In the end, it should be clear that descriptive markup
is not just the best approach of the competing markup
systems; it is the best imaginable approach.
James H. Coombs, Allen H. Renear,
and Steven J. DeRose
“Markup systems and the future of
scholarly text processing”
Communications of the ACM
(Volume 30, Number 11,
November 1987)

TUGBOAT

Communications of the TEX Users Group
EpiTor BARBARA BEETON

VoLUME 9, NUMBER 1 . APRIL, 1988
ProviDENCE .« RuODE Istanp « U.S.A.

TUGDboat

The communications of the TEX Users Group are
published irregularly at Providence, Rhode Island,
and are distributed as a benefit of membership both
to individual and institutional members. Three
issues of TUGboat are planned for 1988.

Submissions to TUGboat are for the most part
reproduced with minimal editing, and any questions
regarding content or accuracy should be directed
to the authors, with an information copy to the
Editor.

Submitting Items for Publication

The deadline for submitting items for Vol. 9, No. 2,
is May 16, 1988; the issue will be mailed in July.

Manuscripts should be submitted to a member
of the TUGboat Editorial Committee. Articles of
general interest, those not covered by any of the
editorial departments listed, and all items submitted
on magnetic media or as camera-ready copy should
be addressed to the Editor, Barbara Beeton.

Contributions in electronic form are encour-
aged, via electronic mail, on magnetic tape or
diskette, or transferred directly to the AMS com-
puter; contributions in the form of camera copy
are also accepted. For instructions, write or call
Barbara Beeton.

TUGboat Advertising and Mailing Lists

For information about advertising rates or the
purchase of TUG mailing lists, write or call
Ray Goucher.

Other TUG Publications

TUG is interested in considering for publication
manuals or other documentation that might be
useful to the TEX community in general. If you
have any such items or know of any that you
would like considered for publication, contact Ray
Goucher at the TUG office.

TUGboat Editorial Committee

Barbara Beeton, Editor

Helmut Jirgensen, Associate Editor for Software

Maureen Eppstein, Associate Editor for
Applications

Laurie Mann, Associate Editor on Training Issues

Georgia K.M. Tobin, Associate Editor of Font
Forum

Jackie Damrau, Associate Editor for IATEX

Alan Hoenig and Mitch Pfeffer, Associate Editors
for Typesetting on Personal Computers

See page 3 for addresses.

TUGboat, Volume 9 (1988), No. 1

Addresses

Note: Unless otherwise specified,
network addresses (shown in

typewriter font) are on the Internet.

Frederick H. Bartlett
The Bartlett Press, Inc.
564 Amsterdam Avenue, 3B
New York, New York 10024
212-787-0395

Lawrence A. Beck
Grumman Data Systems
R & D, MS D12-237
Woodbury, NY 11797
516-682-8478

Barbara Beeton

American Mathematical Society
P.O. Box 6248

Providence, RI 02940
401-272-9500

bnb@Seed . AMS. com,

bnb@xx.lecs . MIT.Eduy,
Beeton@Score.Stanford.Edu

Peter Breitenlohner
Max-Planck-Institut fiir Physik
(Werner-Heisenberg-Institut)
Foehringer Ring 6

D-8000 Miinchen 40

Federal Republic Germany
(089) 32 308-412

Bitnet: PEB@DMOMPI11

Malcolm Brown
AIR/Systems Development
Sweet Hall 3rd floor
Stanford University
Stanford, CA 94301
415-723-1248
MBBQ@jessica.Stanford.Edu

Marcus Brown

Dept of Computer Science
Texas A & M University
College Station, TX 77843-3112

Lance Carnes

¢/o Personal TEX

12 Madrona Avenue
Mill Valley, CA 94941
415-388-8853

S. Bart Childs

Dept of Computer Science
Texas A & M University
College Station, TX 77843-3112
409-845-5470

Bitnet: BartQTAMLSR

Malcolm Clark

Imperial College Computer Centre
Exhibition Road

London SW7 2BP, England

Janet: texline®Quk.ac.ic.cc.vaxa

Maria Code

Data Processing Services
1371 Sydney Dr
Sunnyvale, CA 94087
408-735-8006

John M. Crawford
Computing Services Center
College of Business

Ohio State University
Columbus, OH 43210
614-292-1741
Crawford~JQOhio-State
Bitnet: TS0135Q0HSTVMA

Jackie Damrau

Dept of Math & Statistics
Univ of New Mexico
Albuquerque, NM 87131
505-277-4623
damrau@dbitch.unm.edu
Bitnet: damrau@bootes

Shane Dunne

Department of Computer Science
University of Western Ontario
London, Ontario N6A 5B7, Canada

Allen R. Dyer

2922 Wyman Parkway
Baltimore, MD 21211
301-243-0008 or 243-7283

Maureen Eppstein
Administrative Publications
Stanford University

Encina Hall, Room 200
Stanford, CA 94305
415-725-1717
as.mveQForsythe.Stanford.Edu

Jim Fox

Academic Computing Center HG-45
University of Washington

3737 Brooklyn Ave NE

Seattle, WA 98105

206-543-4320
foxQuwavm.acs.washington.edu
Bitnet: fox7632Quwacdc

David Fuchs

1775 Newell

Palo Alto, CA 94303
415-323-9436

Richard Furuta

Department of Computer Science
Univ of Maryland

Coilege Park, MD 20742
301-454-1461
furuta@mimsy.umd.edu

Alonzo M. Gariepy

OAIP, 18th floor, Mowat Block
900 Bay Street

Toronto, Ontario MTA 1L2 Canada
416-965-8765

Raymond E. Goucher
TEX Users Group

P.O. Box 9506
Providence, RI 02940-9506
401-272-9500 %232
reg@Seed.AMS. com

Dean Guenther

Computer Service Center
Washington State University
Computer Science Building,
Room 2144

Pullman, WA 99164-1220
509-335-0411

Bitnet: Guenther@WSUVM1

William Hawes
Box 308
Maynard, MA 01754

Doug Henderson

Division of Library Automation
University of California, Berkeley
186 University Hall

Berkeley, CA 94720
415-642-9485

Bitnet: dlatexQucbcmsa

Amy Hendrickson

TEXnology Inc.

57 Longwood Ave #8
Brookline, MA 02146
617-738-8029

Alan Hoenig

17 Bay Avenue
Huntington, NY 11743
516-385-0736

Don Hosek

Platt Campus Center
Harvey Mudd College
Claremont, CA 91711
Bitnet: dhosek@hmcvax

Doris T. Hsia
2630 Sierra Vista Ct
San Jose, CA 95116
415-723-8117

Patrick D. Ion
Mathematical Reviews
416 Fourth Street

P. 0. Box 8604

Ann Arbor, MI 48107
313-996-5273
ion@Seed.AMS.com

Helmut Jiirgensen

Dept of Computer Science

Univ of Western Ontario

London N6A 5B7, Ontario, Canada
519-661-3560

Bitnet: helmut@uwovax

UUCP: helmut@julian

Richard J. Kinch
Kinch Computer Co.
501 S. Meadow St.
Ithaca, NY 14850
607-273-0222

Donald E. Knuth

Department of Computer Science
Stanford University

Stanford, CA 94305
DEK@Sail.Stanford.Edu

Leslie Lamport
Systems Research Center
Digital Equipment Corp
130 Lytton Ave

Palo Alto, CA 94301
415-853-2170
lamport@SRC.DEC.COM

Silvio Levy

Princeton University

Fine Hall, Washington Road
Princeton, NJ 08544
levy@princeton.edu

Pierre A. MacKay

Northwest Computer Support Group
University of Washington

Mail Stop DW-10

Seattle, WA 98195

206-543-6259; 545-2386
MacKay@June.CS.Washington.edu

Laurie Mann

Stratus Computer

55 Fairbanks Boulevard
Marlboro, MA 01752
617-460-2610

uucp: harvard!anvilles!Mann

Marie McPartland-Conn
Henco Software

100 Fifth Avenue

Waltham, MA 02054
617-466-4220

Robert Messer
Department of Mathematics
Albion College

Albion, MI 49224

Bitnet: RAMQALBION

Tim Morgan

Department of Information and
Computer Science

University of California

Irvine, CA 92717

714-856-7553
morgan@ics.uci.edu,

Bitnet: morgan@uci

David Ness

TV Guide
Radnor, PA 19088
215-293-8860

Richard S. Palais
Department of Mathematics
Brandeis University
Waltham, MA 02154
617-647-2667

Hubert Partl

EDP Center of the
Technical University Vienna
Wiedner Hauptstrafie 8-10
A-1040 Wien, Austria
Bitnet: z3000pa@awituw01

Mitch Pfeffer

Suite 90

148 Harbor View South
Lawrence, NY 11559
516-239-4110

Arnold Pizer

Department of Mathematics
University of Rochester
Rochester, NY 14627
716-275-4428

Craig Platt

Dept of Math & Astronomy

Machray Hall

Univ of Manitoba

Winnipeg R3T 2N2, Manitoba, Canada
204-474-9832

CSnet: plattQuofm.cc.cdn

Bitnet: plattQuofmec

Thomas J. Reid
Computing Services Center
Texas A&M University
College Station, TX 77843
409-845-8459

Tom Rokicki

Box 2081

Stanford, CA 94309
415-326-5312
Rokicki@Polya.Stanford.edu

Barry Smith

Kellerman & Smith

534 SW Third Ave

Portland, OR 97204
503-222-4234; TLX 9102404397
Usenet: tektronix!reed!barry

Shozo Taguchi

Deputy General Manager
Software Division

Fujitsu Limited

140 Miyamoto, Numazu-shi
Shizuoka-ken 410-03, JAPAN

TUGboat, Volume 9 (1988), No. 1

Rilla Thedford

Intergraph Corporation, MS HQ1006
One Madison Industrial Park
Huntsville, AL 35807

205-772-2440

Georgia K.M. Tobin
The Metafoundry
OCLC Inc., MC 485
6565 Frantz Road
Dublin, OH 43017
614-764-6087

Jennifer L. Vollbrecht
Kinch Computer Co.

501 S. Meadow St.
Ithaca, NY 14850
607-273-0222

James W. Walker
Department of Mathematics
University of South Carolina
Columbia, SC 29208
803-777-3882

Bitnet: N410109Qunivscvm

Samuel B. Whidden
American Mathematical Society
P.O. Box 6248

Providence, RI 02940
401-272-9500

sbwQSeed.AMS. com

Ken Yap

Dept of Computer Science
University of Rochester
Rochester, NY 14627
KenQcs.Rochester.edu
Usenet: ..!rochester!ken

Hermann Zapf
Seitersweg 35

D-6100 Darmstadt

Federal Republic Germany

TUGboat, Volume 9 (1988), No. 1

General Delivery

From the President
Bart Childs

Our TEX world has been progressing in impressive
fashion. In spite of the fact that large number of
errors have been found and corrected in the past
year, TEX is a mature and stable program. TgX
2.9 is now widely distributed. When you consider
the size of TEX it is amazing that Don was able to
create it at the level he did. Of course it is difficult
to compare it with other software items because
each is different. A high level language (HLL) does
not have as many commands or elements. TgX
has about 200 primitives and plain TEX adds about
700 macros to that. Most HLLs don’t come close
and from vendor to vendor the compiler is usually
quite different. Barbara Beeton posed an interesting
question, “if another error is found, what version of
TEX will it be?”

