
TUGboat, Volume 9 (1988), No. 3

A new implementat ion of t h e array- a n d ta bular-environments

Frank Mittelbach

Johannes Gutenberg Universitat

D-6500 Mainz

Abstract

This article describes a new implementation of the Ul&X array- and tabular-
environments. The special merits of this implementation are further options to

format columns m d the fact that fragile UTj$<ommands don't have to be

\prot ect'ed m y more within those environments.

At the same time it shows a new - and in our opinion sensible - way of

documenting "QX-macros: This article is the stylefile that is to be used. All

we need in addition to it is a short 'T@-program which visualizes the comments

and puts the definitions in verbatim mode.

Introduction

First we will define the current version of this file:

\typeoutCStyle-Option: ' a r r ay ' v1.9g \space\space <24.6.88> (F.M.))

\typeout{English documentation dated \space\space <24.6.88> (F . M .))

This new implementation of the array- and tabular-environments is part of a larger

project in which we are trying to improve the I 4 w - c o d e in some aspects and to make
TPQX even easier to handle. At the moment we are experimenting with a version

where all commands are automatically robust.

The reader should be familiar with the general structure of the environments men-
tioned above. Further information can be found in LAMPORT [3]. The additional

options which can be used in the preamble as well as those which now have a slightly

different meaning are described in Table 1

Defines a column of width width. Every entry will be cen-

tered in proportion to the rest of the line. It is somewhat
like \parbox{width). In the original definition p { .) was

a topaligned parbox. - -

t {width) 1 Equivalent to \parbox [t l {width), the former p-option.

I blwidth) 1 Coincides with \parbox[b] {width).

1 >{decl .) I Can be used before an 1, r, c, p, t or a b option. I t inserts
decl . directlv in front of the entry of the column.

Table I: The new preamble options.

'{decl

I

! {decl .)

Can be used after an 1, r, c , p{. .), t{. .) or a b{. .3
option. It inserts decl . right after the entry of the column.

Inserts a vertical line. The distance between two columns
will be enlarged by the width of the line in contrast to the

original definition of m.
Can be used anywhere and corresponds with the I option.
The difference is that dec l . is inserted instead of a vertical

line, so this option doesn't suppress the normally inserted

space between columns in contrast to @C . . .3.

TUGboat, Volume 9 (1988), No. 3 299

Additionally we introduce a new parameter called \extrarowheight. If it takes a
positive length. the value of the parameter is added to the normal height of every row

of the table, while the depth will remain the same. This is important for tables with

horizontal lines because those lines normally touch the capital letters. For example.

we used \extrarowheight=lpt in Table 1.

We will discuss a few examples using the new preamble options before dealing with

the implementation.

If you want to use a special font (for example \bf) in a flushed left column. this

can be done with >{\bf)l. You do not have to begin every entry of the column

with \bf any more.

In columns which have been generated with p, t or b, the default value is
\parindent=Opt. This can be changed with >{\parindent=icm)p.

The <-option was originally developed for the following application: >($)c<{$)
generates a column in math mode in a tabular-environment. If you use this type

of a preamble in an array-environment, you get a column in LR mode because

the additional $'s cancel the existing $'s.

One can also think of more complex applications. A problem which has
been mentioned several times in m h a x can be solved with >{\centerdots)c

<{\endcenterdots). To center decimals at their decimal points you (only?)

have to define the following macros:

{ \ca tcode ' \ . =\active\gdef . ~\egroup\setbox2=\hbox\bgroup})

\def\centerdots~\catcode'\.=\active\setboxO=\hbox\bgroup>

\def \endcenterdots(\egroup\if void2 \setbox2=\hbox{O>\f i

\if dim \wdO>\wd2 \setbox2=\hbox to\wdO{\unhbox2\hf i l l) \ e l s e
\setboxO=\hbox to\wd2{\hfill\unhboxO)\fi

\catcode ' \ . =I2 \boxO. \box2)

Using c ! {\hspaceClcm))c you get space between two columns which is enlarged

by one centimeter, while c@{\hspace{lcm))c gives you exactly one centimeter
space between two columns.

These examples should be sufficient to demonstrate the use of the new preamble

options.

I t is obvious that those environments will consist mainly of an \hal ign, because

'I$$ typesets tables using this primitive. That is why we will now take a look at
the algorithm which determines a preamble for a \hal ign starting with a given user

preamble using the options mentioned above.

The construction of the preamble

The most interesting macros of this implementation are without doubt those which

are responsible for the construction of the preamble for the \hal ign. The underlying

algorithm was developed by LAMPORT (resp. KNUTH, see W h a x V87#??). and it

has been extended and improved.

The user preamble will be read token by token. A token is a single character like

c or a block enclosed in C . . .). For example the preamble of \begin{tabular)

{lc I I c@{\hspace{lcm))) consists of the token 1, c, I , I , @ and \hspace{lcm).

The currently used token and the previous one are needed to decide on how the

construction of the preamble has to be continued. In the example mentioned above

the 1 causes the preamble to begin with \hskip\tabcolsep. Furthermore # \ h f i l

TUGboat, Volume 9 (1988), No. 3

would be appended to define a flush left column. The next token is a c. Because it was
preceded by an 1 it generates a new column. This is done with \hsk ip \ t abco l sep

& \hskip\ tabcolsep. The column which is to be centered will be appended with

\ h f i l # \ h f i l . The token I would then add a space of \hsk ip \ t abco l sep and a
vertical line because the last tokens was a c. The following token I would only add

a space \hskip\doublerulesep because it was preceded by the token I . We will not

discuss our example further but rather take a look at the general case of constructing

preambles.

