3 Special considerations

5 Preliminary macros

6 Macros for setting u p the tables

7 Selecting a new font
7.1 Macros for the user
7.2 Macros for loading fonts

8 Assigning math fonts t o versions

In traditional typesetting one distinguishes four pa-
rameters to describe a font: the font family (e.g.
computer modern), the font series (e.g. roman or
sansserif), the font shape (e.g. normal or bold), and
the font size. This distinction is not always unique:
take for example the slanted typeface I P W uses.
This can be seen as the sloped shape of series ro-
man or as the normal shape of series sloped.

Recently several people have asked how to use
such a scheme in LNQX. Unfortunately the current
implementation of UTEX'S font selection scheme
does not allow incorporation of this concept.

When typesetting math formulas, one usually
needs many more fonts than for ordinary text. In
the 'book Donald Knuth says:

All characters that are typeset in math mode
belong to one of sixteen families of fonts1,

numbered internally from 0 to 15.

The use of the word family in this context is unfor-
tunate; it conflicts with the font families we are talk-
ing about. To avoid confusion we will always speak

Emphasis by DEK

of font families from the typesetter's point of view.
For math we speak of math groups each connected to
three fonts called the \ textfont , the \scriptfont ,
and the \ scr ip tscr ip t f ont. From the user's point
of view, math formulas consist of characters coming
from specific math alphabets (e.g. those selected by
\cal) and of symbols (e.g. \sum) selected by a spe-
cial control sequence and scattered over a number of
fonts.

All fonts that can be used together in one

math formula form a version. Versions can only be
switched outside math formulas. Standard I P W
provides two versions: normal and bold.

2 T h e User Interface

The commands described in the next subsections are
primitives used to build up more powerful interfaces.
But they are all user accessible. We used these com-
mands to construct two interfaces for I P ' : one is
mimicking the old font selection (e.g. \bf is used
to switch to the font cmbx. .), the other one im-
plements an orthogonal font selection scheme (here

TUGboat, Volume 10 (1989), No. 2

\bf means: change the current shape and select
a new font but leave family, series and size un-
touched.) Details can be found in the article "The
new font family selection - User Interface to stan-
dard UT&S'.

2.1 Selection of a new font

Selecting a new font is done in two independent
steps. First you have to change the values for fam-
ily, series, shape and/or size and then execute a
macro which uses the new values to select the de-
sired font. If you don't use this macro the font will
not be changed.

The first step is done with the macros \family,
\ ser ies , \shape and \size. For example, if you
want to switch to the 'sansserif' series you have
to say \series(sansserif 3. Except for \s ize,
all those macros have one argument, namely, the
desired family, series or shape, respectively. The
macro \s ize is somewhat special because we de-
cided that it would be better to force the user to
specify a new size and a \baselineskip together
for this size, so the macro has two arguments.

All four macros will silently accept their argu-
ments. Warning messages are generated in the sec-
ond step when the actual font selection is carried
out.

To select a (new) font one has to call the
\selectf ont macro. This macro looks up the cur-
rent family, series, shape and size, possibly changed
by one of the above mentioned commands, and
switches to this font, provided the selected combi-
nation of family, series and shape is known to the
system. If it is unknown, a warning will be printed,
and up to three new trials are made to find a substi-
tute. This is done by changing to \def aultQshape,
then to \defaultQseries and as a last resort to
\def ault@f amily. At least this combination must
have been defined, otherwise we will find ourselves
in an endless loop.2

It may still be, however, that the size requested
is not specified in the table. This will lead to an er-
ror, and the font given by \def aultQerrf ont will be
selected. All four defaults are given private names
(names containing an Q) to emphasize that their val-
ues should be changed only by the "local wizards".

The selection scheme described above may seem
unnecessarily complicated. But consider the follow-

ing example: you are now reading a sentence typeset
in the cmrlO font, that is family 'computer mod-
ern', series 'roman', shape 'normal' and site '10'.
If we want to switch to 'typewriter italic' we say
\series(typevri ter) \shape(italic) and then
\selectfont. To avoid the call to \selectfont
we would have to embed it in the definition of
\series, etc. But this means that either cmttlO or
cmit 10 would be unnecessarily selected (and prob-
ably loaded).

As mentioned before, these commands are
primitive; they should be used to define higher level
commands for a special application. For example
UTEX'S \bf command can be defined as

\def \bf {\seriesIroman)%

\shape{boldext)%

\selectfont)

to work in the same way as before in I b m . 3 As an
alternative, the definition might be

\def\bf{\shape{boldext)\selectfont)

which will change to the 'bold extended' shape in
the current family, series and size.

2.2 Changing the math version

\mathversion switches to another math version,

e.g-,

\mathversion{bold)

will switch to version 'bold' provided that it is
defined. This command can be used only out-
side of math formulas. As an example we give
the definitions of Standard UT@Ss \boldmath and
\unboldmath macros in terms of \mathversion. For
this we must assume that two versions 'cmnormal'
and 'cmbold' are already defined.4

\def \boldmath{\Bnomath\boldmath

\mathversionIcmbold}~

\def \unboldmath{\Qnomath\unboldmath

\mathversion{cmnormal))

3 Setting up a new format

3.1 Defining a new family/series/shape com-
bination

Assume that you want to define the combination
family 'computer modern', series 'concrete', shape
'italic'. In the present case we have to write

\newBfontshape{cm){concrete){italic)C%

<5>lccr5%

This can be fixed easily but we are not sure if it's worth the effort. The defaults shouldn't be changed
by an ordinary user job, and it's not necessary to provide code to check a format file.