I have finished (?7) a port to the Cray under
CTSS. True to form, some errors in the Pascal
compiler were found. The reason I question that I
have finished is that I can’t run the trip test. One
of the errors is that I can’t yet get input from the
terminal. The trip test requires it. I plan to submit
an article on the port to the next issue and include
a few timings.

The finance committee has met twice since the
annual meeting. We are in good condition and have
added two permanent professionals, Clifford Alper
and Alan Wittbecker, to our staff in Providence.
Ray worked hard for that and we appreciate the
efforts of other TEXers that came up with the leads
on these two.

I am preparing a review on the “TEX: the
Program” course that Don taught a year ago at
Stanford. This course was videotaped, and the
tapes are now available; see page 87 for details. We
are also planning to have a small committee prepare
a detailed syllabus on the courses that TUG offers.
This will be available to all. We wish to ensure
quality and continuity in TgX instruction by TUG
and internal courses as well,

In the process of incorporation, Ray took the
opportunity to make a slight change in the way
we had been operating. With our recent successes,
it became obvious that the positions of President
and Treasurer require more interaction with him.
It would increase the continuity with TUG if these
positions were not elected in the same year. At this

sumimer’s meeting in Montreal we will be asked to
confirm this schedule.

We decided to send Alan Hoenig to the TgX
meeting in Exeter this summer as a representative
of TUG.

I can offer nothing but praise for the other
officers you have elected. Rilla Thedford is building
the volunteer network and Alan is timely with his

correspondence. Thank you for providing such
a good group. I think they simply reflect the
organization.

Again, the TUGboat continues to improve. I
found Doug Henderson’s METAFONT column par-
ticularly useful and enlightening. You contributors
keep up the good work.

Happy TgXing.

TUGDboat Docks at Fire Station

Alan Wittbecker
TEX Users Group

Alas, TUG outgrew its space at the AMS. As the
result of a search for larger quarters, TEX Users
Group will be moving on May 1st to the old (1866)
Niagara fire station at 653 North Main Street in
Providence. TEX Users Group will occupy the top
floor of the station, which has 1,200 square feet
of office floor space and 800 square feet of storage
space (the lower floor is occupied by Computopia,
a retail computer store).

The station was renovated by Morris Nathanson
Design and includes original firehouse memorabilia.
Of great importance to us is the fact that it is
only one block away from the AMS, so contacts
and exchanges will continue to be close. TUG will
be announcing a new phone number as soon as
arrangements are complete.

All correspondence should continue to be ad-
dressed to:

TgX Users Group

P. O. Box 9506

Providence, Rhode Island 02940-9506
All payments should continue to be addressed to:

TEX Users Group

P. 0. Box 594

Providence, Rhode Island 02901
The new address for delivery services is:

TEX Users Group

653 North Main Street

Providence, Rhode Island 02903

Donald E. Knuth Scholarship

Marie McPartland-Conn and Doris Hsia were hon-
ored at the 1987 Annual Meeting, University of
Washington, Seattle, as the 1987 Scholarship Win-
ners. They have volunteered to serve on the 1988
selection committee.

We are pleased to announce the Third Annual
“Donald E. Knuth Scholarship” competition. Once
again this year two Scholarships will be awarded.
The awards consists of an all-expense-paid trip to
TUG’s 1988 Annual Meeting and the Short Course
offered immediately following the meeting. Funding
for one of the scholarships will be provided by
ArborText, Inc., Ann Arbor, Michigan, and for the
other, by the TEX Users Group. The competition
is open to all 1988 TUG members holding support
positions that are secretarial, clerical or editorial in
nature.

To enter the competition, applicants should
submit to the Scholarship Committee by May 13,
1988, the input file and final TEX output of a
project that displays originality, knowledge of TEX,
and good TEXnique. The project may make use of a
macro package, either a public one such as IATEX or
one that has been developed locally; such a macro
package should be identified clearly. Such features
as sophisticated use of math mode, of macros that
require more than “filling in the blanks”, or creation
and use of new macros will be taken as illustrations
of the applicant’s knowledge. Along with the TEX
files, each applicant should submit a letter stating
his/her job title, with a brief description of duties
and responsibilities, and affirming that he/she will
be able to attend the Annual Meeting and Short
Course at McGill University, Montréal, Canada,
August 22-24, 1988.

Selection of the scholarship recipient will be
based on the TEX sample. Judging will take place
May 14—-June 13, and the winner will be notified
by mail after June 14.

The Scholarship Committee consists of Marie
McPartland-Conn, chairperson; Doris Hsia, Stan-
ford University; and Alan Wittbecker, TEX Users
Group. All applications should be submitted to the
Committee at the following address:

Marie McPartland-Conn

Henco Software

100 Fifth Ave.

Waltham, MA 02054

TUGboat, Volume 9 (1988), No. 1

Notes from the Editor

Barbara Beeton

A few recent inquiries from readers have pointed
out that (1) some people out there really do
read TUGboat, and (2) some features your editor
thought obvious really aren’t obvious at all. So,
here are some random notes on what to look for,
and where.

Addresses of all authors, officers, steering com-
mittee members and others mentioned in significant
capacities in an issue are given in the “best” form
available starting on the next recto page after the
title page. Starting with this issue, we’re send-
ing proof of the address list as well as proof of
each article to the author for verification before it’s
published.

Cover 3-—that’s the inside back cover —is an
extra-charge option for advertisers, but if TUG
has something particularly important to announce,
cover 3 will be reserved for that. Cover 3 of
issue 8#3 contained the first announcement of
the 1988 Annual Meeting, to be held at McGill
University in Montréal from August 22-24. The
meeting is also listed in the Calendar, and both the
announcement (Call for Papers) and the Calendar
are listed in the contents on the back cover. So the
several inquiries, “When and where is this year’s
meeting?” tell me that something’s just not getting
through; we’ll try harder to make this information
more prominent, and suggestions for how to do it
are welcome.

Suggestions for anything relevant to the present
or future contents of TUGboat are welcome, of
course. Editorial information, including the next
issue’s deadline (also in the Calendar) and the
names of Associate Editors for various topics, is
on the back of the title page, facing the address
list. Addresses for the TUG office, including the
street address (for express shipments that can’t be
delivered to a post office box) are given with the
general TUG information on the inside front cover,
and addresses of the various editors are included in
the aforementioned address list.

The rapid growth of TUG’s membership and
continuing demand for back issues of TUGboat has
made reprinting necessary. Some issues and full
volumes have been reproduced from printed issues
rather than from the original camera copy. This
means that the statement “... can be taken as
representative of the output...” is not necessarily
true. Volumes 7 and 8 (all issues bound together)
and some copies of issues 7T#1 and 841 that were

TUGboat, Volume 9 (1988), No. 1

not part of the initial subscription mailing are the
only items affected.

Some efforts at generating standards or guide-
lines for certain topics of importance to TEX users
deserve a reminder. Robert MCGaffey’s committee
to develop output driver standards (TUGboat 842,
p. 161) can still use some more input; if you've just
lost an argument with your output driver, which
refuses to digest your new font of 256 characters, or
tells you that it can only accept more than 4 fonts
on page 27 when the moon is gibbous, send your
suggestions to Robert. (See the address list ...)
Christina Thiele and her committee are likewise
attempting to bring order out of chaos by develop-
ing guidelines for writing scrutable macro packages
(TUGboat 8#3, p. 307). It would be stretching
the truth to say that all the macros I've written
are well-structured and exhaustively documented;
nonetheless, there are times when documentation
and careful visual structuring are essential simply to
preserve one’s sanity under later deadline pressure.
Send your best (and worst —what not to do is also
instructive) ideas.

The TUG office has a new TgXnician, Alan
Wittbecker, previously with Nieman Ryan Pub-
lishing in the Northwest. He will be assisting
in TUGboat production, as will a new volunteer,
Tom Reid of Texas A&M University. They will be
helping to retag the TEX source files submitted for
publication to use standard TUGboat macros where
possible, or to make sure that newly-defined macros
in one item don’t subvert existing standard macros
or persist to defeat the formatting of subsequent
articles when a whole issue is strung together. It is
my hope that, beginning with this issue, items can
be returned to the authors after publication so that
they can see what has been done to incorporate
their work into a larger document. For authors
whose submissions arrived on floppy disk, we intend
to include the TUGboat macros in the return pack-
age, to permit the articles to be rerun in TUGboat
format by the author, and, not inconsequentially, to
provide an incentive for authors to prepare future
articles directly in TUGboat format.

I would like particularly to thank one volun-
teer whose contribution was not properly acknowl-
edged in the last issue. Doug Henderson, TUG's
METARFONT coordinator and implementor of PCMF,
prepared the APL font (TUGboat 8#3, p. 275) and
Silvio Levy’s text Greek font (p. 20, this issue) for
both laser printer and typesetter, a task for which
no staff time was available at the Math Society.
He is also serving as a repository of information on
METAFONT parameter settings for various output

devices and of .mf source files for non-CM fonts
and CM fonts in nonstandard sizes.

Two other volunteers whose long and devoted
service deserves special recognition are Ken Yap,
keeper of the IATEX style collection, and Don Hosek,
keeper of output device driver information. Both
have worked hard to assure the accuracy of the
information in their columns, suffered the indignity
of having errors introduced during editing, and
adjusted to the dictates of this Editor even if their
local systems didn’t make the task easy. Ken
is looking forward to receiving his degree next
year, and will be leaving Rochester; before he
leaves, he would like to find a new home for the
IATEX collection, with someone who has a strong
interest in IATEX, an account on an Internet node
that supports anonymous FTP, the support of
the local system management in providing disk
space and other encouragement, and time to do
the job right. Particulars can be obtained from
Ken by sending him an inquiry by electronic mail
at Ken®@cs.Rochester.edu; please send a copy to
bnb@Seed.AMS. com.

And speaking of electronic mail, the TUG
office now has Internet access through the Math
Society’s connection. Inquiries regarding mem-
bership records, subscriptions or orders can be
sent to the TUG office manager, Karen But-
ler, k1b@Seed.AMS.com. Messages to management
should go to Ray Goucher, reg@Seed.AMS.com.
Address TpXnical inquiries to Alan Wittbecker,
aew@Seed . AMS. com.

