
TUGboat, Volume 9 (1988:l No. 1

u u
Georgia K . M . Tobin 1

Special effects such as reverse video, pattern fills and
pseudo shadowing can be fairly easily achieved in a
METAFONT font by making use of p ic ture variable
manipulation. Since the way I did this incorporated
the special effect at generation time and thus used
the same code which generates my standard fonts,
these specialty fonts retain much of the flexibility
inherent in any meta-font, i.e. they can be generated
for different point sizes and resolutions.

My basic plan of attack was to define a subroutine
called pattern which in turn redefined the subrou-
tine endchar. (Nota Bene: It would not do, under
any circumstances, to simply overwrite the definition
of endchar in plain.mf. METAFONT is quite content
to redefine any subroutine whose name appears sub-
sequent to its initial occurrence.) I n this way, I can
simply input the appropriate pattern code and invoke
pattern at run time; each letter which is subsequently
cranked through by METAFONT will be done in the
special effect specified.

The simplest effect is reverse video. Astep-by-step
consideration of the creation of such a font should
make the preceding generalities much clearer. I cre-
ated a file called pattern-reversevideo. m f which con-
tains the following definition of pattern:

def pattern=

def endchar=

cullit ;

picture NormalChar;

NormalChar=currentpicture;

clearit;

fill (0 ,-desc-2vo)--(w+ho , -desc-2vo)--

(w+ho, cap+2vo)--(0, cap+2vo)--cycle;

picture BlackBox;

BlackBox:=currentpicture;

picture ReverseVideo;

ReverseVideo=BlackBox-Normalchar;

currentpicture:=ReverseVideo;

% The rest is from standard endchar
scantokens extra-endchar;

chardx:=w;

shipit;

if displaying>O: showit; f i

endgroup ;

enddef ;

enddef ;

After loading all the normal font- and style-specific
stuff, but before inputting any character descriptions,
I input this file and then call pattern; the effect of
this is to ensure that the endcha r routine defined
therein is run at the conclusion of each character.

So, prior to executing this endchar , METAFONT

has just drawn a character in the usual manner. We
recall that, depending upon the way in which the
drawing was done, a blackened pixel may have any
value greater than or equal to 1, and a white pixel any
value less than or equal to zero. Since this can cause
complications later as we add and subtract pictures,
the first thing to do is a bit of housekeeping: all
black bits are set equal to 1, and all white bits are
set equal to zero. I n other words, we capture the
image of the character we have drawn in a p i c tu r e
variable NormalChar which is composed solely of 0's
and 1's. Then, cu r r en tp i c tu r e is zeroed out, in
preparation for a new drawing. We fill the whole
letter grid completely - that is, set all bits to 1 -and
set a p i c tu r e variable BlackBox equal to the thus
blackened grid. We then create yet another p i c tu r e
variable ReverseVideo and set it equal to BlackBox
less NorrnalChar; i.e., the grid of all ones minus the
grid with ones only at pixels that are part of the
character. The result is:

An obvious and easy variation on this theme is a

This document originally printed at 300 dpi with Metafoundry fonts.

TUG loat, Volume 9 (1988), No. 1

greyed reverse video font. One way of achieving this
is with a striped overlay:

We can produce this by creating a file which is called
pattern-reversegreyed which replaces the line cur-
rentpicture : =Reversevideo ; in the preceding code
with these lines:

clearit ;
pickup MinPen;

for f=-desc-2vo step HugeStep

until cap+2vo:

draw (0,f)--(w,f);

endf or;

picture Stripeoverlay;

StripeOverlay=currentpicture;

currentpicture :=
StripeOverlay+ReverseVideo;

which simply defines and draws a p ic ture StripeOver-
lay which is added to the p ic ture variable for the
reverse video character as drawn in the same way as
above. If we produce a new pattern file wherein we
change that last line of code above to:

currentpicture :=

Stripeoverlay-Reversevideo;

Extending the basic idea here just a bit, it seems
that we can put a character filled with one pattern
on a background filled with another. The follow-
ing is the salient portion of the code which defines
patterrutripendot, a character filled with dots on a
striped background. (We may assume that pictures
NormalChar and Reversevideo have been defined as
in the preceding examples.)