The example shows that the desired preamble for the \ h a l i p can be constructed as
soon as the actions of all combinations of the preamble tokens are specified. There are

18 such tokens so we have 19.18 = 342 combinations if we count the beginning of the

preamble as a special token. Fortunately, there are many combinations which generate

the same spaces, so we can define token classes. We will identify a token within a class

with a number. so we can insert the formatting (for example of a column). Table 2
lists all token classes and their corresponding numbers.

token

C

1

r

p-arg
t - a r g

b-arg

I
! -a rg

<-arg

>-arg

token

S t a r t

@-arg

!

@

<
>

P
t

b

Table 2: Classes of preamble tokens

\Qchclass The class and the number of the current token are saved in the count registers
\Ochnum \@chc lass and \@chnum, while the class of the previous token is stored in the count

\Qlastchclass register \ @ l a s t c h c l a s s . All of the mentioned registers are already allocated in
l a t e x . t ex . This is why the following three lines of code are commented out. Later,
throughout the text, I will not mention again explicitly whenever I use a % sign that
these parts are already defined in l a t e x . t ex .

% \newcount \Qchclass

% \newcount \Qchnum

% \newcount \Qlas tchclass

\@addtopreamble We will save the already constructed preamble for the \ h a l i g n in the global macro
\@preamble. This will then be enlarged with the command \@addtopreamble.

The character class of a token

\Otestpach With the help of \ @ l a s t c h c l a s s we can now define a macro which determines the
class and the number of a given preamble token and assigns them to the registers
\@chc lass and \@chnum.

\def\Otestpach#l{\(Ochclass

TUGboat, Volume 9 (1988), No. 3 301

First we deal with the cases in which the token (#I) is the argument of !, Q, < or >.
We can see this from the value of \@las tchc lass :

\ifnum \Olastchclass=6 \One \Ochnum \One \ e l s e

\ifnum \Olas tchc lass=7 5 \ e l s e

\ifnum \Olastchclass=8 \ t w o \ e l s e

\ifnum \Olas tchc lass=9 \ t h r Q Q

Otherwise we will assume that the token belongs to the class 0 and assign the corre-
sponding number to \@chnum if our assumption is correct.

\ e l s e \zQ

If the last token was a p, t or a b, \@chnum already has the right value. This is the
reason for the somewhat curious choice of the token numbers in class 10.

\ifnum \Olas tchc lass = 10 \ e l s e

Otherwise we will check if # I is either a c, 1 or an r.

\Ochnum

\ i f #Ic\zO \ e l s e

\ i f #Il\One \ e l s e

\ i f # I r \ twQ \ e l s e

If it is a different token, we know that the class was not 0. We assign the value
0 to \@chnum because this value is needed for the 1-token. Now we must check the
remaining classes. Note that the value of \@chnum is insignificant here for most classes.

\zQ \Ochclass

\ i f #Il\One \ e l s e

\ i f #1!6 \ e l s e

\ i f # la7 \ e l s e

\ i f #1<8 \ e l s e

\ i f #1>9 \ e l s e

The remaining permitted tokens are p, t and b (class 10).

10

\Ochnum

\ i f #Ip\thrOQ \ e l s e

\ i f # l t 4 \ e l s e

\ i f # lb5 \ e l s e

Now the only remaining possibility is a forbidden token, so we choose class 0 and
number 0 and give an error message. Then we finish the macro by closing all \ i f ' s .

\zO \Qchc lass \zO \Qpreamerr \zO \ f i \ f i \ f i \ f i

\ f i \ f i \ f i \ f i \ f i \ f i \ f i \ f i \ f i \ f i \ f i \ f i >

Multiple columns (*-form)

\Qxexpast Now we discuss the macro that deletes all forms of type *<N){String} from a user
preamble and replaces them with N copies of String. Nested *-expressions are dealt

with correctly: that means *-expressions are not substituted if they are in explicit

braces, as in QC*}.

This macro is called via \@xexpast(preamble)*Ox\Q@. The *-expression *Ox is being
used to terminate the recursion. as we shall see later, and \@@ serves as an argument
delimiter. \Oxexpast has four arguments. The first one is the part of the user pream-
ble before the first *-expression while the second and third ones are the arguments
of the first *-expression (that is Nand String in the notation mentioned above). The
fourth argument is the rest of the preamble.

\def\Oxexpast#l*#2#3#4\OQt%

The number of copies of String that are to be produced (#2) will be saved in a count
register.

\Oternpcnta #2

TUGboat, Volume 9 (1988), No. 3

We save the part of the preamble which does not contain a *-form (#I) in a P l a i n m
token register. We also save String (#3) using a I 4 m token register.

\toksQ={#l)\Otemptokena=(#3)%

Now we have to use a little trick to produce N copies of String. We could try
\def \@tempa{#l) and then N times \edef \@tempa{\@tempa#3). This would have
the undesired effect that all macros within #I and #3 would be expanded. although.
for example. constructions like @{. .) are not supposed to be changed. That is why
we \ l e t two control sequences to be equivalent to \ re lax.