Actually this definition behaves differently when used in math mode, because then no bold face is
selected. We will see a correct definition later.

The \@nomath command used here issues a warning if these commands are used in math mode.

224 TUGboat, Volume 10 (1989)' No. 2

The general form of the specification in the fourth
argument of \newQf ontshape is

<(size)>(external font n a m e)

You are totally free in what you write between the
<> to denote the size.

If you look closely at the example given above
you'll notice that the first three lines (for sizes 5, 6,
and 7) seem to be wrong: they start with a 1 and the
external font names are incorrect. This is a special
feature of the font selection code that allows font
substitution. The numbers in front of the external
font name mean:

0 No effect. Same as no number at all.

1 Issue a warning that the requested fam-

ily/series/shape combination is not available in
this size and use the font given instead.

2 Issue a warning that the requested family/series

does not contain the requested shape and use
the font given instead.

Additionally, for every family/series combina-
tion there exists a so-called 'extra7 macro that is
used to set parameters, etc. common to all shapes

and sizes, e.g. inhibiting hyphenation for typewriter
fonts. Its argument is the internal font name.

3.2 Preloading fonts

The macro \preloadQsizes provides an easy way to
specify fonts that should be preloaded when d u m p
ing a format file. It is used as follows:

\preloadQsizesC(family)3C(series)H(shape) 3
C (l is t of s i zes))

where the elements of (l is t of sizes) are delimited by
commas. Note that it makes no difference for your
documents whether you preload a font or load it
on demand. In the latter case, however, processing
documents takes more time.

3.3 Defining m a t h groups

To specify fonts for math, other primitive commands
are provided. They all have Q characters in their

names; i.e. they will not normally be accessible to
the user, but will be when making format files or
style files.

Math fonts can be divided in two classes: fonts
that are accessed via \mathchardef and those that
are selected only via a (m a t h alphabet ident i f ier) .

As we already mentioned, all math fonts
come in groups of \ textfont , \ sc r ip t font , and
\ s c r ip t sc r ip t f ont. A new math group is defined
by the command

\newhathgroup(math group number)

(m a t h group number) is a control sequence that is
assigned a number that from now on will denote
this group. It is also possible to use an explicit
number, i.e. a sequence of digits, instead of this
control sequence to stand for this group. How-
ever, the first alternative is generally superior since
\newhathgroup always assigns a previously unused
number to this control sequence. The second alter-
native is normally used for groups 0, 1, 2, and 3

which have a special meaning to T)jX.
To specify the fonts of this group, the com-

mands \def inebathgroup (for the f i s t class) and
\def inehatha lphabet (for the second class) are
available.

Take for example one of the cmsy.. fonts,
i.e. the standard math symbol fonts in the com-
puter modern family. (They also contain the cal-
ligraphic alphabet.) This font must be loaded prior
to its use because of the \mathchardef commands
in p l a in . tex. To achieve this we write

\definebathgroup {cmnormal)2%

{cm){mathsymbol}{normal}

This can be read as: define the group number 2
in the 'cmnormal' version to consist of fonts with
family 'cm', series 'mathsymbol', and shape normal.
The actual sizes for \ textfont , \ sc r ip t font , and
\ s c r ip t sc r ip t fon t will be determined when the '

group is selected.
If you want to access such a math group also

via a (m a t h alphabet identifier) you must define this
control sequence to switch to the corresponding in-
ternal group (n u m b e r) , viz.

\def (m a t h alphabet identifier)(%

\group(number))

Returning to our example: to define \ c a l to select
the calligraphic alphabet (A, 23) in a formula one
has to add the definition

\def\cal{\group2 }

If we want to declare a group that is ac-
cessed always by a (m a t h alphabet ident i f ier) the
\def ineQmathalphabet macro should be used.
Since the corresponding fonts are not accessed

TUGboat, Volume 10 (1989), No, 2

by \mathchardef commands, there is no need
to preload them. Loading can be done by the
(ma th alphabet identifier).

The macro \def inehathalphabet is simi-
lar to \definebathgroup. If one uses a macro
\sfmath to select sansserif letters in a formula one
has to make a declaration like

\def inehathalphabet (cmnormal)\sf math
(ma th group number)Icm)Csansserif Hnormal)

Here \sfmath is the new (ma th alphabet identifier).
The (ma th group number) that must previously be
defined using \newhathgroup.

The text size in math formulas is always deter-
mined to be the size of the text outside. The sizes for
subscripts, etc., i.e. the script and the scriptscript
size, must be specified additionally.

The macro \def ineha ths izes is made for this
purpose. It takes three arguments: a text size, the
corresponding script size and scriptscript size, e.g.

\def ine@mathsizesC10}{7}{5}

defines the script and scriptscript sizes for a text set
in size '10' to be '7' and '5', resp.

When a size change occurs, not only the current
font must be switched but also all math fonts which
can be selected via special symbols. On the other
hand, it may be that math fonts are only available
or only used in certain sizes. For the other sizes
we do not need to switch the whole set of math
fonts.5 To specify this we provide the command
\def inehomathsize that takes only the text size
and inhibits math font switching for this size.

If there is more than one version provided then
you better define all groups for every version. Other-
wise switching the version (by using \mathversion)
will not reset these groups properly. E.g., in the
I 4 m implementation we therefore have a line

\def ine@mathgroup(crnbold}2%

{cm){mathsymbol}{bold}

It goes without saying that the family/series/shape
combination must have been defined previously by
a \newQf ontshape command.