Finally, some comments on TEX outside of
TUG. Chuck Bigelow’s article, “Notes on typeface
protection” (TUGboat 7#3, p. 146), has now been
reprinted several times; the most captivating is
the French translation by Jacques André in TSI—
Technique et Science Informatiques under the title
“Du piratage de fontes” — it makes the topic sound
dreadfully sinister. Reviews of the IBM PC and
Macintosh implementations of TEX appeared in the
January 11 issue of The Scientist, accompanied
by benchmark data prepared by Malcolm Brown,
moderator of TEXhax. And, on the first page
of the Boston Globe want ads for January 31,
Stratus Computer listed a position for a publications
specialist to work with “Tex [sic] (a typesetting
language)”’. If you spot a reference to TEX or
METAFONT or TUG in any publication that may
not make it to Rhode Island, send us a copy or
citation— we like to keep informed about what the
rest of the world is thinking.

Document Production: Visual or Logical?

Leslie Lamport

The Choice

Document production systems convert the user’s
input — his keystrokes and mouse clicks—into a
printed document. There are many different ways
of classifying these systems. I will discuss a
classification based on the extent to which the user
regards his document as a visual structure rather
than a logical one. A system in which the user
specifies a visual description of the output will
be called a wvisual system, and one in which he
specifies the logical structure of his document will
be called a logical system. Visual systems may be
more convenient for short, simple documents like
love letters or laundry lists. However, I will argue
that logical systems are better for more complex
documents like books and technical articles.

In a purely visual system, one would simply
paint a collection of pixels on the screen. The word
cat would be no different from a picture of a cat —
the user could change the shape of the ¢ as easily
as he could change the shape of the tail in a picture
of a cat. Finding all instances of cat and replacing
them by dog would be as hard as finding all cats in
a picture and replacing them with dogs.

In a purely logical system, one would enter only
the logical structure of a document, describing such
things as words, paragraphs, theorems, sections,
and cross-references. The system would translate
this logical structure into a collection of dots on
sheets of papers, with the user giving only general
instructions —for example, specifying two-column
output formatted for a conference proceedings.

There are no purely visual systems used for
document production. All systems keep some
logical representation of the document that they
use to generate the pixels. The most primitive ones
keep only the letters that generate the characters.
In such a system one can easily find all instances of
cat, but a search for all instances of domestic would
miss the ones in which the word is hyphenated
across lines. More sophisticated systems keep more
of the logical structure, thereby acting more like
logical systems. It is my thesis that such systems
are good for serious document production only to
the extent that they act like logical systems.

Reprinted from Notices of the American Mathe-
matical Society (1987), Mathematical Text Process-
ing, “Document Production: Visual or Logical?”,
Volume 34, pages 621-624, by permission of the
American Mathematical Society.

TUGboat, Volume 9 (1988), No. 1

1 know of no purely logical system that is
currently available. Systems like Seribe and IATEX
permit the user to describe the visual appearance
as well as the logical structure of the document —
for example, by inserting a command to add a
quarter-inch vertical space. The need to provide
the user with such commands is a symptom of the
deficiencies of these systems.

Current logical systems require the user to
describe his document as a text string, filled with
obscure-looking commands. This is a cumbersome
way to represent the logical structure of a docu-
ment; it is a sign of the primitive nature of these
systems, not an inherent feature of logical document
production. Systems can be built to allow more
convenient editing of the document’s logical struc-
ture. I'm not interested in the question of whether
the inconvenience of describing the document with
an ASCII text file is bad enough to make visual
systems preferable. Choosing between two evils is
never pleasant. 1 will confine myself to arguing
the inherent superiority of logical systems to visual
ones.

Computers Work Logically, Not Visually

In a recent paper, I used the notation f£ to denote
the result of substituting e for z in f. With a
visual system, I would have entered this notation
by simply putting the e above and to the right of
the f and the = below and to the left. Using IATEX,
I might have typed the formula as £-{e}_{z},
the ~ command indicating a superscript and _
indicating a subscript. This input would have been
a partially logical and partially visual description —
logical because the subscript and superscript are
denoted logically by commands rather than visually
by placement, but visual because it describes the
representation (super- and subscript) rather than
the logical concept of substitution. I therefore chose
to define a command \subfor of three arguments,
and typed the formula f; as \subfor{f}{e}{x}.
The input then unambiguously describes the logical
structure that it represents. For example, the input
would distinguish the result of substituting 3 for 4
in s, represented as \subfor{s}{3}{i}, from the
cube of the i*® element of a sequence s, represented
as s"{3}_{i}, even though both are printed as s3.

After I had completed the first draft of my
paper, someone told me that I had used the wrong
notation; the result of substituting e for z in f
should be denoted by fZ rather than ff. I had
to reformat my paper to conform to the correct
notation. Had I used a visual system, in which only
the visual representation is maintained, 1 would

TUGboat, Volume 9 (1988), No. 1

have had to examine every page visually to find
all instances of the notation and changed each one
individually. Had I used the half-logical method,
entering £~ {e}_{x}, I could have written a program
to find all text strings of the form ...~ {...}_{...}
and allow me to choose whether to transform it.
(Human intervention would still be required to
prevent changing the cube of s; to sj.) Having
chosen a logical representation, I merely had to
change the definition of the \subfor command —a
simple change at a single point in the text.

The ease of making the change when the nota-
tion was represented logically rather than visually
was no fluke; it was a consequence of the funda-
mental fact that computers are good at processing
logical information, but bad at processing visual
information. Recognizing that f¢ is a single logical
entity with three components is a difficult problem
of artificial intelligence if one is given only the vi-
sual representation, but it is a trivial programming
exercise if f£ is represented as \subfor{f}{e}{x}.

Writing or Formatting?

The purpose of writing is to convey ideas to the
reader. The worst aspect of visual systems is that
they subvert the process of communicating ideas
by encouraging the writer to concentrate on form
rather than content. Ideas are conveyed by the
logical structure of the text; the function of the
visual format is to display this structure. The
author should be concerned with the structure, not
any particular visual representation.

Visual systems encourage the user to substitute
formatting for good writing. A simple example is
the use of vertical space. If there’s an awkward
transition from one paragraph to the next, the user
of a visual system can simply add some vertical
space between the paragraphs. But, what does this
space accomplish? The awkward transition is still
there; the reader is still jarred by it. The extra
space simply declares that there is an awkward
transition and the author is either too lazy or too
bad a writer to fix it.

An awkward transition is a symptom of a
poorly structured document; it can be fixed only
by restructuring the document. A logical system
forces the writer to think in terms of the document’s
logical structure; it doesn’t give him the illusion
that he is accomplishing anything with cosmetic
formatting changes.

Phosphors or Ink?

Proponents of many visual systems boast that they
let the user work with an exact replica of the
printed page. In fact, a serious drawback of many
visual systems is that they force the user to work
with an exact replica of the printed page. When
the author is editing his document, he becomes a
reader. Like any reader, he wants to be presented
with the document in a format that is easy to read.
A format that is adapted to the printed page is a
poor one for a screen. Phosphors are different from
ink, and a screen is not a piece of paper; it is not
easy to read a picture of a printed page on a screen.

A computer screen differs from a printed page
in many ways, including resolution, width, and
the availability of different colors. Each of these
differences implies differences in the way information
should be displayed. In addition to the differences
in the two media, the presence of a computer
behind the screen also has striking implications.
Consider the problem of pagination. One of the
worst features of books is the splitting of text across
pages. It would be easier to read a document
straight through, from front to back, if it were
printed as a continuous scroll. We use books rather
than scrolls because they are easier to produce and
because documents are not always read in such a
linear fashion. The computer offers the best of
both worlds. We can scroll through text, avoiding
distracting page breaks, and still move easily to
another part of the document. It is senseless to use
a computer to simulate a book, complete with page
breaks.

A typical writer of technical material spends
two to eight hours per page writing. He spends
much of that time looking at the representation of
the document on his screen. A visual system that
forces the writer to view on his screen a version
formatted for paper makes his task harder.

Who Should do the Formatting?

Logical systems attempt to remove formatting con-
cerns from the author. The author specifies only
the general form of the output — technical report,
journal article, etc.— while the system makes the
actual formatting decisions — amount of paragraph
indentation, amount of space above a displayed
equation, etc. Visual systems give free rein to the
author’s artistic tendencies, allowing him to format
everything as he wishes. This would be fine if
documents were meant to be displayed on walls and
admired for their aesthetic qualities, but they’re
not.

10

The purpose of writing is to convey ideas to
the reader. The purpose of formatting is to make
the document easier to read, not to look pretty.
Document design is a skill acquired through training
and experience. A logical system can apply the
skill of a trained designer to the formatting of a
document. A visual system forces the author to
do his own document design, often with disastrous
results. Most authors are not competent designers
and make typographic errors — formatting decisions
that make the document harder to read.

A IATEX user once complained because he

wanted to format an equation to look something
like this:

vi: fla) > g(u) (™)
Formatting the equation in this way would have
been easy with a visual system; he would just have
put everything where he wanted it. However, IATEX
provides no easy way to do this. The user just
enters the equation and IATEX formats it the way it
wants. (It also assigns the equation number.) If the
user declares the Vi to be part of the equation, the
result looks like this:

Vi: fzi) > g(ys) (8)
If he declares the Vi to come before the equation,
then IATEX makes it part of the text preceding the
displayed equation.

This particular user found the formatting of
(7) more aesthetically pleasing than that of (8), and
I agreed with him. However, (7) is a typographical
mistake. Equations are numbered so they can be
referred to in the text. When the reader encounters
a reference to (7), it is not immediately clear
from the formatting whether it refers to the entire
equation Vi : f(xz;) > g(y;) or just to the inequality
flzi) > g(yi). It is clear from the formatting that
(8) refers to the whole equation and that, if the Vi
were part of the preceding text, then the equation
number would refer only to the inequality. The
formatting of (7) introduces an ambiguity, making
the document harder to read.

The purpose of document design is to display
the logical structure of the document through its
formatting, thereby making it easier to read. A
user with no training in design is easily seduced by
a visual system into formatting the document to
be aesthetically pleasing, often making it harder to
read.

A visual system can makes things hard even
for a trained designer. An important principle
of document design is uniformity —the same log-
ical element should be formatted the same way
throughout the document. It is difficult to achieve

TUGboat, Volume 9 (1988), No. 1

uniformity if the user must specify the formatting
of each instance of the element. For example, all
displayed quotations should be indented the same
amount, but this is not likely to happen if the user
must specify the amount of indentation whenever
he types a quotation.

Must the User Ever Format?

There are two reasons why the author may have
to specify formatting in a logical system. First, no
logical system can provide a complete assortment
of predefined logical structures. For example,
a general-purpose system is unlikely to provide
facilities for formatting recipes. The writer of
a cookbook must tell the system how to format
recipes — hopefully, after consulting a professional
designer. A logical system should permit the user to
define his own logical structures and to specify how
they are to be formatted. Several different formats
might have to be specified —for example, one for a
single-column page, one for a double-column page,
and one for the computer screen. In a logical system
he does this once; in a visual system he must format
each recipe individually.

