
TUGboat, Volume 9 (1988), No. 1 49

complex expressions) when encountering limits of a
given C compiler.

Since we wrote the translator itself in C, the

only compiler needed to build T u r b o w from

tex.web on a new, stand-alone machine is a C

compiler. (We also apply the translator to TANGLE.)
We maintain portability for all the translation tools,

and not just the program.

A further goal was to have a single C source
for all target machines and operating systems. C is

suitably adept at conditional compilation with its
standard preprocessor, and we used that language

feature to keep a unified C source for both Unix

System V and MS-DOS. We used only features

common to the various C language standards to
minimize the amount of conditional code. We

also combed out all operating system dependen-

cies into small, hand-writ ten, separately-compiled

source files. We maximized the portability of the
source code by carefully designing the translator to

produce only portable C constructs.

Finally, our watchwords were "correctness"
and "certifiability". We designed a product that we

could finish on a limited schedule and budget, but
which would still be a full implementation of w .

Thus we tended to decide design details in favor of

conserving simplicity of the handwritten code us.
saving execution time or code size.

Creating PASCHAL, Our Pascal-to-C
Translator

The bulk of the T u r b o m project involved the
Pascal-to-C translator, which we named PASCHAL.

We chose a name so close to "Pascal" because

we wanted to emphasize the equivalency of the

C output to the Pascal input. When speaking
aloud, one may pronounce the name "PASCHAL"
with a Mediterranean accent to distinguish it from

Pascal, and thereby also emphasize the etymology

of both terms in Greek (Pdscha) and Hebrew
(Pesakh). (Those unaccustomed to these languages

may simply raise the pitch of the second syllable
over the fist.)

We were fortunate to have had expe~ience
writing large programs in both Pascal and C, so

that we had a clear understanding of the issues
involved in translating one into the other. We also

have written several language-based translators for

other applications.

The two languages are thoroughly similar in all
but a few features, and TEX is restrained in the use

of Pascal's distinctives. In the cases of a few hapax
legomena, we simply rewrote the difficult Pascal

statements in a more common dialect.

Our development system, an AT&T 3B1 run-
ning Unix System V, provided the YACC and

Lex tools to automate the production of PASCHAL'S

parser. We also referred to the grammar from

the Berkeley pc Pascal compiler (likewise written

in YACC) to guide us in designing and writing

PASCHAL'S parser.
To date, PASCHAL has required 240 hours of

senior programmer effort and a total of 3200 lines

(10,800 words) of source code in YACC, Lex, and

plain C. The PASCHAL executable on our machine

is only 62K bytes (not counting dynamic memory

used for storing pending output).
The various modules of PASCHAL organize as

follows: the main function to interpret command-

line options and input file names, the lexical ana-
lyzer, the syntax tables and semantic actions of the

parser, dynamic memory allocation, string handling,

symbol table, parameter list interpreter, subrange
interpreter, non-scalar type analyzer, variant record

decomposition, and function-return-value replace-

ment.

Besides the PASCHAL translator proper, we
created a run-time "Pascal Compatibility Library"

in C to replace the Pascal run-time library, and a

header file, paschal. h, which contains macros used
by the PASCHAL output.

Translating T@ to "Pure" C

We will now discuss translating in Pascal to

7&X in C. We will defer the details of how we

translated operating-system dependencies, such as
the run-time library and 110, until the following

sections on Unix and MS-DOS.
The easiest parts to translate include most of

the control structures, such as compound state-

ments, conditionals, loops, and so on. Using YACC

and a few string-handling functions does the job.

Certain cases, like Pascal for loops, have a more

complex meaning in Pascal than in C, and PASCHAL

puts in extra C statements to achieve the absolutely
equivalent effect.

One aspect we handle on the lexical level

is conflicts in reserved words. Some of W ' s

identifiers, like int, are reserved words in C, SO

we recognize them specially and prefix a "PCL" on

them before they reach the parser. In this way we

avoid any conflicts in the C output.
Also on the lexical level, we recognize the Pascal

built-in functions and procedures, and change them

into the names used in the "Pascal Compatibility

Library." This library eventually links with the final

executable.