4 Concept of the implementation

4.1 Handling the font tables

The first problem we had to solve was how to handle
such a huge number of fonts. To implement the four
dimensional grid of fonts we maintain an association
l i t 6 (i.e. a list of pairs) with elements (size, exter-
nal font name) for every combination of font fam-
ily/series/shape. We do not redefine the font chang-

ing commands: these commands select the correct
font by looking into the association list correspond-
ing to the current font family/series/shape combi-
nation. This association list is hidden in a macro.
Its precise form is as follows: For every (s i ze) we
have a string of the form

<(size)> (external font name)

This strings are simply concatenated to form one
long string of characters. In this way all necessary
information is available. But this solution would
take up far too much of w ' s valuable main mem-
ory. Therefore we use a trick, the same trick that is
used in plain QX's \newhelp macro: we enclose the
list of characters by \csname. . . \endcsname making
one macro name out of it. This uses up only one to-
ken in m ' s main memory (and some string memory
but this is comparatively cheap).

As an example take the normal shape of series
roman in the computer modern family, i.e. the crnr
fonts. We define a macro \cm/roman/normal whose
replacement text contains a single token containing
all necessary information in its name. This macro
itself is undefined.

The first \expandafter is needed because the
macro name consists of / characters and we use
\csname ... \endcsname to build them into the
macro name. We then use \edef so that the
second \csname.. . \endcsname combination is ex-
panded at definition time. Finally we need the
\expandafter\noexpand trick to ensure that the re-
sulting (undefined) macro is not expanded.

4.2 Fonts for math

To set up fonts for math one has to set up several
assignments of the form

Think of a special size used only in titles with no formulas at all.
Lisp hackers note!

TUGboat, Volume 10 (1989), No. 2

(math font assignment) (number)=(font)

where (math font assignment) is one of \ tex t font ,
\ s c r ip t f ont, or \ s c r ip t sc r ip t fon t , (number) is
a number associated with the particular font group
(or family in the terminology used by DEK), and
(font) the internal name of the font to be selected.
The assignments have to be changed when the over-
all size changes or when a new math version is re-
quested by the user.

There are several ways to implement this: one
can for example build a macro name from the re-
quested version and the current size (i.e. \f @size).
The replacement text would then contain all nec-
essary assignments. In a way the old font selec-
tion scheme of IPW uses this method by defining
macros like \xpt, etc.

We decided to use another approach: Since the
current size (\f @size) is always known we make all
necessary assignments by means of one macro to be
called for every version, viz.

\getanddef ine@f onts(number) (font shape),

where (number) has the same meaning as be-
fore, and (font shape) denotes a macro name like
\cm/mathsymbol/normal which can be used to get
the necessary fonts names by appending the desired
size. For every text size there exists a script and
a scriptscript size. Our method for getting it will
be seen in a minute (depending on your speed of
reading).

On first sight this seems to be a lot slower than
the other method because \getanddefine@fonts
takes time to put all the information together.7 But
tests have shown that this is not true: we can neglect
this extra time.

The above math font assignments must be
done for all fonts containing characters accessed
via \mathchardef because l$X will complain if
these fonts are not properly defined when these
symbols are used. (The alternative to convert all
\mathchardef's into macro calls that test if the font
is available seems to be too inefficient but this should
be investigated further.)

For math alphabets the situation is different.
These are selected by means of the correspond-
ing (math alphabet identifier) (i.e. \cal) so that the
fonts can be loaded on demand.8 Hence in the ver-
sion macros, for these font groups we have lines of
the form

\def (math alphabet identzfier)C%
\select@group(math alphabet identifier)

The old song: Time vs. space!

(number) (font shape)}%

(number) and (font shape) have the same meaning
as before; (math alphabet identifier) is available to
the user to select the math alphabet. The actual
math font assignments are carried out by the macro
\select@group which is called only if the user se-
lects the alphabet inside a formula. In this way,
fonts not used in a certain document are not loaded,
thereby saving space and time.

For every math alphabet, there must obviously
exist at least one version. But it is perfectly legal
that certain alphabets are available only in certain
versions. Therefore we need a way to warn the user
if he selects a version of an alphabet that does not
exist.

If a math alphabet does not exist in a certain
version the corresponding part of the version macro
will look like

\def (math alphabet identifier)(%
\no@versionQwarning(version)

(math alphabet identifier))%

which leads to a warning message if the alphabet is
selected in this version.

A minute ago we promised to tell how we
obtain the script and scriptscript sizes for a
given text size. For every size and math group,
you need a \ textfont , a \ scr ip t font , and a
\ s c r ip t sc r ip t fon t . The math fonts have to be
switched for every size change. Since the math
group assignments have to be in effect when the cur-
rent math formula ends we make them all global.
But then the old assignments must be restored at
the end of the current group. This is done by in-
serting a macro call with the \aftergroup prim-
itive. The current text size is always available
to this macro in the expansion of \f@size. The
corresponding script size and scriptscriptsize (spec-
Xed via \define@mathsizes), however, must be
recorded somewhere. We use the following scheme
for this: for every size s we define a macro \S@s (e.g.
for size XX we define \S@XX) that globally defines two
macros \ s f@size and \ ss f@size to expand to the
corresponding script size and scriptscript size. With
the help of these macros the right sizes can be ex-
tracted easily. Take for example size 'lo', with script
size '7' and scriptscript size '5'. The corresponding
macro looks like

However, the example of \ca l is a bad one because the fonts containing this alphabet must be preloaded
anyway. Those fonts also contain the bulk of math symbols accessed via \mathchardef.