The second reason for specifying formatting is
to overcome an inherent problem with computers.
Embodying design principles into programs is dif-
ficult, and a designer will always be able to do a
better job of formatting an individual document
than will a computer program that he devises.
Achieving the highest possible quality requires the
ability to make changes to the system’s output.
This will be a matter of fine tuning, changing such
things as page breaks and figure placement. This
is a visual process, and one would like a visual
system for doing it-—one that allows the user to
manipulate screen images of the final output.

If such visual editing is ultimately desirable,
why not use a visual systemm in the first place?
The answer is that the flea should not wag the
dog. The changes will generally be of such a minor
nature that they are not worth bothering with in a
preliminary version intended for a small audience,
nor for any document that is not widely distributed.
They will be done only when producing the final
copy for the publisher.

Even using IATEX, which does not make the
final formatting very easy, I usually spend less than
two minutes per page doing the final formatting to
produce camera-ready output. This is insignificant
compared with the two to eight hours per page I
spend writing. There is much more to be gained by
making writing easier than by simplifying the final
formatting task.

TUGboat, Volume 9 (1988), No. 1

Software

Still another aspect of multiple change files:
The PATCH processor

Peter Breitenlohner

Recently there have been quite a few TUGboat
articles about extensions of the WEB system, either
extensions to other languages like C or Modula-2,
or extensions which allow multiple change files
(W. Appelt and K. Horn in TUGboat 7(1986)20,
K. Guntermann and W. Riilling in 7(1986)134,
E.W. Sewell in 8(1987)117). Surprisingly enough
(at least for me) another extension which allows
one to include or insert a WEB file together with
its change file(s) into another one has never been
discussed. I would therefore like to present a
program which does exactly this.

Before describing this program let me recall
my motivation to write it. My experience with
the WEB system dates back to the time when I had
just installed METAFONT, had proudly produced
the first GF file and was then told by GFtype
that all kinds of backpointers were wrong. This
was repaired easily enough —the two programs had
different opinions about the record length of GF
files— but it has brought the following fact to my
attention. The WEB source files for TEX, META-
FONT and their friends contain large sections of
code which occur in many files in more or less
identical form and the changes applied to them had
better be consistent. The chapters ‘The character
set’ or ‘Packed file format’ are typical examples
and the updates to GFtoPK, PKtoPX, PKtype and
PXtoPK published in TUGboat 7(1986)140 are a
characteristic symptom.

If one could make such sections of code com-
pletely (not just almost) identical one could keep
one copy of this code in a separate file and include it
whenever needed. This would clearly save a rather
large amount of disk space. Much more important
this would guarantee that the same changes are
applied whenever this section of code is used and
would greatly facilitate the task of creating a new
set of change files for a new computer, compiler or
operating system.

These considerations motivated me to write
a program which I have named PATCH because it
takes various patches and combines them into one
program file. Each patch consists of one WEB file and
n > 0 change files change.j (0 < j < n) which are
applied one after the other. Here PATCH operates
exactly like TIE as described by Guntermann and

11

Rilling: first change-1 is applied to the WEB file as
usual, then change_2 is applied to the result, and so
on. In addition there is one short ‘patch file’ which
specifies the names of the WEB and change files. An
important milestone is reached when the result of
this merging of files yields a record starting with
‘@i’, a control code which is normally undefined.
Such a record must contain the file name of a new
patch file and the resulting new patch is inserted
instead of this record. This new (secondary) patch
may, of course, again yield records starting with
‘@i’ and thus invoke further secondary patches and
S0 on.

The PATCH processor has actually three modes
of operation: In merge.mode PATCH produces a WEB
file and one change file, and can thus serve as
preprocessor for TANGLE and WEAVE. In this mode
all change files change.j are combined into one
change file and all secondary patches are inserted in
a suitable way. In insert.mode PATCH produces just
a WEB file containing all the changes and insertions.
This WEB file can also serve as input to TANGLE
or WEAVE but in this case the information about
changed modules would not be available to WEAVE.
Finally, in update_mode, all changes are applied
to the primary patch. Requests for secondary
patches are, however, not honored but copied to
the resulting WEB file. This mode of operation is
intended to incorporate modifications into a WEB file
once they have been fully tested and are frozen.

A next step was to combine PATCH with TANGLE
and WEAVE to new programs TPATCH and WPATCH
in order to avoid the necessity of a separate pre-
processing step. Using PATCH, this turned out to
be surprisingly easy due to the clear structure of
TANGLE and WEAVE. All the code for the actual
processing (modules 37-178 of TANGLE and modules
36-257 of WEAVE) required practically no changes
except that the parts which merge the WEB and
change file (modules 124-138 resp. the almost iden-
tical modules 71-85) had to be replaced by the
corresponding code from PATCH. All three proces-
sors PATCH, TPATCH and WPATCH have now been used
for several months and are thoroughly tested.

Coming back to the original motivation for
PATCH one can now try to create patches for
things like ‘Reading GF files’, ‘Reading PK files” and
‘Reading PXL files’, or maybe two versions of them
for sequential and random access to the files. At
the moment I am in fact doing just this. Such
patches should be tools which can be inserted into a
program whenever needed. They can be extremely
useful for all kinds of DVI drivers which could use
any one of them or even two of them alternatively.

12

Another application is related to the fact that
the files tex.web and mf.web are extremely large;
they are in fact too large to be even inspected
by our text editor. In order to circumvent this
problem one can split the file tex.web— D.E. Knuth
might forgive this——into smaller files containing
the limbo material (tex00.web) or the code for
one chapter of ‘TEX: The Program’ (texOl.web
through tex55.web) and split the change files for
TEX and INITEX accordingly. The primary patch
for TEX will then consist of a short WEB file
(say texskel.web, the skeleton) containing 56 ‘@i’
commands to invoke these patches. This primary
patch requires no change file as all changes are
applied to the secondary patches. The skeleton file
for INITEX will be almost identical. Only one or two
secondary patches will be different, their patch files
will have to specify an additional change file in order
to create INITEX instead of TEX, but there is no
necessity to maintain, for each kind of installation,
two almost identical change files, one for TEX and
one for INITEX. Furthermore one could create a
L-R TeX (TEX-XET) and/or a multilingual TEX by
just adding one additional change file to a few of
the secondary patches. These additional change
files could probably be installation-independent.

Turkish Hyphenations for TEX
Pierre A. MacKay

Turkish belongs to the class of agglutinative lan-
guages, which means that it expresses syntactic
relations between words through discrete suffixes,
each of which conveys a single idea such as plurality
or case in nouns, and plurality, person, tense, voice
or any of the other possibilities in verbs. Since each
suffix is a distinct syllable {(occasionally more than
one syllable), Turkish sentences are likely to contain
a high proportion of long multi-syllable words, and
to need an efficient system of hyphenation for type-
setting. Owing to the long association of almost
every Turkic-language region with Islam, certain
conventions of the language have been deeply in-
fluenced by Arabic orthographic habits, and among
these is the syllabification scheme on which a system
of hyphenation is built.

According to the syllabification pattern of Ara-
bic, a syllable is assumed always to consist of an
initial consonant (even when that consonant is no
longer written) and to terminate in a vowel -cv- or

TUGhboat, Volume 9 (1988), No. 1

in the next unvowelled consonant -cvc-. This pat-
tern is followed so absolutely that it is permitted to
break up native Turkish suffixes. The plural suffix
-ler- will be hyphenated as -le-rine in an environ-
ment where the -cv-cv-cv pattern predominates.
A syllabic division of g¢ektirilebilecek provides six
places for hyphenation ¢ek-ti-ri-le-bi-le-cek, while a
morphological division of the word would produce
only five ¢ek-tir-il-e-bil-ecek.”

There are almost no exceptions to this pattern.
Words which appear to begin with a vowel, like
et-mek, can also be described as beginning with
the now suppressed half-consonant hamza. Widely
sanctioned orthographic irregularities like brak-mak
can be found in stricter orthography as bi-rak-mak.
The only universally practiced violation of the rule
is associated with the word Tiirk, in which the
-rk- combination is inseparable, and contributes
to several of the very few three-consonant clusters
regularly used in the language—Tiirkce, Turkler.
One other significant consonant cluster occurs in
the suflix [i/m-trak.

The Ottoman Texts Project at the University of
Washington has undertaken the development of a set
of editing and typesetting tools for the production of
texts in modern Latin-letter Turkish, using the full
range of diacriticals needed for scholarly editions
of historic Arabic-script manuscripts. Because we
wish to work in cooperation with scholars in Turkey,
who are most likely to have access to unmodified
versions of TEX, we have chosen a font-based
adaptation of the TgX environment, which will
require no alterations in the program. The work
on fonts is largely complete, and one of the last
major efforts necessary is the creation of a Turkish
hyphenation table.

The obvious way to create such a table in
the TEX environment, is to run a list of correctly
hyphenated words through Patgen, but it is not
always easy to find such a list. English and German
dictionaries quite commonly provide hyphenation
patterns, but the dictionaries of the Romance lan-
guages rarely do, and in Turkish, the hyphenation
pattern is so obvious that the production of such
a list is viewed as an unimaginable waste of time.
Rather than try to scan a Turkish word-list and
supply hyphens, we have taken advantage of the
strict formalism of the patterns and generated the
Turkish hyphenation file by program.

* The word is a future participle, and describes
something as being capable of being extracted at
some time in the future —like a tooth.

TUGDboat, Volume 9 (1988), No. 1

Turkish orthography uses a very large number
of accented characters. The Latin-letter character
set which has been in use since the orthographic
reform of 1928 is extended, even in Modern Turkish,
by means of a considerable number of diacriticals
and accents. A diligent search through the modern
dictionary will produce several five- and six-letter
words in which every character is accented, and an
intensive search might come up with words as much
as nine letters long with every character accented.
In critical editions of Ottoman texts, the number of
accents more than doubles. Modern Turkish knows
only the accented and unaccented pair of letters
‘s’ and ‘g’, but Ottoman Turkish has ‘s’, ‘g’, ‘s’
and ‘s’, which represent four completely distinct
characters in the Arabic alphabet. The letter ‘h’
shows almost as much variety, and so do several
others. Our Ottoman Turkish font has twenty-
seven accent and letter composites, in addition to
the basic twenty-six simple Latin letters. Moreover,
all composites can exist in upper case forms as well
as in lower case. To accommodate these composite
characters in the normal ASCII character set, we
use an input coding convention in which accented
letters are treated as a class of ligatures, and three
characters from the ASCII symbol set are borrowed
for use as postpositive pseudo-letters, to trigger the
selection of accented letters in the Turkish fonts.
The three symbols are the exclamation point ‘!’,
the equals sign ‘=’, and the colon *:’.

