
TUGboat, Volume 9 (1988): No. 2

L-__J 1

Georgia K.M. Tobin

Designing for Low-Res Devices

As I have pointed out on more than one occasion
in this column, the great strength of METAFONT as
a font design tool is its potential for versatility.
With a view to maximizing that potential, I de-
cided to see just how much versatility I could get
by never putting anything as low-level as a draw

or a penstroke in my code for Liber, the Century
Schoolbook-inspired font that I am currently work-
ing on. My reasoning was, since letter routines are
a t the lowest level in the design hierarchy, they
tend to multiply the most quickly. (This notion was
codified as Georgia's Empirical Observation #32:
Modifying 128 routines every time you need a new
font style gets real annoying real fast.) Modifying
a smaller number of routines shared by those 128
letters, while distinctly harder in the short term,
should (I reasoned) save effort and contribute to de-
sign coherence in the long term.

To wit, the following describes the letter A:

beginchar(65,cap#,O), "ms/uc/a mf",
Assuresymmetry (2),
penposl (ucHalrP, 0) ,
penpos2 (ucHalrP, 0) ,
penpos4(ucStemP, 0) ,

yl=h, xl=1/2 [Lf tEdge, RtEdge] ,
x2=LftEdge+ 35HairSerWd, x4=RtEdge- 4HSerWd,
y2=y4=0,
Crotch(l,2,4,uc,serlC),
z4r-z41=zlr-z dummy,
PlaceEdges(5,1,4), PlaceEdges(6,1,2),
y5r:y6r=y5l+ucHairP, y51=y61=1/3h,
Stroke(5,6),

endchar,

In addition to three "housekeeping" or calcula-
tion macros, I call two macros tha t are responsi-
ble for actually depicting character parts. Crotch,
the more complicated of the two, handles the apex
and legs of the character, and the serifs that appear
a t the bottom of the legs. Stroke simply adds the
crossbar.

Now, depending largely on the way in which the
macros are defined, we get

Similarly, the code for B:

beginchar (66, cap#, 0) , "ms/uc/b mf",
penposl (ucStemP, 0) , penpos2 (ucStemP, 0) ,
penpos3(ucHairP,90), penpos6(ucHairP,90),
penpos4(ucFatP, 0) , penpos7(ucFatP,O),
penpos5(ucHai rP, 270). penpos8(ucHai rP, 270).
yl=y3r=h,
xl=x2=LftEdge+ SHSerWd,
y2=y8r=9,
x3=x5=xlr,
y5=y6=37/72h,
x4r=RtEdge-Slab,
x6=x8=xlr,
x7r=RtEdge,
StemStroke(l,2,uc),
LoneSer (BotSer,LftSer, 2,ucStemP),
LoneSer(TopSer,LftSer,l,ucStemP),
ModBou1(3,4,5), ModBov1(6,7,8),
endchar,

can yield

and the code for C,

This document originally printed a t 300 dpi with GT Liber fonts.

FUGboat, Volume 9 (1988), No. 2

beginchar (67,cap#, 0) ; "ms/uc/c .mfU;
penposl (ucHai rP, 90) ;
penp~s2 (ucFatP, 180) ;
xlr=31/57[LftEdge, RtEdge] ; ylr=round hcvo,
x2r=round Lf tEdge, y2=h/2;
~ 3 ~ x 1 ; y3 1=0-VO;
xSr=RtEdge-1/2Sl ab; y5r=48/72h,
z6r=zlr;
x41=RtEdge, y41=25/72h,
DemiBowl (l,2);
QtrBowl(3,4,uc);
QtrBowlSer(6,5,uc);
endchar;

At first blush, the representation of the letters
on the right might seem a giant step backward. I
have forsaken the bracketed serifs of the top ex-
ample for simple slab serifs. I have quite forgotten
the distinction between hairline and stem weights
t o use a monoweight pen for both. I f you could read
the actual code for the macros, you'd see that I have
discarded the use of pens t roke to render the im-
age, and have used the draw command instead to
create the image on the right.

Why I might be interested in such an apparently
simplistic approach to depicting characters can be
better seen by comparing the actual pixel images
of the top and bottom styles shown above, when
generated for a ten point font for an 80dpi device:

* * *
* * *
* * * *

* * * *
**** *****

* * * *

and for ten point for 11 8dpi:

In a nutshell, these apparently more simplistic
techniques - monoweight, drawn strokes with slab
serifs - go a long way towards creating satisfactory
images for VCR (very coarse raster) devices.