\let\Qthetoksz\relax \let\@thetoks\relax

Then we ensure that \@ternpa contains {\@thetoksz\@thetoks. . . \@thetoks) (the
macro \@the toks exactly N times) as substitution text.

\def\Otempa{\Qthetoksz)%

\ifnum\Otempcnta >O \Qwhilenum\Btempcnta >O\do

I\edef\Qtempa{\@tempa\@thetoks)\advance \Otempcnta \mOne)%

If N was greater than zero we prepare for another call of \Oxexpast. Otherwise we
assume we have reached the end of the user preamble, because we had appended
*Ox\@@ when we first called \@xexpast. In other words: if the user inserts *{OH. .)
in his preamble. I 4 W ignores the rest of it.

\let \Otempb \Oxexpast \else

\let \Otempb \Oxexnoop \fi

Now we will make sure that the part of the user preamble. which was already dealt
with, will be saved again in \@ternpa.

\def\Qthetoksz{\the\toks0)\def\Qthetoks{\the\Otemptokena~%

\edef\Otempa{\Qtempa)%

We have now evaluated the first *-expression, and the user preamble up to this
point is saved in \@ternpa. We will put the contents of \atempa and the rest of the
user preamble together and work on the result with \@tempb. This macro either
corresponds to \axexpast, so that the next *-expression is handled, or to the macro
\@xexnoop, which only ends the recursion by deleting its argument.

\expandafter \Qtempb \atempa #4\QO)

\Qxexnoop So the first big problem is solved. Now it is easy to specify \@xexnoop. Its argument
is delimited by \ @ @ and it simply expands to nothing.

The insertion of declarations (>, <, !, Q)

The preamble will be enlarged with the help of \xdef, but the arguments of >. <. !

and Q are not supposed to be expanded during the construction (we want an imple-
mentation that doesn't need a \ p r o t e c t) . So we have to find a way to inhibit the

expansion of those arguments.

We will solve this problen with token registers. We need one register for every ! and

@. while we need two for every c. 1. r, t, p or b. This limits the number of columns of

a table because there are only 256 token registers. But then, who needs tables with

more than 100 columns?

One could also find a solution which only needs two or three token registers by pro-

ceeding similarly as in the macro \axexpast (see page 301). The advantage of our

approach is the fact that we avoid some of the problems that arise with the other
method1.

lMaybe there are also historical reasons.

TUGboat, Volume 9 (19881, No. 3

So how do we proceed? Let us assume that we had !{fool in the user preamble and
say we saved foo in token register 5. Then we call \@addtopreamble(\@thetoks5)

where \@thetoks is defined in a way that it does not expand (for example it could be

equivalent to \ re lax) . Every following call of \@addtopreamble leaves \@thetoks5

unchanged in \@preamble. If the construction of the preamble is completed we change

the definition of \@thetoks to \ the \ toks and expand \@preamble for the last time.

During this process all parts of the form \@thetoks(Number) will be substituted by

the contents of the respective token registers.

As we can see from this informal discussion the construction of the preamble has to

take place within a group, so that the token registers we use will be freed later on. For

that reason we keep all assignments to \@preamble global: therefore the replacement

text of this macro will remain the same after we leave the group.

We further need a count register to remember which token register is to be used next.

This will be initialized with -1 if we want to begin with the token register 0. We

use the P l a i n w scratch register \count@ because everything takes place locally. All

we have to do is insert \@thetoks \the\count@ into the preamble. \@thetoks will

remain unchanged and \the\count@ expands into the saved number.

The macro \prepnext@tok is in charge of preparing the next token register. For that
purpose we increase \count@ by 1:

\def\prepnextOtok{\advance \count@ \ h e

Then we locally delete any contents the token register might have.

\toks\count@={)>

During the construction of the preamble the current token is always saved in the macro
\@nextchar (see the definition of \@mkpream on page 304). The macro \save@decl
saves it into the next free token register, i.e. in \toks\count@.

\def\saveOdecl{\toks \count@ = \expandafter

{\expandafter \relax \@nextchar)>

The reason for the use of \ r e l ax is the following hypothetical situation in the pream-

ble: . . \ the \ toks l \ the \ toks2 . . expands \ the\ toks2 first in order to find

out if the digit 1 is followed by other digits. E.g. a 5 saved in the token register 2

would lead to insert the contents of token register 15 instead of I later on.

What should happen if we want to add another column to the preamble, i.e. if we have

found a c, 1, r . t . p or b in the user preamble ? In this case we have the problem that
the token register from >{ . .) and <{ . .) has to be inserted at this moment because

formatting instructions like \hf il have to be set around them. On the other hand it

is not known yet, if any <{. .) instruction will appear in the user preamble a t all.

We solve this problem by adding two token registers at a time. This explains why we
have freed the token registers in \prepnext@tok.

We now define the macro \insert@column which will do this work for us.

\def\insert@column{%

Here, we assume that the count register \@tempcnta has saved the value \count@ - 1.

\Qthetoks \the\@tempcnta

Next follows the # sign which specifies the place where the text of the column shall
be inserted. To avoid errors during the expansions in \@addtopreamble we hide this
sign in the command \@sharp which is temporarily occupied with \ r e l ax during the
build-up of the preamble. To remove unwanted spaces before and after the column
text, we set an \ignorespaces in front and a \unskip afterwards.