TUGboat, Volume 10 (1989), No. 2

4.3 Special considerations

There are two special cases we must

take care of. Both have to do with size
changes within an alignment. Why is this
special? The first problem appears when
the size change occurs in the last column
of an alignment. The token saved by the
\aftergroup primitive will be inserted

just after the \cr has been read. More

5 Preliminary macros

precisely: after the end of the alignment
template. But here only \noalign or the
end of the alignment is allowed, every-
thing else starts a new column. There is
a simple fix for this: in the template of
the alignment the hash mark (#) denot-
ing the last column must be wrapped in
a group. The same problem shows up if
a size change occurs inside a \noalign.

As always we begin by identifying the latest version of this file on the VDU and in
the log file.

\imediate\write\sixt@@n{File: 'fam.tex'

\f ileversion \space <\f iledate> (FMI and RmS)}
\imediate\write\sixt@@n{English Documentation

<\docdate> (RmS and FMI)}

Following are a number of macros that will be used later.

We define \@spaces to be an abbreviation for five space tokens.

\def \@spaces~\space\space\space\space\space}

This is also defined in latex.tex, but this code cautiously does not assume that any
macros are defined elsewhere (except those in plain. tex).

The \@gobble macro is used to get rid of its argument.

\def\@gobble#lC)

The \@empty macro expands to nothing and is used to test for empty replacement
texts.

\def \@empty0

The \@height, \@depth and \Qwidth macros are made to conserve token memory.

\def \@height{height)

\def\@depth{depth)

\def\@width{width)

We need a macro that prints a warning message. We write to output stream 16 which
means that the message will appear both in the transcript file and on the terminal.

\def \f ont@warning#l~\immediate \write \sixt@@n {Warning: #1.}}

\@nomath is used by all macros that should not be used in math mode.

\def\@nomath#l{\relax\ifmode \font@warning{Don't use \string#l in

math mode}\f i)

The macro \no@version@warning is called whenever the user requests a math alphabet

that is not available in the current version. The first argument is the name of the
version (as a sequence of characters), the second is the control sequence that identifies
the math alphabet. The \relax at the beginning is necessary to prevent 'l&X from
scanning too far in certain situations.

\def \no@version@warning#l#2{\rel~ \ifmode

\font@warning{No '#I' version for math alphabet identifier

\string#2)\fi}

228 TUGboat, Volume 10 (1989), No. 2

\new@mathgroup We have to redefine one plain macro: We must remove \outer from definition

\group of \newfam so that it can be used inside other macros. We also give a new name to
\newf am and \ f am to avoid verbal confusion (see the introdu~tion).~

\def \new@mathgroup{\alloc@8\group\chardef \sixt@@n}

\let\group\f am

%\let\neufam\relax

%\let\f am\relax

6 Macros for setting up the tables

\new@f ontshape Since this kind of definition is needed several times we provide a macro \new@f ontshape

that does the work for us.

\extra@def The 'extra' macro is defined as follows.

We provide an abbreviation for this:

so that the above definition looks like

However, this is inefficient if there is nothing to do (i.e. if the third argument is empty),
so we provide a special test for this case. Here is the actual definition:

We store the argument #3 in a temporary macro \@ternpa. This must have one pa-
rameter since #1 is allowed in the third argument of \extraQdef (otherwise w will
not accept the definition).

\def\@tempa##l{#3)%

We compare \@ternpa with a macro with one argument and empty replacement text,
i.e. with \@gobble. If these two are the same, we \ l e t the 'extra' macro equal
\Qgobble.

\ifx \@tempa\@gobble

\expandafter\let\csname extra//#l/#2\endcsname\@gobble

Otherwise, we build a definition.

\else \expandaf ter\def \csname extra//#l/#2\endcsname##1<#3)\f i}

\preload@sizes AS we already explained, the macro \preload@sizes provides a convenient way to
specify fonts to be preloaded. It takes four arguments and its definition is as follows:

\def\preload@sizes#1#2#3#4C%

We define a macro \nextlo that grabs the next size and loads the corresponding font.
This is done by delimiting \next's only argument by the token , (comma).

\def\next##l,{%

For the same reason it seems advisable to \ l e t \ f am and \newf am equal to \relax,

but this is commented out to retain compatibility to existing style files.
lo We cannot use \@ternpa since it is needed in \pickup@f ont.

TUGboat, Volume 10 (1989), No. 2 229

The end of the list will be detected when there are no more elements, i.e. when \next's
argument is empty. The trick used here is explained in Appendix D of the T@book:
if the argument is empty, the \if will select the first clause and \let \next equal to
\relax. (We use the > character here since it cannot appear in font file names.)

\if >##I>

\let\next\relax

\else

Otherwise, we define \f ontQname appropriately and call \pickupQf ont to do the work.
Note that the requested family/series/shape combination must have been defined, or
you will get an error.

\edef \f ont@name(\csname#l/#2/#3/##l\endcsname)%

\pickup@f ont

\fi

Finally we call \next again to process the next size. If \next was \let equal to
\relax this will end the macro.

\next}%

We finish by reinserting the list of sizes after the \next macro and appending an
empty element so that the end of the list is recognized properly.

\next#4, ,)

\ifdefinehathfonts We need a switch to decide if we have to change math fonts. For this purpose we
provide \if def inehathf onts that can be set to true or false by the \SQ . . . macros,
depending on whether math fonts are provided for this size or not. The default is, of
course, to switch all fonts.