It is curious that it was in attempting to auto-
matically produce these almost crude-looking ver-
sions of characters tha t I needed to make the over-
all design approach much more sophisticated. In ad-
dition to telling METAFONT how a character will be
created using VCR code, I also have to tell METAFONT

how to decide when to use that code. That is an area
in which I am still experimenting. It's clear enough
tha t I want the VCR macros to be used when I am

rendering a letter for 10 point on a 118 dpi screen,
and that I can go with the standard RDR (reason-
ably decent raster) macros for a 24 point face for
the same device; but where is the demarcation be-
tween VCR and RDR to be drawn? At present, I am
achieving the results I want with a short but inel-
egant series of if tests. Clearly, I need to come up
with an algorithm, which very probably need not be

much more complicated than determining the num-
ber of pixels in an em; if less than a certain magic
number, METAFONT is to use VCR definitions rather
than RDR ones.

Once METAFONT "knows" i t is dealing with a VCR
character (in my current approach), i t proceeds set-

This document originally printed a t 300 dpi with GT Liber fonts.

TUGboat, Volume 9 (1988), No. 2

ting a toggle and testing with it to load files con-
taining the appropriate definitions.

Take for instance the subroutine we mentioned
earlier, Stroke, which renders the crossbar on the
'A'. When we are doing an RDR version, we use this
definition of Stroke:

def Stroke(suff1x $, $$)=
penstroke z$e--z$$e,

I enddef,
when it's VCR style we're after, we use this one:

pickup ucPen,

draw z$--z$$,

enddef ,

The first appears in a file called mstxtRDRrtns m f ,

the other in mstxt-VCRrtns mf. A controller file that
handles loading of all requisite code a t run time
tests on the value of the boolean VCR and inputs
one or the other, as necessary. In fact, I could as
well have accomplished the same thing by having
a file shared by VCR and RDR fonts: the common
definition of Stroke would read:

def Stroke(suff1x $, $$)=
if VCR
plckup IcPen,

draw z$--z$$$,

else

pens troke z$e--z$$e,

fl,
enddef ,

Naturally, deciding what definitions to input is
the least of our worries. Writing code that will
perform robustly under such adverse conditions as
a coarse raster is tricky. A quick scan of the left-
most pixel representations above hints a t the prob-
lems encountered. I haven't been able to choose be-
tween blotchiness (two pixels where one is needed)
or discontinuity (no pixels where one is needed) as
the single most irksome problem; both are shown
in 'B' and 'C'. 'A' shows another bugaboo, character
symmetry. This is by no means exclusive to VCR
images; it's just tha t the low resolution constraints
have a way of keeping code honest. Quite simply, a
one pixel shift off-center of a V or T will not an-
nounce itself nearly as emphatically on a grid of
hundreds of pixels wide as on one under ten pix-
els wide. I have written a routine Assuresymmetry
which modifies the apparent width of a character
as needed for symmetry while leaving the t rue (tfm)
width untouched.

Moreover, as I hinted a t the outset of this article,
there are other factors besides the macro definitions
themselves which contribute to a good VCR design.
A glance a t the sample characters will suggest a
few such factors: pen weights, character parts such
as slabs and serifs, and even more subtle things such
as the amount of "roundness" in an arc. As with the
macro definitions, I segregate these into VCR- and
RDR-specific files, and input the appropriate ones
a t run time.

The results I have obtained so far by using these
techniques have been very encouraging. The face it-
self is something of a x-height hog (i.e. the x-height
is large in proportion to point size), and this predis-
poses it to be an excellent screen font. This predis-
position, combined with the elimination of blotchi-
ness, discontinuity and asymmetries, yields 118 and
80 dpi screen text that is attractive as well as clear
a t ten point; and easily legible down to 5 point.
(Readers will find chapter 24 of The METAFONT-
book quite illuminating in this regard.)

In addition to resolving some of the theoretical
questions I mentioned above, some more mundane
work needs to be done. I need to code VCR rou-
tines for bold style text, as well as for the math
fonts. Italic and slanted fonts, i t seems, tend to suf-
fer greatly when adapted to VCR devices; I hope to
come up with a scheme tha t reduces some of the
unsightly jagginess. I expect tha t adapting the ro-
tated pens tha t draw my upper case math symbols
script to VCR style will prove easier than dealing
with the italic text.

I hope this brief summary of my hierarchical ap-
proach to a system of fonts coupled with a choice of
character description techniques tailored to the tar-
get output device has demonstrated to the reader

the marvelous dichotomy of good METAFONT design:
how METAFONT has, a t once, the flexibility to pro-
duce custom bit maps and the consistency to main-
tain the same metrics information for all bit maps.

Have some fun with METAFONT, and have a hi-res
day!

G.K.M. Tobin 19 May 88

This document originally printed a t 300 dpi with GT Liber fonts.