TUGboat, Volume 9 (1988), No. 3

Then the second token register follows whose number should be saved in \count@.

\Qthetoks \the\countO)

The separation of columns

\&laddamp In the preamble a & has to be inserted between any two columns; before the first
column there should not be a &. As the user preamble may start with a I we have to
remember somehow if we have already inserted a # (i.e. a column). This is done with
the boolean variable \ i f @f irstamp that we test in \@addamp, the macro that inserts
the &.

% \newif \@iff irstamp

% \def\Oaddamp{\ifQfirstamp \Qfirstampfalse

% \else \Oaddtopreamble &\fi)

\@acol We will now define some abbreviations for the extensions that appear most often in
\@acolampacol the preamble build-up. Here \col@sep is a dimen register which is set equivalent to

\colQsep \arraycolsep in an array-environment; otherwise it is set equivalent to \tabcolsep.

The macro \@mkpream

\Qmkpream Now we can define the macro which builds up the preamble for the \ h a l i p . First
we initialize \@preamble. \@las t chc l a s s and the boolean variable \ i f @f irstamp.

\def\Qmkpream#1~\gdef\QpreambleC)\Qlastchclass 4 \Qfirstamptrue

During the build-up of the preamble we cannot directly use the # sign; this would

lead to an error message in the next \@addtopreamble call. Instead, we use the

command \@sharp at places where later a # will be. This command is at first given
the meaning \ re lax : therefore it will not be expanded when the preamble is extended.

In the macro \@array. shortly before the \hal ign is carried out, \@sharp is given its
final meaning.

We deal with the commands \@star tpbox and \@endpbox in a similar way, although
the reason is different here: these macros expand to many tokens which would delay
the build-up of the preamble.

\let\Qsharp\relax \let\Qstartpbox\relax \let\Qendpbox\relax

Now we remove possible *-forms in the user preamble with the command \axexpast.
As we already know, this command saves its result in the macro \@ternpa.

\Oxexpast #i*Ox\QQ

Afterwards we initialize all registers and macros that we need for the build-up of the
preamble. Since we want to start with the token register 0, \count@ has to contain
the value - 1.

\countO\mQne

\let\Qthetoks\relax

Then we call up \prepnext@tok in order to prepare the token register 0 for use.

\prepnextQtok

To evaluate the user preamble (without stars) saved in \@ternpa we use the I4W-
macro \@tf or. The strange-looking construction with \expandafter is based on the
fact that we have to put the replacement text of \@ternpa and not the macro \@ternpa
to this I4m-macro .

\expandaf ter \Qtf or \expandaf ter \Qnextchar

\expandafter :\expandafter =\Qtempa \do

TUGboat, Volume 9 (1988), No. 3 305

The body of this loop (the group after the \do) is executed for one token at a time.
whereas the current token is saved in \@nextchar. At first we evaluate the current
token with the already defined macro \@testpach. i.e. we assign to \@chclass the
character class and to \@chnum the character number of this token.

(\Qtestpach\Qnextchar

Then we branch out depending on the value of \@chclass into different macros that
extend the preamble appropriately.

\~fcase \Qchclass \Qclassz \or \Qclassi \or \Qclassii

\or \saveQdecl \or \or \Oclassv \or \Qclassvi

\or \Qclassvil \or \Qclassviii \or \Qclasslx

\or \Qclassx \fl

Two cases deserve our special attention: Since the current token cannot have the
character class 4 (start) we have skipped this possibility. If the character class is
3. only the content of \@nextchar has to be saved into the current token register:
therefore we call up \save@decl directly and save a macro name. After the preamble
has been extended we save the value of \@chclass in the counter \@las t chc l a s s to
assure that this information will be available during the next run of the loop.

\~lastchclass\Qchclass)%

After the loop has been finished space must still be added to the created preamble,
depending on the last token. Depending on the value of \@las tchc lass we perform
the necessary operations.

\ifcase\Olastchclass

If the last class equals 0 we add a \hskip\col@sep.

\Qacol

If it equals 1 we do not add any additional space so that the horizontal lines do not
exceed the vertical ones.

\or

Class 2 is treated like class 0 because a <{. . .) can only directly follow after class 0.

\or \Qacol

Most of the other possibilities can only appear if the user preamble was defective.
Class 3 is not allowed since after a >{. .) there must always follow a c, 1, r, p, t or
b. We report an error and ignore the declaration given by C . .3.

\or \Qpreamerr \thrQO

If \@las t chc l a s s is 4 the user preamble has been empty. To continue, we insert a #

in the preamble.

\or \Qpreamerr \twQ \Qaddtopreamble\Qsharp

Class 5 is allowed again. In this case (the user preamble ends with Q{. .)) we need
not do anything.

\or

Any other case means that the arguments to @, !, <, >, p, t or b have been forgotten.
So we report an error and ignore the last token.

\else \Qpreanerr \Qne \fi

ISow that the build-up of the preamble is almost finished we can insert the token
registers and therefore redefine \Qthetoks. The actual insertion, though. is performed
later.

\def\Qthetoks{\ the\ toksH

The macros \@class2 to \@classx

The preamble is extended by the macros \@class2 to \@classx which are called by

\@mkpream depending on \@las t chc l a s s (i.e. the character class of the last token).

TUGboat, Volume 9 (1988), No. 3

\Qclassx First we define \@classx because of its important r6le. When it is called we find that
the current token is p. t or b. That means that a new column has to start.