\newif\ifdefinehathfonts \definehathfontstrue

\def inehathsizes \def inehathsizes takes the text size, script size, and scriptscript size as arguments
and defines the right \SQ. . . macro. (\def inebathfontstrue might be omitted if
math fonts are to be defined for every size.)

\def\define@mathsizes#l#2#3(\expandafter \def

\csname S@#l\endcsname(\gdef \sf @size{#2)\gdef \ssf @size(#3}%

\def inehathfont strue})

\def ineQnomathsize \def ineQnomathsize takes only the text size as argument and defines \SQ.. . to not
change math fonts.

\def\define@nomathsize#l(\expandafter \let

\csname S@#l\endcsname \def inehathfontsf alse}

7 Selecting a new font

7.1 Macros for the user

\family As we said in the introduction, a font is described by four parameters. We first define
\series macros to specify the desired family, series, or shape. These are simply recorded in
\shape internal macros \f Qf wily, \f Qseries, and \f @shape, resp. We use \edef's so that

\f@f amily the arguments can also be macros.
\faseries \def \f amily#l{\edef \f @f amilyI#l})
\f @shape \def \series#i{\edef \f @series{#l}}

\def \shape#l{\edef \f @shape(#l))

\size We also define a macro that allows specification of a size. In this case, however, we
\f @size also need the value of \baselineskip. We cannot set \baselineskip immediately,

\setnew@baselineskip so it is recorded in the macro \setnewQbaselineskip. We use \edef here because
the second argument (#2) might be a macro.

\def\size#l#Pa

\edef\f@size(#l}%

\edef\setnew@baselineskip~\baselineskip #2\relax))

230 TUGboat, Volume 10 (1989), No. 2

\selectf ont The macro \selectf ont is called whenever a font change must take place.

\glb@currsize \def \selectf ant{%

Its first action is to determine if the new font has the same size as the previous one.
Here the macro \glbQcurrsize holds the current font size. Its expansion text may
also be empty which means that we do not know what the current size is. As its name
indicates, it is always set globally.

\ifx \glb@currsize \f@size

If the size is to be changed we must also change \baselineskip and a number of
other parameters. This is done by the macro \glbQsettings.

\else \glb@settings

Since these changes are done globally, we must ensure that the old values are re-
stored at the end of the current group. We use m ' s \aftergroup primitive to call
\glbQsett ings again just after the current group ends. And that's all of special code
for a size change.

\aftergroup\glb@settings \fi

We now generate the internal name of the font by concatenating family, series, shape,
and current size, with slashes as delimiters between them. This is much more readable
than standard U r n ' s \twfbf, etc.

\edef\font@name{%

\csname\f@family/\f@series/\f@shape/\f@size\endcsname)%

We call the macro \pickupQf ont which will load the font if necessary.

\pickup@font

Finally, we select the font. This finishes the macro \selectfont .

\mathversion \mathversion takes the math version name as argument, defines \mathQversion
\math@version appropriately and switches to the font selected, forcing a call to \glbQsettings if the

version is known to the system.

\def \mathversion#l{\expandaf ter\if x\csname #l\endscname\relax

\font@uaxning{The requested version '#I' is unknown)\else

\def \math@version{#l)\glb@settings\aftergroup\glb@settings\f i)

7.2 Macros for loading fonts

\pickup@f ont The macro \pickupQf ont which is used in \ se lec t f ont is very simple: if the font
name is undefined (i.e. not known yet) it calls \def ineQnewf ont to load it.

\def\pickup@font{%

\expandafter \ifx \fontenme \relax

\def ine@newf ont

\f i)

\split@name \pickupQfont assumes that \fonthame is set but it is sometimes called when
\f Qf amily, \ fQseries, \f Qshape, or \f Qsize may have the wrong settings (see, e.g.,
the definition of \getanddef ineQf oats). Therefore we need a macro to extract font
family, series, shape, and size from the font name. To this end we define \ sp l i thame
which takes the font name as a list of characters of \catcode 12 (without the back-
slash at the beginning) delimited by the special control sequence \Qnil . This is not
very complicated: we first ensure that / has the right \catcode

{\catcode'\/=l2

and define \splitQname so that it will define our private \fQfamily, \ fQser ies ,
\f Qshape, and \f Qsize macros.

\gdef \split@name#l/#2/#3/#4\@nilC\def \f @f amily{#l)%

TUGboat, Volume 10 (1989), No. 2

\def inehewfont Now we can tackle the problem of defining a new font.

\def\define@newfont{%

We have already mentioned that the token list that \splitQname will get as argument
must not start with a backslash. To reach this goal, we will set the \escapechar to
-1 so that the \ s t r i n g primitive will not generate an escape character. But then
we must save \escapechar's current value. We use count register \count@ for this
purpose.

\count@\escapechar

\escapechar\m@ne

Then we extract family, series, shape, and size from the font name. Note the four
\expandafters so that \fontQname is expanded first, then \ s t r ing , and finally
\splitOname.

\expandaf ter\expandaf ter\expandaf ter

\split@name\expandafter\string\fontBname\@nil

If the family/series/shape combination is not available (i.e. undefined), we call the
macro \wrongOf ontshape to take care of this case. Otherwise, \extractQf ont will
load the external font for us.

We are nearly finished and must only restore the \escapechar.