50 TUGboat, Volume 9 (1988), No. 1

The lexical analyzer also handles conversion of

numeric and character constants into appropriate C
constants. Most operators also have a simple lexical

equivalent, such as Pascal's "on and C's " ! =" .
The operators and precedence in the two lan-

guages have a few subtle differences, requiring

special care in certain cases. For example, Pascal's

"/" is strictly real division, while in C it is either
the integer modulo or real division, depending on

the operands. PASCHAL recognizes all such special

cases and is careful to clothe them in appropri-

ate parentheses and type casts. Built-in functions

can also be very tricky. For example, the Pascal
"abs" adapts implicitly to the type of the operand

while C's "abs" is strictly integer. PASCHAL cages
chameleons like this with C preprocessor macros

that mimic the Pascal behavior.
Most cases of the Pascal t y p e statement trans-

late into a C typedef . PASCHAL does an optimal

mapping of each Pascal subrange type into a C
char , shor t , int , or long, based on the storage

or execution speed profile of the target machine.

PASCHAL uses the C unsigned modifier to optimize

use of storage or execution time. PASCHAL trans-

lates Pascal const statements into C preprocessor
#define's, thus permitting the C compiler to reduce

constant expressions at compile-time.

A Pascal record translates into an equivalent
C s t ruc t . In the case of variant record's, C

union's appear. The syntax of Pascal's variant
record's, however, is different enough from C's

s t ruct ' s and union's to make coding of the task

difficult. In some cases PASCHAL must generate

extra synthetic identifiers to label parts of the C

s t ruc t .
Arrays pose several problems. Pascal separates

items in lists of array subscripts with commas,
while C requires them to be each in square brackets.

Pascal permits array bounds to start from any

integer, while C always uses a zero lower bound.

Thus PASCHAL must keep a symbol table of array
names and their lower bounds, and insert an offset

into each dimension of each reference to an array

element.

When an array appears on the left side of an

assignment, we know in the case of lQX that it is a

string assignment. PASCHAL outputs C code to copy
a string in that case.

In Pascal, a function or procedure call may or

may not have a parenthesized actual parameter list,
so the translator has to maintain a symbol table to

know whether an identifier reference is to a variable
or a call.

Pascal and C take different approaches to
declaring formal parameters to functions and pro-

cedures. Pascal does it sensibly, whereas C expects

you to recite the identifier list once in the paren-

theses and once again (with types this time, please)

after the parentheses.

Pascal and C use radically different methods

to return a value from a function. Pascal requires

that the returned value be assigned to the function

name and that control flow exit a t the end of
the function body. C simply uses a built-in

"return" statement. Thus PASCHAL must insert

a synthetic returned-value variable declaration into
each function, convert all Pascal assignments of

return values to assignments to that variable, and
insert a r e t u r n statement at the end of the function
to return the value of the variable.

To make separate compilation possible, PASCHAL
will gather external declarations for the whole Pas-

cal program together and create a C "include" file

from them. The functions of the C source may then

be arbitrarily split into separate source files for s e p
arate compilation. The PASCHAL accessory program

s p l i t p , given an arbitrary number of lines, splits

the PASCHAL C output into smaller source files, each
containing about that number of lines.

In a few cases of Pascal language features, we

just change the TEX source (with the changefile) to
avoid a difficult Pascal feature that is rarely used

by lQX. For example, T@ uses Pascal's non-local
goto's for error termination, and we follow Knuth's
suggested strategy by substituting a call to the C
e x i t 0 function.

Connec t ing 'QX t o t h e Unix Sys t em V
Envi ronment

The matter of file I/O does not permit much in

the way of automatic translation. We modified by

hand ?jEX's code for file opening/closing, text line

input, and read and write statements. The changes

convert these operations to use the C standard 110
library. While this hand-crafted modification was

tedious, it amounted to only a few hundred lines

and was mechanical.

