
TUGboat, Volume 9 (1988), No. 1

% #1: Some string
% #2: substring to test for whether it

% is in #i or not.
\def\IfSubString #1#21%

\edef\QMainString{#l)%

\def\@TestSubS ##1#2##2\@DelC%

\edef\@TestTemp{##l))%

\expandafter\QTestSubS

\@MainString#2\QDel

\if x\@MainString\@TestTemp

\QTestSubStringf alse

\else

\QTestSubStringtrue

\fi

\if@TestSubString

3
\catcode'@ = 12

Example 11: \expandafter and \csname

A character string enclosed between \csname and

\endcsname expands to the token formed by the

character string. \csname a?a-4\endcsname, for

instance, forms the token \a?a-4. If you wanted to

use this token in a macro definition you have to do

it the following way:

\expandaf ter

\def \csname a?a-4\endcsnameI. . .3

The effect of the \expandafter is of course to

give \csname a chance to form the requested token

rather than defining a new macro called \csname.

Summary

These examples have shown some typical applica-

tions of \expandafter. Some were presented to

"exercise your brains a little bit". I recommend

that you take the examples and try them out;

there is very little input to enter. I also encourage

you to tell Barbara Beeton or me what you think

about tutorials in TUGboat. There are many more

subjects which could be discussed and which may

be of interest to you.

This article is, as briefly mentioned in the

introduction, an adaptation of a section of my

book, Another Look At m, which I am currently

finishing. The book, now about 800 pages long,

grew out of my teaching and consulting experience.

The main emphasis of the book is to give concrete

and useful examples in all areas of m. It contains,

to give just one example, 100 (!!) \halign tables.

In this book you should be able to find an answer

to almost any Tj$ problem.

Macros for Outlining

James W. Walker

Department of Mathematics

University of South Carolina

The purpose of this note is to describe stand-

alone macros for the preparation of outlines in the

standard format. For instance, the desired output

might look like:

Vegetables

A. Green ones

1. lettuce

a. iceberg

b. leaf

2. Broccoli, almost universally despised

by children. The strong flavor is only

made palatable by quick stir-frying.

B. white ones

1. potatoes

2. turnips

11. Animals.

111. Minerals.

Notice that a topic is allowed to be a paragraph,

not just one line, as in topic I.A.2. I wanted

to take care of the counting and indentation

as painlessly as possible. Something like this

can be done in I4M using nested enumerate

environments, but I wanted the input format to be

even simpler.

When typing an outline, it is natural to show

the structure by indenting with the tab key. This

is particularly easy if one has a text editor with an

automatic indentation feature. With that feature,

hitting the Return key produces a new line with the

same amount of indentation as the previous line.

When the input is typed this way, we can tell the

indentation level of a topic by counting tabs. We

also need to mark the beginning of a topic, since

not every line begins a new topic. I chose to mark a

new topic with a pound sign (#). Thus, the input

to produce the outline above could look something

like:

TUGboat, Volume 9 (1988), No. 1

\beginoutline

Vegetables

Green ones

lettuce

iceberg

leaf

Broccoli, almost

universally despised

by children. The

strong flavor is

only made palatable

by quick stir-frying.

white ones

potatoes

turnips

Animals.

Minerals.

\endoutline

To make this work, an obvious step is to

make the pound sign an active character which

will typeset a label for a topic. However, there

is no obvious way to make it look backwards and

count tabs. Therefore I decided to make the tab

character active also, and make it count itself. More

precisely, the first tab on a line uses \futurelet

to see whether the next token is a tab, a pound

sign, or something else. If the next token is

a tab, it increments a counter, gobbles the tab,

and recursively looks for more tabs. If a pound

sign is the first thing after a sequence of tabs,

then the macro formats a topic at the appropriate

indentation level. If the first thing after a sequence

of tabs is anything else, nothing happens. Notice

that the pound sign comes into play as an active

character only for level 1 topics, i.e., when the

pound sign is not preceded by any tabs.

And now, the macros. We begin by making

sure that the macros are not loaded twice, and

resetting the category code of the at sign. We save

the old category code of the at sign, because in

some formats (e.g., M-W) the at sign might

have a category code other than "other".

\if x\outlinef ormatloaded\relax

\ endinput
\else

\let\outlineformatloaded=\relax

\f i

The counter \outline@lastlevel is used to write

an error message if the indentation level increases

by more than 1 at a time. The only parameter

that should be directly altered by the user is

\outlineindent, the width of each indentation. If

this is not large enough, and if the topic numbers

get large, an overfull hbox could result.

\newdimen\outlineindent

\outlineindent=2em

Next we define \beginoutline and \endout-

line. Be warned that we must not format the

definition of \beginoutline with tabs, only with

spaces.

I%
\catcode'\#=\active

\catcode'\--I=\active

\gdef\beginoutlineC%

\par
\bgroup
\outline@i=l

\outline@lastlevel=O

\catcode'\#=\active

\let#=\outline@topicmarker

\catcode'\--I=\active

\let--I=\outlineQselfcount

3% End of \beginoutline.
3%

\chardef\oldatsigncatcode=\catcode'\@

\catcode'\@=ll

There is one count register for each of 5 levels

of indentation, which is perhaps a bit extravagant.

TUGboat, Volume 9 (1988)) No. 1

A level 1 topic is marked with an active pound

sign, which is let equal to the following macro.