\def\Qclassx{%

Depending on the value of \@las t chc l a s s different actions must take place:

\ifcase \Qlastchclass

If the last character class was 0 we separate the columns by \hskip\col@sep followed
by & and another \hskip\col@sep.

\@acolampacol

If the last class was class 1 - meaning that a vertical line was drawn, - before this
line a \hskip\col@sep was inserted. Therefore there has to be only a & followed by
\hskip\col@sep. But this & may be inserted only if this is not the first column. This
process is controlled by \ i f Of irstamp in the macro \addamp.

\or \@addamp \Qacol

Class 2 is treated like class 0 because <{. . .) can only follow after class 0.

\or \Qacolampacol

Class 3 requires no actions because everything necessary has been done by the pream-
ble token >.

\or

Class 4 means that we are at the beginning of the preamble. Therefore we start the
preamble with \hskip\col@sep and then call \@firs tampfalse. This makes sure
that a later \@addamp inserts the character & into the preamble.

\or \Qacol \Qf irstampf alse

For class 5 tokens only the character & is inserted as a column separator. Therefore
we call \@addamp.

\or \@addamp

Other cases are impossible. For an example \@las t chc l a s s = 6 - as it might appear
in a preamble of the form . . . ! p . . . - p would have been taken as an argument of !

by \@testpach.

\f i)

\Oclassz If the character class of the last token is 0 we have c , 1 . r or an argument o f t , b or
p. In the first three cases the preamble must be extended the same way as if we had
class 10. The remaining two cases do not require any action because the space needed
was generated by the last token (i.e. t . b or p). Since \@las tchc lass has the value
10 at this point nothing happens when \@classx is called. So the macro \@classz
may start like this:

\def\Qclassz{\Qclassx

Acording to the definition of \insert@column we must store the number of the token
register in which a preceding >{. .) might have stored its argument into \@tempcnta.

\Qtempcnta \count@

To have \count@ = \@tmpcnta + 1 we prepare the next token register.

\prepnextQtok

Now the preamble must be extended with the column whose format can be determined
by \@chnum.

\Qaddtopreamble{\ifcase \Qchnum

If \@chnum has the value 0 a centered column has to be generated. So we begin with
stretchable space.

\hf il

The command \ d @ l l a r follows expanding into nothing (in the tabular-environment)
or into $. By providing an appropriate setting of \ d @ l l a r we achieve that the contents
of the columns of an array-environment are set in math mode while those of a tabular-
environment are set in LR mode.

\d@llar

TUGboat, Volume 9 (1988), No. 3

Now we insert the contents of the two token registers and the symbol for the column
entry (i.e. # or more precisely \@sharp) using \insert@column.

\insertQcolumn

We end this case with another \ d @ l l a r \hf i l .

\dollar \hfil

The templates for 1 and r (i.e. \@chnum 1 or 2) are generated the same way. Since
one \hf il is missing the text is moved to the relevant side.

\or \dQllar \insertQcolumn \dQllar \hfil

\or \hfil \dQllar \insertQcolumn \dOllar

The templates for p, t and b mainly consist of a box. In case of p it is generated by
\vcenter . This command is allowed only in math mode. Therefore we start with
a $.

\or $\vcenter

The part of the templates which is the same in all three cases (p, t and b) is built by
the macros \@star tpbox and \@endpbox. \@star tpbox has an argument: the width
of the column which is stored in the current token (i.e. \@nextchar). Between these
two macros we find the well-known \insert@column.

The templates for t and b are generated in the same way though we do not need the
$ characters because we use \vtop or \vbox.

\or \vtop \Qstartpbox{\~nextchar)\insertQcolumn \Qendpbox

\or \vbox \Qstartpbox{\~nextchar~\insertQcolumn \Qendpbox

Other values for \@chnum are impossible. Therefore we end the arguments to
\@addtopreamble and \ i f case. Before we come to the end of \@classz we have
to prepare the next token register.

\fi)\prepnextQtok)

\Cclassix In case of class 9 (>-token) we first check if the character class of the last token was 3.
If so, we have a user preamble of the form . .>C. . .I>{. . .) . . which is not allowed.
We only give an error message and continue. So the declarations defined by the first
>C . . . 3 are ignored.

\def\QclassixC\ifnum \Qlastchclass = \thrQQ

\Qpreamerr \thrQQ \fi

Furthermore, we call up \@classx because afterwards always a new column is started
by c, 1, r, p, t or b.

\Qclassx)

\Qclassviii If the current token is a < the last character class must be 0. In this case it is
not necessary to extend the preamble. Otherwise we output an error message, set
\@chclass to 6 and call \@classv i . This assures that < is treated like !.

\def\OclassviiiC\ifnum \@lastchclass >\zQ

\Qpreamerr 4\Qchclass 6 \Qclassvi \fi)

\Qarrayrule There are only two incompatibilities with the original definition: the p-option men-
tioned earlier and the definition of \@arrayru le . In the original a line without width2
is created by multiple \hskip .5\arrayrulewidth. We only insert a vertical line into
the preamble. This is done to prevent problems with w ' s main memory when gen-
erating tables with many vertical lines in them (especially in the case of floats).

\def\Qarrayrule{\Qaddtopreamble \vline)

2So the space between cc and c I c is equal.