The choice of these symbols is based on a
proposal made more than ten years ago at the
Orientalist Congress held in Paris, in 1974. Owing
to the extraordinary richness of the Ottoman Turk-
ish character set, it has been necessary to extend
the old proposal, but it still retains the original
principles, which are closely associated with the
coding scheme used by the Onomasticon Arabicum
project, which is coordinated at the Centre National
de la Recherche Scientifique in Paris. (The Ono-
masticon Arabicum uses a post-positive dot and a
post-positive hyphen to indicate diacriticals, which
is acceptable in a data-base of names, but not in
continuous prose text.) The current set of conven-
tions, using (! = :), produces an input file which
can, if necessary, be edited on a ordinary terminal
lacking any special Turkish character features, and
which a Turkish speaker can become accustomed
to without too much difficulty. When coupled
with a well-designed macro file and a rewritten
hyphenation table, it provides the possibility of nat-
uralizing a TEX environment into Turkish without
any large investment in special purpose hardware
and rewritten versions of non-standard (non-)TEX.

13

The exclamation point is used for all the
“emphatic” letters of the Arabic alphabet (the
alphabet in which Turkish was written until 1928).
These are the letters Dad (usually pronounced as
‘2z’ in Turkish, and hence paired with a non-Arabic
letter known as Zad), Sad, Ha’, Ta’ and Za’. The
equals sign is used for all the consonants which are
represented in Latin-letter transcriptions by a letter
with a bar under, such as ‘d’ (dhal), more commonly
written in Turkish as ‘z’, and also for vowels with a
macron or, following the Turkish convention, a ‘hat’
accent, and similar forms, chosen like the cupped
‘g’, because the equals sign is visually closer than
the colon is. (Moreover, the colon is needed for a
different variety of the letter ‘g’.) The colon is a
catch-all for everything else, but works out rather
well visually, as it happens. The three post-positives
are not accents, but regular characters, which use

_ the TEX convention of ligatures to invoke accented

characters from the font, just as the second ‘f’ in
the normal TEX ‘ff’ ligature pair does. If a standard
Latin-letter character does not have an associated
ligature table in the font, a following diacritical
postpositive will be unaffected. Thus, the letter
‘0’, when followed by a colon will produce ‘6’, but
the letter ‘e’ when followed by a colon will produce
‘er’. The equals sign retains its normal function
in math mode because the math font TFM files do
not call it into ligature pairings, and the colon and
exclamation point can be invoked by the command
sequences \: and \bang when the simple character
will not work.

Since the hyphenation evaluation loop in TEX
dismantles all ligatures before it looks for acceptable
hyphenation positions, it will have to accept the
post-positive symbols (! = :) as part of the
alphabet, so each of these symbols receives its
own value as an \lccode. The full Turkish-TEX
alphabet is:

adelriloodut

‘“"becdfghjklmnprstvyz

Cgs872

In the hyphenation loop of TEX, these charac-
ters resolve into the set:

!'=:Q#abcdefghi

jklmnoprstuvyz

and it is this latter set only which will appear in
the hyphenation patterns. The dotted i1 in the
above list really stands for the Turkish undotted

14

be?

1. The input code convention for Turkish uses
i: for the Turkish ‘i’. The @ sign stands for
the Arabic letter hamza and the # stands for ayn.
To avoid conflict with plain.tex uses of these
two characters, they appear explicitly only in the
hyphenation pattern file. Turkish text input uses
\¢ to generate \char’43 (‘ayn) and \’ to generate
\char’100 (hamza).

We begin constructing the table by considering
the pseudo-letters (! = :). Since these are used
exclusively in ligature pairs, no hyphenation is
ever permissible between them and the preceding
letter. Odd values permit, and even values in
the hyphenation code prohibit hyphenation, so we
give the highest possible even value (8) to the
region preceding each pseudo-letter. The pseudo-
letters can follow both vowels and consonants, so
hyphenation will often, but not always, be possible
after them. We give that region the lowest possible
odd value (1) to show that hyphens are permitted
here.

g8t1 8=1 8:1

In strict orthography, a vowel cannot be sep-
arated from the preceding consonant, and the few
apparent instances of hyphenation between two ad-
jacent vowels (suppressed consonant) can be treated
later. In all normal instances a vowel cannot accept
a hyphen in the preceding region and will probably
accept one in the following region, so the vowels are
set thus.

2al 2e1l 2i1 201 2ul

A consonant may begin a -cv- sequence or end
a -cvc- sequence, so we give it a 1 on either side:

ib1 ... 1zl

This simple lot of patterns will provide for all
normal —cv- instances such as

ihi
8=1
2al
1h8=2al

which will result in the sequence -h=a-, with
hyphens fore and aft.

The next group of patterns controls hyphen-
ation at the end of words. TgEX will usually not
break off two-letter fragments in its hyphenation
loop, but owing to the nature of the input coding
we have chosen, it may see a three- or four-letter
sequence where a two-letter result is intended. We
do not want to find i, ¢@ and si isolated at the
beginning of a line, nor do we really want the cek
of -ecek broken off if it is at the end of a word.
To prevent hyphenations of this sort, the program
generates all possible patterns of the type:

TUGhboat, Volume 9 (1988), No. 1

2ba=.

using the conventional . for end-of-word. The re-
sultant list includes sequences that are phonetically
impossible in Turkish but these take up so little
additional space in the file that they can be left
there. The pattern 2e2cek.is added as a special
case.

The break after —cvc- syllables is almost taken
care of:

. 2z:u:.

1hl
8=1
1h1
1h8=1h1

but it makes the thoroughly undesirable -cv-ccv-
sequence as acceptable as the correct -cve-cv-
sequence. To prevent this error, all possible Turkish
two-consonant sequences (e.g. h=h= — ‘hh’) are
covered by patterns such as 2h=h=, in which the
value 2 will override the 1 after the preceding vowel.

The few undesirable hyphenations at the begin-
ning of words which appear to start with a vowel are
prevented by generating the patterns .a=2 through
.u:2 and similarly, the few instances where an ap-
parent -cv-v- hyphenation stands for -cv-[clv-
can be allowed by adding the full range of patterns
a3a2 through u:3u:2 which includes a large number
of impossible pairings.

The last patterns to be added are mitéradk
and t2u8:2r4k1. At the price of slightly excessive
strictness (the prohibition against the r-k division
is only valid when the word begins with an upper-
case T) we can ensure that Tdrk always stays in one
piece.

Files of this sort, when generated by program,
tend to be larger than hand-worked files, but if it
seems that all the redundancies mentioned above
might be seriously wasteful of space, consider the
following statistics:

Entries Trie size Ops
English 4460 5492 181
Turkish 1840 616 16

The format file that makes use of this set of
patterns will no longer serve very well for English
language TEX. The font-based solution to foreign-
language typesetting is definitely monolingual, since
only one hyphen.tex file can be read in at a time,
A multilingual system, good for both English and
Turkish, would require modifications of the program
code. This simple solution, however, will be quite
satisfactory in a purely Turkish environment, and
can be made even more successful by taking the
tex.pool file and translating it all into Turkish.

TUGboat, Volume 9 (1988 No. 1

15

—

N

FONT FORUM

—

|

Georgia K.M. Tobin]

Special effects such as reverse video, pattern fills and
pseudo shadowing can be fairly easily achieved in a
METAFONT font by making use of picture variable
manipulation. Since the way I did this incorporated
the special effect at generation time and thus used
the same code which generates my standard fonts,
these specialty fonts retain much of the flexibility
inherent in any meta-font, i.e. they can be generated
for different point sizes and resolutions.

My basic plan of attack was to define a subroutine
called pattern which in turn redefined the subrou-
tine endchar. (Nota Bene: It would not do, under
any circumstances, to simply overwrite the definition
of endchar in plain.mf. METAFONT is quite content
to redefine any subroutine whose name appears sub-
sequent to its inifial occurrence.) In this way, I can
simply input the appropriate pattern code and invoke
pattern at run time; each letter which is subsequently
cranked through by METAFONT will be done in the
special effect specified.

The simplest effect is reverse video. A step-by-step
consideration of the creation of such a font should
make the preceding generalities much clearer. I cre-
ated a file called pattern.reversevideo.mf which con-
tains the following definition of pattern:

def pattern=

def endchar=

cullit;

picture NormalChar;
NormalChar=currentpicture;

clearit;

£ill (0,-desc-2vo)--{w+ho,-desc-2vo)--
(w+ho, cap+2vo)~--(0, cap+2vo)--cycle;

picture BlackBox;
BlackBox:=currentpicture;

picture ReverseVideo;
ReverseVideo=BlackBox-NormalChar;

currentpicture:=ReverseVideo;

% The rest is from standard endchar

scantokens extra.endchar;

This document originally printed at 300 dpi with Metafoundry fonts.

chardx:=w;
shipit;

if displaying>0:
endgroup;
enddef;

enddef;

showit; fi

After loading all the normal font-and style-specific
stuff, but before inputting any character descriptions,
I input this file and then call pattern; the effect of
this is to ensure that the endchar routine defined
therein is run at the conclusion of each character.

So, prior to executing this endchar, METAFONT
has just drawn a character in the usual manner. We
recall that, depending upon the way in which the
drawing was done, a blackened pixel may have any
value greater than or equal to 1, and a white pixel any
value less than or equal to zero. Since this can cause
complications later as we add and subtract pictures,
the first thing to do is a bit of housekeeping: all
black bits are set equal to 1, and all white bits are
set equal to zero. In other words, we capture the
image of the character we have drawn in a picture
variable NormaiChar which is composed solely of 0’s
and l’s. Then, currentpicture is zeroed out, in
preparation for a new drawing. We fill the whole
letter grid completely — that is, set all bits to 1 —and
set a picture variable BlackBox equal to the thus
blackened grid. We then create yet another picture
variable ReverseVideo and set it equal to BlackBox
less NormalChar; i.e., the grid of all ones minus the
grid with ones only at pixels that are part of the
character. The result is:

AB

An obvious and easy variation on this theme is a

16

greyed reverse video font. One way of achieving this
is with a striped overlay:

‘We can produce this by creating a file which is called
pattern reversegreyed which replaces the line cur-

rentpicture:=ReverseVideo; inthe preceding code
with these lines:

clearit;
© pickup MinPen;
for f=-desc-2vo step HugeStep
until cap+2vo:
draw (0,f)—-(w,f);
endfor;
picture Stripelverlay;

StripeOverlay=currentpicture;
currentpicture:=

StripelUverlay+ReverseVideo;

which simply defines and draws a picture StripeOver-
lay which is added to the picture variable for the
reverse video character as drawn in the same way as

above. If we produce a new pattern file wherein we
change that last line of code above to:

currentpicture:=
StripeOverlay-ReverseVideo;

we get:

||||I||||I|

T

|

[T
Ilhlllu

I

Extending the basic idea here just a bit, it seems
that we can put a character filled with one pattern
on a background filled with another. The follow-
ing is the salient portion of the code which defines
pattern_stripendot, a character filled with dots on a
striped background. {We may assume that pictures
NormalChar and ReverseVideo have been defined as
in the preceding examples.)