To the list of handmade modifications we must
add the "dirty Pascal" which Knuth cites in the

index to m: The Program. C is able to perform

these tricks as well as Pascal.
C provides a standard way to access command-

line arguments, and we provide the customary ?$X
features in that respect. Also straightforward in C
under Unix System V are: invoking a sub-shell for

editing during a 7&X run, detecting an interrupt

key-press, and determining the date and time.

TUGboat, Volume 9 (1988), No. 1 5 1

We use a novel method made possible by C
to obtain pre-loaded versions of T u r b o m . We do
not process core dumps into modified executable

images, which has been the strategy of such pro-

brams as the Berkeley Unis undump utility. Instead,

we created a utility program fmt2ini t in C, which

adds C initializers to the global declarations of the

T u r b o w source code, thus creating source code
for pre-loaded versions of m . The fmt2in i t
utility determines the proper global variable initial-

ization~ by executing the initialize function from

the T u r b o m source, and by analyzing the i n i t e x

format file which defines the preloaded state. This
met hod has several important advantages over the

core-dump method: (1) Complete portability of the
pre-loading process, since C initializers are portable

(as opposed to core-dump files which are inher-

ently non-portable), (2) Smaller executable files
and faster program loading, since C global variables

which are initially undefined or zero take no space
in executables compiled from C, and (3) Portability

of the initialized data, since C correctly initializes

items like character data for the underlying machine
architecture.

Once we had debugged our first version of

T u r b o m for Unix System V to where it would
process complex documents, we were ready to try

the rn TRIP. To our satisfaction, T u r b o m

processed the entire TpJ TRIP without error on the
first attempt.

Sugar-Coating O u r Translation for
MS-DOS PC's

Having finished our initial version for Unix System

V, we turned our attention to porting the T u r b o m

translation to the IBM PC and compatibles. For
this effort we chose the Microsoft C Compiler version

5.0, since this compiler offered a run-time library
compatible with the Unix standard 110 library, a

reputation of being bug-free, and accommodating

memory models for large programs like rn.
The main issues of porting a large program

like TEX to the PC have to do with the unfriendly

architecture of the 8086 processor. Its limitations
arise partly from its being a 16-bit processor with
a 16-bit (64K byte) address space, and partly from

an illogical design to expand the address space to

20 bits (1M byte, reduced to 640K on the PC).

Taking the verified T u r b o m C source to

the PC and getting the code to compile and
run correctly required an unpleasant amount of

effort, almost as much as that to create PASCHAL.

However, we were aided by PASCHAL itself in that

as we discovered quirks in the way the PC executes

C, we were able to make small changes to PASCHAL

to correct whole classes of problems in the PC's use

of the source code.
The main problems were: getting the pro-

gram to run in 640K, getting correct coercion of

parameters in function calls, and getting 1 / 0 to

work properly with the changed operating system

environment.

Finishing wi th Ou tpu t Drivers and Utilities

We ported Nelson Beebe's output drivers in C (see

TUGboat Volume 8, No. 1) to Unix System V.
Beebe's source code, at the time we received it,

required only a few changes to compile and run
perfectly. At our site we use DVIJEP for the HP
LaserJet+ and DVIIBM for IBM-compatible dot-

matrix printers.
The font metric and bitmap files require no

translation, since they are in a completely portable

format to begin with.

Encore!

We have a number of items on our wish-list of

future upgrades.
In the course of translating we first trans-

lated TANGLE. The WEB and other Pascal-based
utilities not strictly required to run (WEAVE,

TFtoPL, etc.) will follow soon.
Previewers must be written for specific graphics

hardware, so we will first produce them for only a

few machines, namely the AT&T 3B1 and the IBM
PC, in order to have control over our own versions.

We would like to turn PASCHAL loose on META-

FONT next. The METRFONT source provides some
new challenges, but we are confident that our design

will adapt well to any problems involved.
As to ports to other machines, we hope to

complete them for the Apple Macintosh, IBM's

OS/2, and VAX Unix and VAXIVMS. T u r b o m

may run unchanged on the two VAX operating

systems, but we have not yet attempted that port.