TUGboat, Volume 9 (1988), No. 3

\Qclassvii As a consequence it follows that in case of class 7 (Q token) the preamble need not
be extended. In the original definition \Qlas tchc lass = 1 is treated by inserting
\hskip .5\arrayrulewidth. We only check if the last token was of class 3 which is
forbidden.

\def\OclassviiC\ifnum \Olastchclass = \thrQQ

If this is true we output an error message and ignore the declarations stored by the
last > { . . .), because these are overwritten by the argument of Q.

\Opreamerr \thrQQ \fi)

\@classvi If the current token is a regular ! and the last class was 0 or 2 we extend the preamble
with \hskip\col@sep. If the last token was of class 1 (for instance I) we extend with
\hskip\doublerulesep because the construction ! { . . .) has to be treated like I .

\def\OclassviC\ifcase \Qlastchclass

\Qacol

\or \Qaddtopreamble(\hskip \doublerulesep)%

\or \Oacol

Now \@preamerr. . . should follow because a user preamble of the form . . >{. .)! . .
is not allowed. To save memory we call \@c la s sv i i instead which also does what we
want.

\or \Qclassvii

If \@las t chc l a s s is 4 or 5 nothing has to be done. Classes 6 to 10 are not possible.
So we finish the macro.

\f 13

\Oclassii In the case of character classes 2 and 3 (i.e. the argument of < or >) we only have to
\Oclassiii store the current token (\@nextchar) into the corresponding token register since the

preparation and insertion of these registers are done by the macro \Qclassz. This is
equivalent to calling \save@decl in the case of class 3. To save command identifiers

we do this call up in the macro \@mkpream (see page 304).

Class 2 exhibits a more complicated situation: the token registers have already been
inserted by \@classz . So the value of \count@ is too high by one. Therefore we
decrease \count@ by I .

Next we store the current token into the correct token register by calling \saveQdecl
and then increase the value of \count@ again. At this point we can save memory once
more (at the cost of time) if we use the macro \prepnextQtok.

\Qclassv If the current token is of class 5 then it is an argument of a Q token. It must be stored
into a token register.

\def \Oclassv{\saveOdecl

We extend the preamble with a command which inserts this token register into the
preamble when its construction is finished. This argument should be in math mode
if it is used in an array-environment. Therefore we surround it with \d@llar 's.

\Oaddtopreamble{\dO1lar\Qthetoks\the\count&3Qllar}%

Finally we must prepare the next token register.

\@classi In the case of class 0 we generated the necessary space between columns by using the
macro \@classx. Analogously the macro \Qclassv i can be used for class 1.

\def\Oclassi{\Qclassvi

Depending on \@chnurn a vertical line

\if case \Ochnum \Oarrayrule

TUGboat, Volume 9 (1988), No. 3 309

or (in case of ! { . . .)) the current token - stored in \@nextchar - has to be inserted
into the preamble. This corresponds to calling \@classv.

\or \Qclassv \fi)

In \ @ c l a s s z the macro \@sta r tpbox is used. The width of the parbox is passed as
an argument. \vcenter . \v top or \vbox is already in the preamble. So we start with
the braces for the desired box.

\def\Ostartpbox#l{\bgroup

The argument is the width of the box. This information has to be assigned to \hs ize .
Then we assign default values to several parameters used in a parbox.

\hslze #1 \Oarrayparboxrestore

Our main problem is to obtain the same distance between succeeding lines of the
parbox. We have to remember that the distance between two parboxes should be
defined by \ @ a r s t r u t . That means that it can be greater than the distance within a
parbox. Therefore it is not enough to set a \ @ a r s t r u t at the beginning and at the end
of the parbox. This would dimension the distance between first and second line and
the distance between the two last lines of the parbox incorrectly. To prevent this we
set an invisible rule of height \ @ a r s t r u t b o x at the beginning of the parbox. This has
no effect on the depth of the first line. At the end of the parbox we set analogously
another invisible rule which affects only the depth of the last line.

\vrule \Oheight \ht\Oarstrutbox \Qwldth \zO)

If there are any declarations defined by >(. . .) and <(. . .) they now follow in the
macro \ @ c l a s s z - the contents of the column in between. So the macro \@endpbox
must insert the specialstrut mentioned earlier and then close the group opened by
\C?startpbox.

Building and calling \ha l ign

Now that we have discussed the macros needed for the evaluation of the user preamble
we can define the macro \@array which uses these macros to create a \ h a l i p . It
has two arguments. The first one is a position argument which can be t. b or c; the
second one describes the preamble wanted. e.g. it has the form I c I c I c I .

\def \Oarray [#l] #2{%

First we define a strut whose size basically corresponds to a normal strut multiplied
by the factor \ a r r a y s t r e t c h . This strut is then inserted into every row and enforces
a minimal distance between two rows. Nevertheless. when using horizontal lines, large
letters (like accented capital letters) still collide with such lines. Therefore at first we
add to the height of a normal strut the value of the parameter \extrarowheight.

Then we open a group, in which the user preamble is evaluated by the macro
\@mkpream. As we know this must happen locally. This macro creates a preamble for
a \ h a l i p and saves its result globally in the control sequence \@preamble.