\wrongcDfontshape Before we come to the macro \extract@font , we have to take care of unknown fam-
ily/series/shape combinations. The general strategy is to issue a warning and to try
a default shape, then a default series, and finally a default family. If this last one
also fails, will go into an infinite loop. But if the defaults are incorrectly set, one
deserves nothing else!

We remember the desired family/series/shape combination which we will need in a
moment.

\edef\@tempa{\csname\fOfamily/\f@series/\f@shape\endcsname)%

Then we warn the user about the mess and set the shape to its default.

\font@warning{Font/shape '\atempa' unknown)%

\shape\default@shape

If the combination is not known, try the default series.

\expandaf ter\ifx\csname\f @f amily/\f @series/\f @shape\endcsname\relax

\series\default@series

If this is still undefined, try the default family. Otherwise give up.

\expandaf ter\if x\csname\f @f amily/\f @series/\f @shape\endcsname\relax

\f amily\def ault@f amily

\fi \fi

At this point a valid family/series/shape combination must have been found. We
inform the user about this fact.

\font@warning{Using '\f@family/\f@series/\f@shapeJ instead)%

TUGboat, Volume 10 (1989), No. 2

If we substitute a family/series/shape combination by the default, we don't want the
warning to be printed out whenever this (unknown) combination is used. Therefore
we globally \ l e t the macro corresponding to the desired combination equal to its sub-
stitution. This requires the use of four \expandafter7s since \csname.. . \endcsname
has to be expanded before \Qtempa (i.e. the requested combination), and this must
happen before the \ l e t is executed.

Now we can redefine \f ontQname accordingly.

\edef\font@name(\csname\f@family/\f~series/\f@shape/\f@size\endcsname~%

The last thing this macro does is to call \pickupQf ont again to load the font if it is
not defined yet. At this point this code will loop endlessly if the defaults are not well
defined.

\pickup@f ont }

\strip@pref ix In \extractQf ont we will need a way to recover the replacement text of a macro.
This is done by the primitive \meaning together with the macro \s t r ipQpref i x (for
the details see appendix D of the l&Xbook, p. 382).

\def \strip@pref ix#i>C)

\extract@font Here it comes: the macro solving all our problems (well, nearly all). What must
this macro do? This is explained best with an example. Assume that family is
'cml, series is 'sansserif', shape 'normal7, and size '12'. Assume further that this
combination is defined, i.e. there exists the macro \cm/sansserif /normal. (Otherwise
\extractQfont doesn't get called.) Its replacement text consists of one (undefined)
control sequence looking like

For reasonable styles one usually needs more sizes but this is sufEcient to get the
flavour. We will define a macro \extractQf ontinf o to find the external font name
('cmssl2') for us:

so that when it gets called via

I will contain all characters before <12>, #2 will be exactly cmssl2, and #3 will be
1 7 ~ m s s 17. The expansion is therefore

which is exactly what we want.

But this is only part of the whole story. It may be that the size requested does
not occur in the \cm/sansserif/normal macro. And the simple definition of
\extractQfontinfo we gave above does not allow us to specify the font substitu-
tion that we explained in 3.1.

Both problems are solved with the same trick: We define \extractQfontinfo as

follows:

\def\extract@fontinfo#l<12>#2#3<#4\Qnil(%

\global\f ont\cm/sansserif /normal/l2

\ifcase 0#2#3\relax\or

#3 \font@warningCSize 12 not available

TUGboat, Volume 10 (1989), No. 2

- using '#3' instead)\or

#3 \font@warning{Family/series/shape not available

- using '#3' instead)\else

\def aultaerrf ont \errmessage{Font not f ound)\f i)

How does this work? The first difference from the previous definition is that the
characters of the external font name are split between parameters #2 and #3, #2
receiving only the first character. If this first character is not a digit, the \ i f case will
get the 0 and select the first alternative. #2 and #3 are combined again and used as
a file name. If #2 is a digit then the expansion of \ i f case will combine the 0 and #2

to a number.ll Cases 1 and 2 select the second and third alternatives that use #3 as
the substitution font.

The default case is reserved for a size that cannot be found in the tables. We achieve
this by calling \extractQf ontinf o via

If the size ('12' in this case) appears in the \<lo>. . . macro everything works as
explained above, the only difference being that argument #4 of \extractQf ontinf o
additionally gets the <12>3 tokens. However, if the size is not found, everything up to
the final <l2> is in argument #I , #2 gets 3, and #3 and #4 are empty. Therefore the
\ i f case will select the default alternative and write an error message.

We have cheated a bit, of course. Normally digits and characters like /<> are not
allowed as part of control sequences. Additionally the macros are hidden inside
other control sequences so that we have to build \extractQfontinf o in several steps.
Putting everything together we define \extractQf ont as follows.

\def \extract@f ontC%

\Qtempa is made an abbreviation for the head of the definition of \extractQf ontinf o.

\def \@tempaC\def \extract@f ontinf o####l)%

Then we define \Qtempb so that it expands to <(size)>. We use this slightly compli-
cated construction to ensure that all characters have \catcode 12. This is needed for
the delimiter matching in macro expansion.

\edef \@tempbC<\expandafter\strip@pref ix\meaning\f @size>)%

Now we can define \extractQf ontinf o.

\expandafter\@tempa\@tempb##2##3<##4\@nil.[%

Remember that \f ontQname expands to the internal font name.

\global\expandaf ter\f ont \f ontanme

Here comes the \ i f case. For the benefit of the user, the warning messages are a bit
more eloquent.