\def \outline@topicmarker(%

\par
\parindent=\outlineindent

\medbreak

\hang

\indent

\llapC\hbox to \outlineindent{%

\global\outline@ii=l

\uppercase

\expandaf t er

(\romannumeral

\outline@i3%

. %
\hf il

33% end of \hbox and \llap.

\global\advance\outlineQi by 1

\outline@lastlevel=l

\ignorespaces

3% End of \outline@topicmarker.

The active tab character is made to count tabs

using the following macros. Note that the parameter

of \outline@innerself count will always be an

\outlineQself count token, which is just counted

and then thrown away.

\def\outline@selfcou~%

\outline@levelcount=2

\futurelet\next\outline@next

3%

\def\outline@next{%

\ifx\next\outline@selfcount

\let \next

=\outline@innerselfcount

\else

\ifx\next\outlineQtopicmarker

\let\next=\outline@subtopic

\else

\let\next=\ignorespaces

\f i

\f i

\next

3% End of \outline@next .
A sequence of tabs ended by a pound sign

starts a subtopic.

\def\outline@subtopic#l{%

\par
\parindent=%

\outline@levelcount\outlineindent

\ifnum \outlineQlevelcount=2

\smallbreak

\f i

\advance\outline@lastlevel by I

\ifnum \outline@levelcount>%

\outline@lastlevel

\errmessageCThe outline level

can't increase by more

than 1 at a time!)%

\f i

\outline@lastlevel

=\outlineQlevelcount

\hang

\indent

\llap{\hbox to \outlineindent(%

\ifcase\outlineQlevelcount

\or % case I: done elsewhere.
\or % case 2: A, B, C, etc.

\global\outlineQiii=l

\countO=\outline@ii

\advance\countO by 'A%

\advance\countO by -1

\char\countO.%

\global\advance

\outline@ii by I

\or % case 3: 1,2,3, etc.
\global\outline@iv=l

\number\outline@iii.%

\global\advance

\outline@iii by I

\or % case 4: a,b,c, etc.
\global\outline@v=l

\countO=\outline@iv

\advance\countO by 'a%

\advance\countO by -1

\char\countO.%

\global\advance

\outline@iv by 1

\or % case 5: i,ii,iii,iv etc.
\romannumeral\outline@v.%

\global\advance

\outline@v by 1

\else % all deeper levels

\bullet%

\f i

\hf il

33% end of \hbox and \llap.
\ignorespaces

3% End of \outline@subtopic .

64 TUGboat, Volume 9 (1988), No. 1

The outlining macros are now complete. There

is one small problem: One might occasionally need

to use the pound sign for its normal function of

marking a parameter in a \def or \ h a l i p , inside

an outline. We can make that possible by providing

a macro that temporarily changes the category code

of the pound sign back to normal.

\def \normalpoundsignC%

\bgroup

\catcodeC\#=6

\innernormalpoundsign

3 %
\def\innernormalpoundsign#li#:\egroup)%

Thus an \ h a l i p could be enclosed in \nor-

malpoundsignI . . . 3.
Finally we restore the at sign to its former

category code.

\catcode ' \@=\oldatsigncatcode

A Macro Writing Tool:

Generating New Definitions

Amy Hendrickson

TJQhology Inc.

Suppose you come upon a situation where you need

a macro which will generate another new macro

every time it is used. I came upon a solution to this

problem and want to share it with TUG readers in

case someone would find it an useful macro writing

tool, or maybe just find it amusing.

The problem that I ran into that necessitated

this kind of macro (it is by no means the only

application) had to do with a set of macros that I
was writing recently for slide generation: How can

you take large chunks of text possibly containing

tables, listings, verbatim text, or section headers,

and a) print the chunk where it appears in the

document, then b) send it to the end of the file

to be printed in slide format. (This format would

include larger font and baselineskip, possibly be in

landscape mode, and have rounded corner edging.)

Since you cannot send a large body of text

to an auxiliary file, the solution seemed to be to

write one macro which would generate as many

definitions as there were chunks of text to be made

into slides, and send only the control sequence and

slide formatting information to an auxiliary file.

The auxiliary file can then be input at the end of

the original file, and the definitions that were made

earlier in the file will produce the slides.

But how can one generate such a series of

definitions, each with a new name? The solution

involves using the letters of roman numerals as the

name of the each new macro. A counter is advanced

to produce a new roman numeral each time the

macro is used. With the right macro expansion, the

roman numerals will be interpreted as a sequence

of letters, and a new sequence of letters will be

available each time.

For instance, say we set the counter equal to

637 to start, and advance it by one every time the

macro is used. The first set of letters that will

become a control sequence will be \dcxxxvii, the

second \dcxxxviii, etc.

To make certain that these letters have not

already been used in a definition, we can also

supply, following the roman numeral, a sequence of

letters that does not change, and thus make the

possiblity of renaming a previously defined control

sequence very small. That is the function of the

\unique definition below.

Here is some code, showing how \newdefs can

be used to define #1 as a new definition every time

the macro is used.
\newcount\definitionnum \definitionnum=2001

In use,

\newdefs(This is a chunk of t e x t)

will produce

\gdef\mmiiZZZZ(This i s a chunk of t e x t)

a control sequence that can be called for later in

the file in whatever application it might be useful.