\begingroup

\OrnkpreamC#2)%

We again redefine \@preamble so that a call up of \@preamble now starts the \ha l ign .
Thus also the arguments of >, <. @ and ! , saved in the token registers, are inserted into
the preamble. The \ t a b s k i p at the beginning and end of the preamble is set to Opt

TUGboat, Volume 9 (1988), No. 3

(in the beginning by the use of \ i a l i g n) . Also the command \ @ a r s t r u t is built in,
which inserts the \@ars t ru tbox . defined above. Of course. the opening brace after
\ i a l i g n has to be implicit as it will be closed in \endarray or another macro.

\xdef\QpreambleC\lalign \Ohalignto

\bgroup \Qarstrut \@preamble

\tabskip \z@ \cr)%

What we have not explained yet is the macro \@hal ign to that was just used. De-
pending on its replacement text the \ha l ign becomes a \ h a l i p t o (dimen). Now
we close the group again. Thus \@sta r tpbox and \@endpbox as well as all token
registers get their former meaning back.

\ endgroup

Now we decide, depending on the position argument, in which box the \ha l ign is to
be put. (\vcen te r may be used because we are in math mode.)

\if #lt\vtop \else \if #Ib\vbox \else \vcenter \fi \fi

Now another implicit opening brace appears: then definitions which shall stay local
follow. While constructing the \@preamble in \@mkpream the # sign must be hidden
in the macro \@sharp which is \ l e t to \ r e l a x at that moment (see definition of
\@mkpream on page 304). All these now get their actual meaning.

\bgroup

\let \@sharp ##\let \protect \relax

With the above defined struts we fix the distance between rows by setting \ l i n e s k i p
and \ b a s e l i n e s k i p to Opt. Since $'s have to be set around every column in the array-
environment the parameter \mathsurround should also be set to Opt. This prevents
additional space between the rows. The PlainTjQ-macro \m@th does this.

We also have to assign a special meaning (which we still have to specify) to the
line separator \\, and redefine the command \pa r in such a way that empty lines in
\ h a l i g n cannot do any damage. We succeed in doing the latter by choosing something
that will disappear when expanding. After that we only have to call up \@preamble
to start the desired \ha l ign .

\let\\ \@arraycr \let\par\Qempty \@preamble)

\extrarowheight The dimen parameter used above also needs to be allocated. As a default value we
use Opt, to ensure compatibility with standard IPW.

\(Parstrut Now the insertion of \@ars t ru tbox through \ @ a r s t r u t is easy since we know exactly
in which mode is while working on the \ h a l i p preamble.

\def\Oarstrut{\unhcopy\Qarstrutbox)

The line separator \\

\@arraycr In the macro \@ar ray the line separator \ \ is \ l e t to the command \@ar raycr . Its
definition starts with a special brace which I have copied directly from the original
definition. This is necessary because the \ f u t u r e l e t in \@ifnex tchar might ex-
pand a following & token in a construction like \ \ &. This would otherwise end the
alignment template at a wrong time. For further information see [I, Appendix Dl.

\def \@arraycr{C\ifnum O= ')\f i

Then we test whether the star form is being used and ignore a possible star (I disagree
with this procedure. because a star does not make any sense here).

TUGboat. Volume 9 (1988), No. 3

\@xarraycr In the command \@xarraycr we test if an optional argument exists.

\def\(OxarraycrC\Qifnextchar [%

If it does, we branch out into the macro \@argarraycr; if not, we close the special
brace (mentioned above) and end the row of the \halign with a \cr.

\Qargarraycr C\ifnum O='I\fi)\cr))

\(Oargarraycr If additional space is requested by the user this case is treated in the macro
\@argarraycr. First we close the special brace and then we test if the additional
space is positive.

\def \Oargarraycr [#I1 C\ifnumO='C\f i)\ifdim #l>\z0

If this is the case we create an invisible vertical rule with a depth of \dp\@arstrutbox+

(wanted space). Thus we achieve that all vertical lines specified in the user preamble
by a I are now generally drawn. Then the row ends with a \cr.

If the space is negative we end the row at once with a \cr and move back up with a
\vskip.

While testing these macros I found out that the \endtemplate created by \cr and & is
something like an \outer primitive and therefore it should not appear in incomplete
\if statements. Thus the following solution was chosen. to hide the \cr in other
macros when TEX is skipping conditional text.

\(Oxargarraycr The following macros were already explained above.

\O~argarra~cr \def \@xargarraycr#lC\unskip

\(Otempdima #l\advance\Qtempdima \dp\(Oarstrutbox

\vrule \@depth\Qtempdima \(Owidth\zO \cr)

\def\Qyargarraycr#l~\cr\noalign{\vskip #I))

Spanning several columns

\multicolumn If several columns should be held together with a special format the command
\multicolumn must be used. It has three arguments: the number of columns to
be covered, the format for the result column. and the actual column entry.

\def\multicolumn#l#2#3C%

First we combine the given number of columns into a single one; then we start a new
block so that the following definition is kept local.

\multispan<#l)\begingroup

Since a \multicolumn should only describe the format of a result column, we redefine
\@addamp in such a way that one gets an error message if one uses more than one c ,
1, r, p. t or b in the second argument. One should consider that this definition is
local to the build-up of the preamble: an array- or tabular-environment in the third
argument of the \multicolumn is therefore worked through correctly as well.