% pattern one:

pickup MinPen;

for f=-desc-vo step MedStep
until captvo:

the background pattern

draw (0,f)--(w+ho,f);
endfor;
currentpicture:=

This document originally printed at 300 dpi with Metafoundry fonts.

TUG ioat, Volume 9 (1988), No. 1

currentpictura-~NormalChar;
cullit;

picture StripedGround;
StripedGround:=currentpicture;
clearit;
% pattern two: the character fill
pickup PinPointPen;
for g=0 step BigStep until w:
for f=-desc-vo step BigStep
until cap+vo:

draw (g,f);
endfor;
endfor;
cullit;
currentpicture:=
currentpicture-ReverseVideo;
cullit;

picture DottedChar;

DottedChar:=currentpicture;
clearit;

currentpicture:=

DottedChar+StripedGround;
and yields:

Clearly, by modifying what goes in the slots for pat-
tern one and pattern two, we can produce

or

or

or even

TUGboat, Volume 9 (1988), No. 1

When [was outlining thisarticle, I had intended to
say something along the lines of ‘you are limited only
by your cleverness in coding patterns’ at this junc-
ture; but as I produced the patterned fonts to use, |
discovered that you are also limited by METAFONT’s
capacity. In particular, the vertically oriented pat-
terns fly in the face of the underlying idea of GF
files, and the GF files get very big very fast.

* ¥ ¥ ¥ ¥ ¥ *x ¥ x

In addition to doing arithmetic with picture vari-
ables to produce pattern filled characters, we can also
manipulate pictures with rotations and shifts. We
can produce a mirror image font

with a shifted reflection of NormalChar:

picture MirrorImage;
MirrorImage:=NormalChar
reflectedabout ({(0,0),(0,h))
shifted (w,0);

A reverse video mirror image is accomplished by pro-
ducing ReverseVideo in the same way as shown in the
first example, and then doing a reflectedabout fol-
lowed by shifted as before:

And, not to belabor the point, the same approach
can produce any random pattern reflectedabout
any line (that does not result in a transformation
that METAFONT deems “too hard”) and shifted any
amount.

* & %k ¥ k k ¥ % %

Finally, I combined the two approaches — arith-

This document originally printed at 300 dpi with Metafoundry fonts.

17

metic on picture variables and manipulation of them
via shifts — to get a ‘pseudo-shadow’ effect. First, I
shifted the character image to the right and down
and subtracted the non-shifted character image from
that shadow (giving the picture ShadowOnly). Then
I laid a pattern-filled character on top. More pre-
cisely, I said:

f:=~-desc~2vo;

pickup MinPen;

for f=-desc-2vo step HugeStep
until cap+2vo:

draw (O+ho,f)—-(w,%);
endfor;
currentpicture:=
currentpicture-ReverseVideo;
cullit;

picture StripedChar;
StripedChar:=currentpicture;
clearit;
currentpicture:=Hormallhar
shifted (.5ucHairP,-.5ucHairP);
picture Shadow;
Shadow:=currentpicture;
clearit;
currentpicture:=Shadow-NormalChar;
cullit;
picture ShadowOnly;
ShadowOnly:=currentpicture;
clearit;

currentpicture:=
ShadowOnly+StripedChar;

to get:

|
|

It should go without saying that any pattern may be
used for the shifted shadow image, and any pattern
may be used for the non-shifted image; likewise, the

shifting may be in any direction, although the amount
will doubtless be small in any case.

You'll want to use discretion in combining patterns
and shifts: such combinations quickly lead to effects
that are not so much ‘special’ as rather woozy, as

18 TUGboat, Volume 9 (1988), No. 1

in this dotted character with a horizontally striped changes. A completely different face — my decorative
shadow Uncial face

or as in this font I call HangOQver: or a sans serif I'm working on
" nn|'||||‘\

0 ey
”‘;' i”""‘j‘“n " M}‘W l ”dq 1 il

|||(|. mlh L T

As a reaction to such excesses, I like the rather
ethereal look of a shifted black shadow with no pat-
tern in the character:

AB0

or my experimental Hebrew

— will need only minimal changes, viz. the names of

ok ox ok ok ok kA pens and character parts; the same is true of CMR
fonts.
The code for each pattern given here can be applied I hope that these samples will serve as a spring-

to any font: I can do italic or bold Schoolbook as well ~ board for my readers to generate special effect fonts
as the text Schoolbook shown in the samples withno of their own.

’\ ”f'

This document originally printed at 300 dpi with Metafoundry fonts.

TUGboat, Volume 9 (1988), No. 1

Blackboard Bold

Robert Messer
Albion College

Mathematicians require distinctive notation to de-
note the natural numbers, the integers, the rational,
real, and complex number systems. The standard
convention calls for bold face characters to denote
the underlying sets. The blackboard technique of
indicating bold face by doubling one of the strokes
of the character has in turn influenced the printed
form of these symbols, Upper case letters in the
blackboard bold style are available in ApMS-TEX
(see page 126 of TUGboat, Vol. 6, No. 3), but they
are not among the Computer Modern fonts.

Donald Knuth produced the entry R in the
index of The TEXbook with $\rm I\!R$, where \!
is the plain.tex macro for a negative thinspace
(an mskip of —3mu, equivalent to approximately
—.17em). This trick yields reasonable blackboard
bold characters for letters with a vertical stroke on
the left side. For other letters, judiciously chosen
vertical rules work nearly as well.

Dimensions for kerning and vertical rules have
been empirically determined for the set of black-
board bold uppercase letters illustrated and defined
below. These are based on the Computer Modern
Roman 10 point font (cmr10) at \magstephalf.
Adjustments are necessary for other fonts and at
large magnifications.

These constructions are not a perfect substitute
for a blackboard bold font. At a resolution of
300 dots per inch, discretization errors result in
noticeable differences in the relative positions of
the various parts of the characters. Fortunately,
occurrences of these symbols are seldom near enough
together to invite close comparison.

AAA BBB cce DDD EEE
FFF GGG HHH I 317

KKK LLL MMM NNN 000
FPPP QQQ RRR 3588 TTT
Uyyiu Vvvv. wWww XXX YYY

177

19

% Poor person’s blackboard bold
% January 6, 1988

% Robert Messer

% Department of Mathematics
% Albion College

% Albion, MI 49224

% Bitnet: RAMQALBION

\def\A{{\rm\kern.22em
\vrul: width.O02em
height0.5ex depth Oex
\kern-.24em A}}
\def\B{{\rm I\kern-~.25em B}}
\def\C{{\rm\kern.24em
\vrule width.02em
height1.4ex depth-.0bex
\kern-.26em C}}
\def\D{{\rm I\kern-.25em D}}
\def\E{{\rm I\kern-.25em E}}
\def\F{{\rm I\kern-.25em F}}
\def\G{{\rm\kern.24em
\vrule width.02em
heightl.4ex depth-.05ex
\kern-.26em G}}
\def\H{{\rm I\kern-.25em H}}
\def\I{{\rm I\kern-.25em I}}
\def\J{{\rm\kern. 19em
\vrule width.02em
heightl.47ex depth Oex
\kern-.21lem J}}
\def\K{{\rm I\kern-.25em K}}
\def\L{{\rm I\kern-.25em L}}
\def\M{{\rm I\kern-.23em M}}
\def\N{{\rm I\kern-.23em N}}
\def\0{{\rm\kern.24em
\vrule width.02em
heighti.4ex depth-.05ex
\kern-.26em 0}}
\def\P{{\rm I\kern-.25em P}}
\def\Q{{\rm\kern.24em
\vrule width.02em
heightl.4ex depth-.0bex
\kern-.26em Q}}
\def\R{{\rm I\kern-.25em R}}
\def\S{{\rm\kern. 18em
\vrule width.02em
heightl.47ex depth-.9ex
\kern.i2em
\vrule width.02emn
height0.7ex depth Oex
\kern-.34em S}}

\def\T{{\rm\kern.45en
\vrule width.Q2em
heightl.47ex depth Oex
\kern-.47em T}}
\def\U{{\rm\kern. 30em
\vrule width.02em
heightl.47ex depth-.0bex
\kern-.32en U}}
Ndef\V{{\rm\kern.27en
\vrule width.02em
heightl.47ex depth-.8ex
\kern-.2%em V}}
\def\¥{{\rm\kern.25em
\vrule width.O2em
heightl.47ex depth-.%ex
\kern.34em
\vrule width.02em
heightl.47ex depth-.Sex
\kern-.63em W}}
\def\X{{\rm\kern.30en
\vrule width.02enm
heighti.47ex depth-lex
\kern.iZem
\vrule width.0Zem
heightQ.4ex depth Oex
\kern~-.46em X}}
\def\V{{\rm\kern.25en
\vrule width.O02em
heightl.0ex depth Oex
\kern-.27em Y}}
\def\Z{{\rm\kern.Z8em
\vrule width.02em
height0.5ex depth Oex
\kern.04em
\vrule width.02enm
heightl.47ex depth-liex
\kern-.34em Z}}

% Some dimensioms will require

Y% adjustments at large magnificatioms.

% Test print
\nopagenumbers
\tabskip=0pt plusifil
\halign to18.75pc{&\setbox0=\hbox{#}%
\kfil\copyO\copyO\boxO\hfil\cr\cr
\A&\B&\CE\D&\E\cr\cr
\FE\GE\HE\I&\J\ex\er
\K@\LE\ME\NE\D\cr\cr
\PE\GE\RE\SE\T\cr\cr
\UEA\VENHE\XE\Y\cr\cr
& &\Z\cr\cr}

TUGboat, Volume 9 {1988), No. 1

Using Greek Fonts with TpX

Silvio Levy
Princeton University

In this document I hope to show that typesetting
Greek in TEX using the gr family of fonts can be as
easy as typesetting English text, and leads to equally
good results. This is meant to be a tutorial, not an
exhaustive discussion; some TEXnical remarks that
should be useful after the reader has acquired some
familiarity with the fonts are printed in fine print.

The Alphabet

In order to typeset Greek text, you need to go
into “Greek mode.” This is achieved by typing
\begingreek anywhere in your document; Greek
mode will remain in effect until you type a matching
\endgreek. While in Greek mode, the letters ‘a’
to ‘z’ and ‘A’ to ‘Z’ come out as Greek letters,
according to the following code:

aBydelnBuixiuvionootugydow
abgdezhjiklmnxoprstufqyw

There is no digamma yet. The same character
‘g’ will print as ‘o’ or ‘¢’, depending on its position
in a word.

The system does this by accessing a ligature of ‘s’ with
any other letter that follows it. If, for some reason, you want
to print an initial/medial sigma by itself (as in the table
above), or at the end of a word, you should type ‘c’.

Try to typeset some simple text-now. Create a
file containing the following lines:

\input greekmacros % where \begingreek and
% % other commands are defined
This is English text.

\begingreek

This is Greek text.