Since there is no object code standard for
the hundreds of various Unix System V machines,

those with Unix machines which we do not support

should obtain the Turbo'l&X source code from us
and compile it for their machine.

There are several optimizations to TQX which

we hope to hand-craft in C for T u r b o w , including

rewriting the "inner-loop" code, optimizing near

and far pointers in the PC version, and using C
dynamic memory to optimize at run-time the use of

memory for arrays.
We would like to improve PASCHAL, or possibly

write a post-processor, to improve the looks of the

52 TUGboat, Volume 9 (1988), No. 1

resulting C code. Like processed cheese, the food

value of the original is there, but the flavor is
changed and the texture is gone.

Distributing the Product

We have elected to make T u r b o w a "semi-

commercial" product within the US, that is, we

will charge a modest license fee for each copyrighted

copy of the binary and/or source code. However,
unlike other commercial versions of w, the source

code will still cost less than the other's binaries.
We will distribute a complete package incl-uding

T u r b o m , utilities, and printer drivers.

Late-breaking News. We have completed some
preliminary benchmarks on the VAX BSD version of

T u r b o w , with encouraging results. We compared

T u r b o m in C to the public-domain Unix m
distribution in Pascal on a VAX 750. We observed
an execution speed-up factor of between 1.6 to 3.0

compared to the Stanford distribution 'IjEX (the

factor varies depending on the type of document
being formatted). The size of the T u r b o m

executable code is about 60% of the distribution
version.

easy w
Ester Crisanti
Alberto Formigoni

Paco La Bruna

1 Introduction

1.1 easyw1.0

'I)$ has introduced new powerful tools for scien-

tific documents typesetting, allowing formulae to be
easily built up through a linear language. As a new

tool using QX, a project was born in 1984 at the Is-

tituto di Cibernetica (now Dipartimento di Scienze
dell'Informazione) dell'Universit8 degli Studi di Mi-

lano, Italy.

That project has produced e a s ~ Q X ~ , ~ that we
propose as a new powerful tool for 'I)$ documents

typesetting.
e a s y w is an interactive Formula Processor,

developed from the initial idea of Prof. Gianni

Degli Antoni, Dipartimento di Scienze dell'hforma-
zione, planned and implemented by TE CO GRAF

with the collaboration of Dipartimento di Scienze
dell'Informazione dell'Universit8 degli Studi di Mi-

lano.

It allows the interactive typewriting of mathe-

matical formulae on IBM-compatible Personal Com-
puters. The formulae produced by e a s y w are

memorized in ASCII standard files. prepared in or-
der to be processed by m , either including such
files in other ones by means of the T)$ command

"\input", or using usual editor commands for file
merge.

The formula being built up is displayed on the

screen through the fonts created with METAFONT

and it is also possible to use every symbol and math-
ematical font.

The use of e a s y w is very simple, since the

user is driven in his work by a popup menu inter-

face, by means of which the choice of operators and
mathematical symbols is easily made. It is also pos-

sible to select some virtual keyboards which, because

they can be displayed on the screen, achieve a cor-

respondence with the physical keyboard, allowing
insertion of characters belonging to different alpha-

bets, like the greek, or a wide selection of mathe-

matical symbols.
Also. complex mathematical formulae can be

typeset in an easy way, similar to the one used in
writing by hand the same formula. Both for the

foregoing reasons, and because the positioning of

the cursor is automatically obtained through an in-

teractive construction of the formula on the screen,

e a s y m offers to the user a good facility for the
preparation of a document.

e a s y w has been implemented using attrib-

uted grammar techniques, as developed by D.E.

Knuth. Programs have been written in C language.

2 Functional characteristics

2.1 User interface

The user communicates with e a s y w using p o p
up menus making the selection of commands simple

and fast. Using e a s y w , it is not necessary to know

editing languages or to learn a particular syntax for

the commands, because everything is done in an in-
teractive way.

2.1.1 The screen layout

The screen handled by e a s y m is structurally di-

vided into three separated areas named:

Menu line

e Work area

e Status line