\if case0##2##3\relax\or

##3

\f ont@warning(Font/shape '\f @f amily/\f @series/\f @shape '
in size \@tempb\space not available)%

\font@warningCUsing '##3' instead)\or

##3

\f ont@warning{Font/shape ' \f @f amily/\f @series/\f Bshape '
not available)%

\font@warningCUsing '##3' instead)\else

l1 Recall that 01 is a valid (number) for m.

TUGboat, Volume 10 (1989), No. 2

There are two points to be explained here: \def aultOerrhelp is the font to be selected
if the requested size is not found in the tables. \nof ontQhelp denotes a token register
that contains a help message for the user. Its definition is given below.

\default@errfont \errhelp\nofont@help

\errmessage{Font \expandaf ter

\string\font@name\space

not found)%

\f i)%

Now we must extract the font information from the family/series/shape macro. This
is done in two steps: first generate the macro name by \csname. . . \endcsname and
expand it to get its replacement text. Then use \ s t r ing to convert this text into a
sequence of character tokens with \catcode 12. We define \f ontQinf o to contain this
sequence followed by <(size)> (which is stored in \Otempb).

Now we call \extractOf ontinf o. Note the 3<\9nil tokens at the end.

\expandafter\extract@fontinfo\font@info 3<\Qnil

Finally we call the corresponding "extra" macro to finish things.

\csname extra//\f @f amily/\f @series \expandafter

\endcsname \font@name \relax)

The \ relax at the end needs to be explained. This is inserted to prevent from
scanning too far when it is executing the replacement text of the "extra" macro.

\nofont@help \nof ontOhelp is a token register containing a help message. It is defined using plain
m ' s \newhelp macro.

\newhelp\nofont@help

{You requested a font/series/shape/size combination that is

totally--Junknown. \space I have inserted a special font name
that will producea-Jinteresting effects in your output. \space

There are two cases in which'-Jthis error can occur:--J\space

\space 1) You used the \string\size\space macro to select

a size that is not available.-^J\space

\space 2) If you did not do that, go to your local 'wizard'

andaaJ \@spaces complain fiercely that the font

selection tables are corrupted! a-J%

(And do not worry about the missing escape characters in the

error--Jtraceback above!)"J)

8 Assigning math fonts to versions

\def inehathalphabet We begin with the definition of the macro \def heba tha lphabe t which is built to
append definitions specific to a new math alphabet to the replacement text of a version

macro. It takes six arguments: the math version name (as a string of characters),
a control sequence identifying the new math alphabet, the number of the new math
group (normally a control sequence defined via \countdef), and finally three strings
of characters denoting font family, series, and shape. If the shape parameter (#6) is
empty then the alphabet #2 is not available in version #I.

The first thing it does is to check if the name of the math version is already defined.
This is the case if there already exist other math alphabets in this version. We must
of course remember these definitions. To do so we save the contents of the macro in
the token register \toksQ.

\expandafter\if x\csname #l\endcsname\relax

TUGboat, Volume 10 (1989), No. 2

If there is no other math alphabet in this version, we simply store an empty token list
in this register.

\toks@C)%

Otherwise, we generate the control sequence denoting the macro using \csname.. .
\endcsname and store its replacement text in \toksQ. Note the three \expandaf t e r
primitives to achieve this.

Depending on the shape parameter (#6) we have different things to do. We save the
sequence of character tokens in a temporary control sequence.

\def\@tempa{#6)%

Now we globally redefine the version. Since the name of the version is given as a
sequence of characters we must again build a macro name out of it. We use an \xdef
so that the definition is expanded first.

This is necessary since we want to insert the contents of token register \toksQ.

Then we append the new definitions for the alphabet #I. The \noexpand is necessary
to insert the (math alphabet identifier) without expanding it.

We must now catch the case that the shape parameter #6 saved in \@ternpa is empty,
i.e. that the alphabet is not available in this version. We simply include a call to the
\noQversionQwarning defined earlier.

\ifx\@tempa\@empty

C\noexpand\no@version@uarning

\noexpand\math@vers ion

\noexpand#l)%

Otherwise, we include a call to \selectQgroup (see below) with the three arguments
(math alphabet identifier), (math group number), and font family/series/shape defini-
tion macro.

Now the macro switching to the version #I contains a definition for alphabet #2.

Finally we force a call to \glbQsett ings at the next time the fonts change by globally
redefining \glbQcurrsize.

\def ineamathgroup \def ineaa thgroup is similar to \def h e b a t h a l p h a b e t . This macro is never called
when processing a document, only during the font definition phase (e.g. by a style file
in VTEX or when dumping a format file). It is used for those math groups that are
used via \mathchardef primitives. Since we don't need a (math alphabet identifier)
to select those symbols, the macro takes only five arguments: the math version name
as a sequence of character tokens, the (math group number) as a control sequence (it
must already be allocated using \new@mathgroup) or as a digit (for groups 0 to 3, and
font family, series, and shape name (as a sequence of character tokens). The first part
is therefore completely analogous to the definition of \def inehatha lphabet .

TUGboat, Volume 10 (1989), No. 2

Since this code is never called by the user there is no need to issue a warning when
the (math group number) isn't allocated. However, the font tables must be defined
consistently!12 Instead of \selectQgroup it uses \getanddef ineQf onts which has
only two arguments: (math group number) and the font family/series/shape combi-
nation.

The tail is literally the same as in def inebathalphabet.

\getanddef ine(0f onts \getanddef ineQf onts has two arguments: the (math number number) and the fam-
ily/series/shape name as a control sequence.