\endgreek

When you TEX this file, you get the following
gibberish:

This is English text. T wc Fogex tedt.

If you say \greekdelims near the top of your
file, the character $ can be used in place of both
\begingreek and \endgreek. The control sequence
\math takes on the former meaning of §.

Editor’s note: Thanks to Doug Henderson for
METAFONTing the typesetter fonts from Silvio
Levy's .MF source files. Doug was also respon-
sible for the typesetter renditions of the APL fonts
in TUGboat 84#3.

TUGboat, Volume 9 (1988), No. 1

Accents and Breathings

To get an acute, grave or circumflex accent over a
vowel, type *, ¢ or 7, respectively, before the vowel.
To get a rough or smooth breathing, type < or >
before the vowel (or rho) and any accent that it
may have. To get an iota subscript, type | after
the vowel. A diaeresis is represented by ", and if
accompanied by an accent it can come before or
after the accent.

For example, >en >argq”h! >"hn <o 1l’oges
gives év doyfj v & Aéyog. Neat, ain’t it?

Accents and breathings, too, are typeset by means
of ligatures: a vowel with a breathing, an accent and iota
subscript, for example, is realized as & four-character ligature.
The only exception is when a breathing is followed by a grave
accent, in which case the breathing + accent combination is
typeset as a TEX \accent over the vowel. This means that
words containing such combinations cannot be hyphenated
in (standard) TEX; but this is not a problem because, with
the exception of very rare cases of crasis, all such words are
monosyllables.

Punctuation

Here’s the table of correspondences for punctuation:

, ’ : ! N Pow o»
t 7

Lot 7 ()

The last three entries represent the apostrophe and
quotations marks. The other available non-letters
are the ten digits, parentheses, brackets, hyphen,
em- and en-dashes, slash, percent sign, asterisk,
plus and equal signs. All of these are accessible
in the same way as under plain TEX. In 2 future
release there will be tick marks for numbers (o' = 1,
0 = 1000).

Hyphenation

A hyphenation table for both modern and ancient
Greek is currently being debugged. For now one can
use plain TEX with its (English) hyphenation table,
which gives the right results about 90% of the time
(amazing, isn’t it7). Be sure to proofread your text
carefully, unless you've turned hyphenation off.

In standard TEX, only one hyphenation dictionary can
be used in a job. Thus, even with 2 Greek hyphenation table,
a file that combines Greek and English text is likely to be
incorrectly hyphenated. Michael Ferguson’s extension to TEX
handles multiple hyphenation tables, and hyphenates words
containing \accents {cf. the previous fine print paragraph).

21

Interaction with other macros

While in Greek mode you can do just about every-
thing that you can outside: go intoc math mode,
create boxes, alignments, and sc on. The file
greekmacros.tex sets things up so that in Greek
mode the control sequences \tt and \bf switch to
a typewriter and a bold Greek font, respectively:
thus {\tt s’’>agap”w} gives o’&yond. (Try it.)
On the other hand, there are no “italic” or slanted
Greek fonts, so \it and \sl will give you the same
fonts as outside Greek mode. The various construc-
tions under A4A45-TEX and IATEX for increasing or
decreasing point sizes don't work yet; they willin a
future release.

The characters that form diacritics (¢, >, ?,
‘7, " and |) are treated differently depending
on whether or not you’re in Greek mode. More
exactly, under plain TEX these characters (with the
exception of “) have a \catcode of 12: they print
as themselves, and they cannot appear in control
words. But in Greek mode *, ¢, ~, " and | are
“letters”, that is, they have a \catcode of 11, while
< and > are active, with a \catcode of 13. This
may be important even for beginners because it
means that °, for example, can be taken as part of
a control word. Thus the sequence
\begingreek
\line{wm’ega\hfil’alfa}

\endgreek

will cause an error message about an undefined
control sequence \hfil’alfa, instead of printing

wpéyo Ghpa

as you might expect. (I hope classicists will forgive
this use of the modern Greek one-accent system.)
The solution, of course, is to remember to add a
blank after the \bfil.

A more subtle problem arises when you use Greek
text in macro arguments, if the arguments are scanned
while you’re outside Greek mode. This is because TEX
assigns \catcodes to tokens as it first reads them, so when
the argument is plugged into the body of the macro the
characters above have the wrong \catcode, If the legendary
Jonathan Horatio Quick were to write

\def\hellenize#i{\begingreek #i\endgreek}

\hellenize{d’wo >k tre~is,}
he would be unpleasantly surprised by the following output:
3%o " tee g,
which can be explained as follows: the ~, which should be
a letter, is seen as an active characfer, and expands fo a
blank as in plain TEX; while the breathing, which should be
active, is not, and in particular it doesn’t do the right thing
when next to the grave accent. Solutions to this problem
require a bit of wizardry, and will not be discussed here; see,
for example, Reinhard Wonneberger’s article in the October,
1086 issue of TUGHoat, especially pages 179-180.

22

TUGDboat, Volume 9 (1988), No.

Test of grreglO on March 1, 1988 at 1352

T otyut todtn vidlw téoo Bapld vau To yuothplo Tig
Eouordynone. "¢ tdhpa, xavelg d¢v Eépel nidg népaoa T
dud ypbvia pov atd “Aytov "Opog. Ol pikot pou Bappolyv
o Thya vi 86 Bulavtiva xoviouata f) 4nod puotixonddeia
v& Chow wd nepaouévy éroyl. Kol tdea, vé, vipéroual va
WAHoW.

Iég v& t6 re; Ouuobuat Eva dvoldldtixo Sethvs, tol
xatéPaiva tov Tadyero, pid Sapviny B0eria Ui xOxAwoe
xovtd otolg [evtaviolg. Téoo poPepds dvepoaipouvag,
nob Eneoca xatayfic Yid v uRv yxpeutoted. Ol dotpands

u' EEwoav 6holle xi Exhetoa T& udTia phy TUPRO®,

xal xatdyoua, tiotoua, teplpeve. “Oho to mavidynio
Bouvo Etpeue, xai dud Elata dinAa Hou TouxicTnxay 4’
o wéomn xal Bpdviniav yduou. "Eviwba to GedgL tod
xepauvol otov dépa, xal Eapvixd Eéonaoe 1) undpa, Ene-
oev 6 dvepog, xal xovipég, Beputs atdheg Bpoyh ytimn-
oav t& devipd xal 1o ydua. To Buydet, # Hpoduna, to
(PAGKOUNIO, TO QALoXOUVL, YTUTNUéVa dr’ T0 vepd, Tivalay
Tic pupwdiéc Toug xt AN § yiic wipLoe.

(From Kazantzakis' “Symposium”)

TANN dxoloovtal, gdvrep €0 doxfig Aéyetv. t6de 8¢ cou
gvevénoa dua Aéyovrog, xal Tpdg EUaUTOV aXOn®” €l BTt
udiiotd ye EvBlgpwy 31d3dZetey, bg ol beol dnavreg Tov
tolobtov Bdvatov fiyolvtar &duxov elvay, Tl udhhov éyd
uepdfnea nap’ EvGigeovos, Tl mot’ éotiv 10 G016y te xal
0 dvboiov; Beourots wiv yag to0to 10 Epyoy, bg Eouxey,
eln &v' dAAG Y&p 0 ToUtw épdvn ot bpiouéva TO 6-

otov xal pf 10 yap Beouots Ov xol Beo@urig €pdvn. bate
toUtou uév deinul oe, & EoBGgpov: el Bolhet, médvieg adtd:
fiyeioBov Beol &duxov xal ndvreg woolvtwy. AN dpa
to0to VOV énavopfiueda év T AMoyw, G & utv &v mdvteg
ol Beol plotouy, dvéoidy éotiy, & 8 dv puAdoLy, doov: &
3’ &v ol udv gLABoLY, ol 8¢ ulowaly, oldétepa f) augpdtepy;
&p’ obtw Podhet Huly dplobour viv nepl o0 dotou xal 100
dvooiou; (From Plato's “Euthyphro”)

TUGboat, Volume 9 (1988}, No. 1 23

Test of grregl0 on February 6, 1988 at 1647

TH owypn todm vdbw ndoo Bapd ‘v 10 puotiplo TG
Zowohbynomg. (g tdpa, xavelg dEv Zépst nidg népaca T
Suo ypoévia wou 610 “Aytov "Opog. Ol pilot wou Bappodv
g miya v& 38 Bulaviivi xoviouata § &nd puotixondbeta
va {Row utd repaouévy énoyd. Kot tdhpa, vé, vipénopat va
wifow.

1&g va 10 nd; Oupoluan Evae dvotiidtixo JetAvd, mod
xatéBatva tov Tabyeto, wid apvixn BdeAla ui xixdwoe
xovta gtodg leviaviods. Tdoo gofepdg dveposipovvag,
nob Enson xATAYRS YL& V& UMY Yxpewtotd. Ol dotparnic

w Ewoay Sholbe xu Exhetoo Td pdTia wAy TUQAWOE,

ol xatdyapa, tictoua, nepineve. “Oho 1o navidgrnho
Bouvo Etpeue, wal Sud Ehata dinha wov toaxiomyxay &’
) wéom xal Bedvinay yawov. "Eviwda td feidgt tol
%xepauvol TV dfpa, xul Sapvixd Zéonace W wndpa, Ene-
oev 6 dvepog, xal Yovipég, fepuéqg otdheg Ppoymn yTony-
oav T& devipd xal T y&pa. To Bunder, % Bpoduna, To
paoxbéunio, 1O gAtoxodvL, yTunnuwéva &’ T vepd, tivalay
Tig pupwdiéc Toug xt 8An B v wietoe.

(From Kazantzakis’ “Symposium”)

TARN dxodoovtar, édvrep eb doxfig Myewy. 168 8¢ cou
évevimoa dpa Aéyovrog, xal mpdg uautév oxond: el STt
wéhtatd e E0BOppwy Siddietey, &g ol Heol &ravteg tov
tototov Bévatov Hyobvratr &dixov elvar, i udilov éyd
uepdbnxa nap’ E¥6igpovog, 1l not’ é6tiv 10 So1bv e xal
T0 dvdatov; Beoptotg uiv yip tolto 1o Epyov, wg Eowxey,
€ln &v' dAAL yap 00 Todtw Epdvrn &pTt Optouéve 1O 8-
olov xal wh' 10 yap Osoptstg 6y xat Beopihig £pdvn. wote
Toutou wev apinul o, @ E0B%gpov: el Boldhet, ndvieg adto
fAyeloBwv Beol &dixov xal ndvieg pLooliviwy. &ARN dpa
toUto viv énavopfdueda év 18 Aéyw, ©g 6 wiv &v ndvreg
ol Beotl wodoty, avéoidv éotiy, 6 8 &v @LAdoly, ooy §
8’ av ol uév ghdoy, ol 8% pwswoty, 0ddétepa) appdrepy;
&p’ otitw BovAet Huiv bplobar viv nepl Tod doiov xat 100
&.\JOO’!I.OU; (From Plato's “Euthyphro”)

These text samples were set on a Xerox 4500; thanks to Tom Reid for
the METAFONT processing.