% pattern one: the background pattern

pickup HinPen;

for f=-desc-vo step MedStep

until cap+vo:

draw (0, f)--(w+ho ,f) ;

endf or ;

currentpicture : =

currentpicturtr-NormalCha;
cullit;

picture StripedGround;

StripedGround:=currentpicture;

clearit ;

% pattern two: the character fill

pickup PinPointPen;

for g=O step BigStep until w:

for f=-desc-vo step BigStep

until cap+vo:

draw (g,f);
endf or ;

endf or;

cullit;

currentpicture:=

currentpicture-Reversevideo;

cullit;

picture DottedChar;

DottedChar:=currentpicture;

clearit ;

currentpicture:=

DottedChariStripedGround;

and yields:

Clearly, by modifying what goes in the slots for pat-
tern one and pattern two, we can produce

This document originally printed at 300 dpi with Metafoundry fonts.

TUGboat, Volume 9 (1988), No. 1

When I was outlining this article, I had intended to
say something along the lines of 'you are limited only
by your cleverness in coding patterns' at this junc-
ture; but as I produced the patterned fonts to use, I
discovered that you are also limited by METAFONT's
capacity. I n particular, the vertically oriented pat-
terns fly in the face of the underlying idea of GF
files, and the GF files get very big very fast.

I n addition to doing arithmetic with p i c tu r e vari-
ables to produce pattern filled characters, we can also
manipulate pictures with rotations and shifts. We
can produce a mirror image font

with a shifted reflection of Normalchar:

picture Mirrorhiage;

MirrorIrnage:=NormalChar

ref lectedabout ((0,O) , (0 ,h))
shifted (u , 0) ;

A reverse video mirror image is accomplished by pro-
ducing Reversevideo in the same way as shown in the
first example, and then doing a ref lectedabout fol-
lowed by shif ted as before:

And, not to belabor the point, the same approach
can produce any random pattern ref lectedabout
any line (that does not result in a transformation
that METAFONT deems "too hard") and shif ted any
amount.

* * * * * * * * *

Finally, I combined the two approaches - arith-

metic on p i c tu r e variables and manipulation of them
via shifts - to get a 'pseudo-shadow' effect. First, I
shif ted the character image to the right and down
and subtracted the non-shifted character image from
that shadow (giving the p i c tu r e ShadowOnly). Then
I laid a pattern-filled character on top. More pre-
cisely, I said:

f : =-desc-2vo;

pickup MinPen;

for f=-desc-2vo step HugeStep

until capt2vo :

draw (Otho,f)--(w,f);

endf or;

currentpicture : =
currentpicture-Reversevideo;

cull it ;

picture StripedChar;

StripedChar:=currentpicture;

clearit;

currentpictura ; =iiorm~taiCha-

shifted (.5ucHairP , - .5ucHairP) ;
picture Shadow;

Shadow:=currentpicture;

clearit ;

currentpicture:=Shadow-Normalchar;

cullit;

picture ShadowOnly;

ShadowOnly:=currentpicture;

clearit;

currentpicture:=

ShadowOnlytStripedChar;

to get:

It should go without saying that any pattern may be
used for the shifted shadow image, and any pattern
may be used for the non-shifted image; likewise, the
shifting may be in any direction, although the amount
will doubtless be small in any case.

You'll want to use discretion in combining patterns
and shifts: such combinations quickly lead to effects
that are not so much 'special' as rather woozy, as

This document originally printed at 300 dpi with Metafoundry fonts.

TUGboat, Volume 9 (1988), No. I

in this dotted character with a horizontally striped
shadow

or as in this font I call Hangover:

As a reaction to such excesses, I like the rather
ethereal look of a shifted black shadow with no pat-
tern i n the character:

The code for each pattern given here can be applied
to any font: I can do italic or bold Schoolbook as well
as the text Schoolbook shown in the samples with no

changes. A completely different face - my decorative
Uncial face

or a sans serif I'm working on

or my experimental Hebrew

- will need only minimal changes, viz. the names of
pens and character parts; the same is true of CMR
fonts.

I hope that these samples will serve as a spring-
board for my readers to generate special effect fonts
of their own.

3-r~ dl.,

-pr . . ' 1 <'+ .
cl Ll- \J , C L I ! (: ~ ~ L Y ~ ~ -J $34

This document originally printed at 300 dpi with Metafoundry fonts.