\def\getanddefine@fonts#1#2{%

We append the current \f Osize to #2 to obtain the font name.13

\edef\font@nameC\csname \string#2/\f@size\endcsname}%

Then we call \pickupOfont to load it if necessary. We remember the internal name
as \textf ontQname.

\pickup@font \let\textfont@name\font@name

Same game for \scriptfont and \scriptscriptfont:

\edef \f ont@name{\csname \string#2/\sf @size\endcsnameyL
\pickup@font \let\scriptfont@name\font@name
\edef\font@nameC\csname \string#2/\ssf@size\endcsname)%
\pickup@font

Then we append the new \textfont.. . assignments to the \mathQfonts.

\edef\math@fonts{\mathQfonts

\textfont#l\textfont@name

\scriptfont#l\scriptfont@name

\scriptscriptfont#l\font@name)}

\select@group \selectQgroup has three arguments: the new (math alphabet identifier) (a control
sequence), the (math group number), and the family/series/shape definition macro
name. We first check if we are in math mode.

\def\select@group#l#2#3i\ifmmode

We do these things locally:

\bgroup

We set the math fonts for the family in question by calling \getanddef ineQf onts in
the correct environment.

\let\math@f onts\@empty \escapechar\m@ne
\getanddefine@fonts#2#3%

l2 Terrible harm will come to you if you don't do it right! A crowd of angry users
might come to stone you!

l3 One might ask why this expansion does not generate a macro name that starts
with an additional \ character. The solution is that \escapechar is set to -1 before
\getanddef ineQf onts is called.

TUGboat, Volume 10 (1989), No. 2

We globally select the math fonts. . .
\globaldef s\Qne \math@f onts

. . . and close the group to restore \globaldef s and \escapechar.

\egroup

As long as no size or version change occurs, the (ma th alphabet identifier) should
simply switch to the installed group instead of calling \selectQgroup unnecessarily.
So we globally redefine the first argument (the new (ma th alphabet identifier)) to
expand into a \group switch and then select this alphabet. Note that this redefinition
will be overwritten by the next call to a version macro.

\gdef #1{\group #2)#1%

If we are not in math mode nothing needs to be done.

\f il

\glb@settings The macro \glb@settings globally selects all math fonts for the current size. The
first thing it does is to open up a group.

\def \glbQsettings{\begingroup

This is done to keep the following changes local: set the \escapechar to - 1 and make
\mathQf onts to expand to nothing.

\escapechar \mane

\let\mathQfonts\@empty

Why do we \let \mathQfonts equal to \@empty at this point? When \glb@settings
gains control, a size change was requested and all previous font assignments need to
be replaced. Therefore the old values of the fonts are no longer needed. For every
group the new assignments are appended to \math@f onts. Now we set the script size
and scriptscript size.

\csname SQ\f Qsize\endcsname

This also sets the def inehathf onts switch. If it is true, we must switch the math
fonts. We execute the macro for the current math version. This sets \mathQf onts to
a list of \textf ont. . . assignments.

\ifdefine(pmathfonts \csname \mathaversion \endcsname \fi

Then we set \globaldef s to 1 so that all following changes are done globally.

\globaldef s\Qne

The math font assignments recorded in \math@f onts are executed, \glbQcurrsize is
set to the wanted \fasize, and the \baselineskip parameter is set accordingly by
the macro \setnew@baselineskip and then multiplied by \baselinestretch.

\mathQf onts

\let \glbQcurrsize \f Qsize

\setnewQbaselineskip

\baselineskip\baselinestretch\baselineskip

Then we set the \strutbox and \normalbaselineskip.

\setbox\strutbox\hbox{\v~le\Qheight.7\baselineskip

\@depth.3\baselineskip \Qwidth\z@)%

\normalbaselineskip\baselineskip

The macro ends by closing the group. This restores all parameters changed locally
(including \globaldef s!) to their previous values.

\endgroup)

\baselinestretch In \glb@settings we used \baselinestretch as a factor when assigning a value to
\baselineskip. We use 1 as a default (i.e. no stretch).

\def\baselinestretch11)

TUGboat, Volume 10 (1989), No. 2

Index

The italic numbers denote the pages where the corresponding entry is described, num-
bers underlined point to the definition, all others indicate the places where it is used.

Symbols

\@depth - 227, 237

\@empty . . . - 227, 235-237

\@gobble - 227, 228

\@height - 227, 237

\@nomath - 227

\@spaces - 227, 234

\@width - 227, 237

A
\af tergroup 230

D
\def ault@f amily . . . 223

\def a u l t b e r i e s . . . 223

\defaultashape 223

\def inehathalphabet

. . . . 224, 225, 234
\definehathgroup .

. . . . 224, 225, 235
\define@mathsizes .

. 225,229

\def ineQnewf ont . . . - 231

\defineQnomathsize .
. 225,229

I
\ i f def inehathfonts 229

N
\new@f ontshape 223,228

S

\scriptf ont 236

\scriptscriptfont . 236

\select@group . 226, 236
\selectfont . . . 223,230

\series 223, 229
\setnew@baselineskip

. 229 -
\shape 223,229

\s ize 223,229
\splithame - 230

\strip@prefix - 232

\strutbox 237

T
\textf ont 236

W
\wrong@f ontshape . . 231

o Frank Mittelbach
Rainer Schopf
Fachbereich Mathematik
Universitat Mainz
Staudinger Weg 9
D-6500 Maim
Federal Republic of Germany
Bitnet: schoepf (Pdmznat5l