\def \Oaddamp{\ifQf irstamp \(Of irstampf alse \else

\Opreamerr 5\f1)%

Then we evaluate the second argument with the help of \@mkpream. Now we still
have to insert the contents of the token register into the \@preamble, i.e. we have to
say \xdef \@preamble{\@preamble). This is achieved more compactly by writing:

\Qmkpream{#2)\0addtopreamble\Qempty

After the \@preamble is created we forget all local definitions and contents of the
token registers.

TUGboat, Volume 9 (1988), No. 3

In the special situation of \multicolumn \@preamble is not needed as preamble for
a \hal ign but it is directly inserted into our table. Thus instead of \sharp there has
to be the column entry (#3) wanted by the user.

\def\Qsharp{#S)%

Now we can pass the \@preamble to T@. For safety we start with an \Garstrut .
This should usually be in the template for the first column; however we do not know
if this template was overwritten by our \mult icolumn.

\Oarstrut \@preamble \ignorespaces)

The Environment Definitions

After these preparations we are able to define the environments. They differ only in
the initialisations of \ d@l l a r , \col@sep and \ @ h a l i p t o .

In order to conserve the save stack we assign the replacement texts for \Ohalignto

and \ d @ l l a r each time globally.

Our new definition of \ a r ray then reads:

\def \arrayC\colQsep\arraycolsep

\gdef \dOllar{$>\gdef \@halignto{]%

Since there might be an optional argument we call another macro which is also used
by the other environments.

\@tabarray)

This macro tests for a optional bracket and then calls up \@array or \@array [c] (as
default).

\def\@tabarray{\@ifnextchar[{\@array){\@array[c]>)

The environments tabular and tabular* differ only in the initialisation of \Qhalignto.
Therefore we define

\def\tabular{\gdef\OhaligntoC)\0tabular>

and analogously

The rest of the job is carried out by the \@tabula r macro:

\def\Otabular{%

First of all we have to make sure that we start out in hmode. Otherwise we might
find our table dangling by itself on a line.

\leavemode

It should be taken into consideration that the macro \@array must be called in math
mode. Therefore we open a box. insert a $ and then assign the correct values to
\col@sep and \ d@l l a r .

\hbox \bgroup $\col@sep\tabcolsep \gdef\dOllar{)%

Now everything tabular specific is done and we are able to call the \@tabarray macro.

\@tabarray)

When the processing of array is finished we have to close the \hal ign and afterwards
the surrounding box selected by \@array. To save token space we then redefine
\@preamble because its replacement text isn't needed any longer.

\def\endarray(\crcr \egroup \egroup \gdef\@preamble{)>

To end a tabular or tabular* environment we call up \endarray, close the math mode
and then the surrounding \hbox.

\def\endtabular(\endarray $\egroup)

TUGboat, Volume 9 (1988), No. 3

Last-minute definitions

If this file is used as a style file we should \ l e t all macros to \ r e l ax that were used
in the original but are no longer necessary.

\Qpreamerr We also have to redefine the error routine \@preamerr since new kinds of errors are
possible. The code for this macro is not perfect yet: it still needs too much memory.

\def\Qpreamerr#i{\def\Qternpd{{..) at wrong position: 1%
\Qlatexerr{%

\ifcase #1 Illegal pream-token (\Qnextchar): 'c' used\or '/,O

Missing arg: token ignored\or % 1
Empty preamble: '1' used\or %2

>\Qtempd token ignored\or 7.3

<\Qtempd changed to ! { . .)\or %4

Only one colum-spec. allowed.\fi)\Qehc) 7.5

\Qtfor Testing this implementation an error was found in the definition of the IPW macro
\Q t fo r . It was not implemented according to its specification. The assignment to
\Qf ortrnp must not take place via \xdef. A \def has to be used because #2 should not
be expanded. Since this mistake does not show up when \@tf o r is used in l a t e x . t ex ,
it does not seem to have been noticed.

\def\~tfor#l:=#2\do#3{\def\Qfortmp{#2)\ifx\Qfortmp\Qmpty

\else\Otforloop#2\Qnil\Qnil\QO#l{#3~\fi)

References

[l] D . E. KNUTH. The w b o o k (Computers 8i Typesetting Volume A). Addison-

Wesley. Reading. Massachusetts, 1986.

[2] D . E . KNUTH. 'QX: The program (Computers & Typesetting Volume B).
Addison-Wesley. Reading. Massachusetts. 1986.

[3] L. LAMPORT. IPT)jX - A Docunlent Preparation System. Addison-Wesley, Read-

ing, Massachusetts, 1986.

[4] L . LAMPORT. l a t e x . t ex . Version 2.09 of (15. Sept. 87).

TUGboat, Volume 9 (1988), No. 3

Index

\Qacol

\@acolampacol

\@addamp

\@addtopreamble

\Gargarray c r

\@array

\@arraycr

\@arrayru le

\ @ a r s t r u t

\@chclass

\@ c hnum

\ @ c l a s s i

\ @ c l a s s i i

\ @ c l a s s i i i

\ @ c l a s s i x

\@classv

\ @ c l a s s v i

\ @ c l a s s v i i

\ @ c l a s s v i i i

\@classx

\@classz

\@endpbox

\aha l ign to

\ @ l a s t c h c l a s s

\@*ream

\@preamerr

\@sharp

\@sta r tpbox

\@tabar ray

\@tabula r

\@tes tpach

\@tf o r

\@xargarraycr

E
\endarray
\endtabular

\endt abular*

\extrarowheight