TUGboat, Volume 9 (1988), No. 1

24

Page 2

Test of grregl0 on March 1, 1988 at 1352

s1812] [|| =lolel [=|o|o| | BB B |55 5| 87|73 B BB 8]=]"
>3 > ol ezl |» |o| > N A AR S e P e S A e h B R EC N =N LN N £ o
WWW’%_S__EMT]E i 0| = ||| || | B |03 13- [[0 [[[0 |0 | e
emdm‘L ~= e [l le]|r o<]| e || B 18| B[S 132 [o |0 [0 |2 |a
o ¥[8] |+ | < |m || x| v - [B|8|B|E|E|| B 3|3 BB BB 8]~ |
TR & * () [m|o|amN]|alo | o s (8w ||| 3|8 18 |~ o= |~ [w [w [« 3
mmmAw.!)19AIXWatxw.ca&&ﬁ&”ﬁ:wum&ii[éﬁtn
LIETEY | [~leo|olr [mEEm]| |[s|r|w|ss|s |33 13|~ =]~ |w|w|=]s

TUGboat, Volume 9 (1988), No. 1

Output Devices

TEX Output Devices
Don Hosek

The device tables on the following pages list all
the TEX device drivers currently known to TUG.
Some of the drivers indicated in the tables are con-
sidered proprietary. Most are not on the standard
distribution tapes; those drivers which are on the
distribution tapes are indicated in the listing of
sources below. To obtain information regarding
an interface, if it is supposed to be included in
a standard distribution, first try the appropriate
site coordinator or distributor; otherwise request
information directly from the sites listed.

The codes used in the charts are interpreted
below, with a person’s name given for a site when
that information could be obtained and verified.
If a contact’s name appears in the current TUG
membership list, only a phone number or network
address is given. If the contact is not a current TUG
member, the full address and its source are shown.
When information on the drivers is available, it is
included below.

Screen previewers for multi-user computers are
listed in the section entitled “Screen Previewers”. If
a source has been listed previously under “Sources”,
then a reference is made to that section for names
of contacts, etc.

Corrections, updates, and new information for
the list are welcome; send them to Don Hosek,
Bitnet DHOSEKQHMCVAX (postal address, page 3).

Sources

ACC Advanced Computer Communications,
Diane Cast, 720 Santa Barbara Street, Santa Barbara,
CA 93101, 805-963-9431 (DECUS, May ’85)

Adelaide Adelaide University, Australia

The programs listed under Adelaide have been sub-
mitted to the standard distributions for the appropriate
computers. The PostScript driver permits inclusion of
PostScript files in a TEX file. The driver is described in
TUGboat, Vol. 8, No. 1.

AMS American Mathematical Society, Barbara
Beeton, 401-272-9500 Arpanet: BNB@Seed . AMS. com

Arbor ArborText, Inc., Bruce Baker, 313-996-3566,
Arpanet: bwbjarbortextQumix.cc.umich.edu
ArborText’s software is proprietary and ranges in
price from $150 to $3000. The drivers for PostScript
printers, the HP LaserJet Plus, the QMS Lasergrafix,
and Imagen printers are part of their DVILASER

25

series. The drivers all support graphics and include
other special features such as use of resident fonts or
landscape printing when supported by the individual
printers.

Printing on the Autologic APS-5 and u-5 photo-
typesetters with DVIAPS includes support of Autologic
standard library fonts and logo processing.

A-W Addison-Wesley, Brian Skidmore,
617-944-3700, ext. 2253

Addison-Wesley supports graphics on all Macintosh
software, and on Imagen, PostScript, and QMS laser
printers on the IBM PC.

Bochum Ruhr Universitdt Bochum,
Norbert Schwarz, 49 234 700-4014

Caltech California Institute of Technology,
Chuck Lane, Bitnet: CELQCITHEX

Canon Canon Tokyo, Masaaki Nagashima,
(03)758-2111
Carleton Carleton University, Neil Holtz,
613-231-7145
CMU Carnegie-Mellon University, Howard Gayle,
412-578-3042
Columb. Columbia University, Frank da Cruz,
212-280-5126
COS COS Information, Gilbert Gingras,
514-738-2191
DEC Digital Equipment Corporation, John Sauter,
603-881-2301

The LNO03 driver is on the VAX/VMS distribution
tape.
ENS Ecole Normale Superieure, Chantal Durand,

Centre de Calcul, Ecole Normale Superieure,

45 rue d’Ulm, 75005 Paris, France

GA Tech GA Technologies

GMD1 Gesellschaft fiir Mathematik und
Datenverarbeitung, Federal Republic of Germany,
Ferdinand Hommes, Bitnet: GRZTEXQDBNGMD21,
0228-303221

GMD2 Gesellschaft fiir Mathematik

und Datenverarbeitung, Federal Republic

of Germany, Dr. Wolfgang Appelt,

uucp: seismo!unido!gmdzi!zi.gmd.dbp.de!appelt
Heidelb’g University of Heidelberg,

Federal Republic of Germany, Joachim Lammarsch,
Bitnet: RZ920DHDURDZ1

HMC Harvey Mudd College, Don Hosek,
Bitnet: Dhosek@Ymir

HP Hewlett-Packard, Stuart Beatty, 303-226-3800

INFN INFN/CNAF, Bologna, Italy, Maria Luisa
Luvisetto, 51-498286, Bitnet: MILTEXQIBOINFN

The CNAF device drivers are on the VAX/VMS
distribution tape.

Interg’ph Intergraph, Mike Cunningham,
205-772-2000

26

JDJW JDJ Wordware, John D. Johnson,
415-965-3245, Arpanet: M. JOHN@Sierra.Stanford.Edu

K&S Kellerman and Smith, Barry Smith,
503-222-4234
The VAX/VMS Imagen driver supports graphics.

Kettler Kettler EDV Consulting, P. O. Box 1345,
D-8172 Lenggries, Federal Republic Germany,
+49 8042 8081

The LaserJet driver supports graphics inclusion in
device dependent format. PK font files are used. This
program is proprietary. Contact Kettler for further
information.

LaserPrint LaserPrint, P. O. Box 35, D-6101
Frankisch Crumbach, Federal Republic Germany,
+49 6164 4044

The driver supports graphics inclusion in device
dependent format. PK font files are used. This
program is proprietary. Contact LaserPrint for further
information.

LLL Lawrence Livermore Laboratory

LSU Louisiana State University, Neal Stoltzfus,
504-388-1570

Milanl Universita Degli Studi Milan, Italy,
Dario Lucarella, 02/23.62.441

Milan2 Universita Degli Studi Milan, Italy,
Giovanni Canzii, 02/23.52.93

MIT Massachusetts Institute of Technology,
Chris Lindblad, MIT AI Laboratory, 617-253-8828

The drivers for Symbolics Lisp machines use the
Symbolics Generic Hardcopy interface as a back end, so
it should work on any printer that has a driver written
for it. The printers listed in the table indicate drivers
the program has been tested on.

The UNIX drivers for PostScript and QMS printers
both support landscape printing and graphics inclusion
via specials. :

MPAE Max-Planck-Institut fiir Aeronomie,
H. Kopka, (49) 556-41451, Bitnet: MID40L@D606WDO1

MR Math Reviews, Dan Latterner, 313-996-5266
NJIT New Jersey Institute of Technology

OCLC OCLC, Tom Hickey, 6565 Frantz Road,
Dublin, OH 43017, 616-764-6075

OSU2 Ohio State University, Ms. Marty Marlatt,
Department of Computer and Information Science,
2036 Neil Avenue, Columbus, OH 43210

The drivers are distributed on either ANSI or
TOPS-20 DUMPER tapes, with hardcopy documenta-
tion. There is a $125 service charge (payable to Ohio
State University) to cover postage, handling, photo-
copying, etc.
Pers Personal TgX, Inc., Lance Carnes,
415-388-8853

Graphic output is supported on Imagen, Post-
Script, and QMS printers.

TUGDboat, Volume 9 (1988), No. 1

Philips Philips Kommunikations Industrie AG,
TEKADE Fernmeldeanlagen, Attn. Dr. J.
Lenzer, Thurn-und-Taxis-Str., D-8500 Niirnberg,
Federal Republic Germany, +49 911 5262019

PPC Princeton Plasma Physics Lab, Charles

Karney, Arpanet: Karney)PPC.MFENETONMFECC. ARPA
Versatec output from TEXspool is produced via the

NETPLOT program. TgXspool also produces output

for the FR80 camera. Color and graphics primitives are

supported through specials.

Procyon Procyon Informatics, Dublin, Ireland,
John Roden, 353-1-791323

RTI Research Triangle Institute, Randy Buckland,
Arpanet: rcb@rti.rti.org

The program is available in the comp.sources.misc
archives on Arpanet and Usenet.

Saar Universitit des Saarlandes, Saarbriicken,
Federal Republic of Germany, Prof. Dr. Reinhard
Wilhelm, uucp: wilhelm@sbsvax.UUCP

SARA Stichting Acad Rechenzentrum Amsterdam,
Han Noot, Stichting Math Centrum,

Tweede Boerhaavestraat 49, 1091 AL Amsterdam
(see TUGboat, Vol. 5, No. 1)

Scan Scan Laser, England, John Escott,
+1 638 0536
Sci Ap Science Applications, San Diego, CA,
619-458-2616
SEP Systemhaus fiir Elektronisches Publizieren,
Robert Schéninger, Arndtstrasse 12, 5000 Kdln,
Federal Republic of Germany

DVIP400 uses PXL files. Landscape printing is
supported in all versions and graphics.inclusion in all
but the IBM PC version. Source is available on request.
Cost varies from 300-1848DM.

Stanford Stanford University

The Imagen driver from Stanford is present on
most distributions as the file DVIIMP.WEB. It provides
limited graphics ability.
Sun Sun, Inc.

Sydney University of Sydney, Alec Dunn,
(02) 692 2014, ACSnet: alecd@facet.ee.su.o0z

Talaris Talaris, Rick Brown, 619-587-0787
All of the Talaris drivers support graphics.

T A&M1 Texas A&M, Bart Childs, 409-845-5470,
CSnet: ChildsQTAMU

Graphics is supported on the Data General drivers
for the Printronix, Toshiba, and Versatec on the Data
General MV. On the TI PC, graphics is supported
on the Printronix and Texas Instruments 855 printers.
There are also previewers available for both the Data
General and the TI.

T A&M2 Texas A&M, Ken Marsh, 409-845-4940,
Bitnet: KMarshQTAMNIL

T A&M3 Texas A&M, Norman Naugle,
409-845-3104

Low-Resolution Printers on Multi-User Systems — Laser Xerographic, Electro-E:

Amdah! |CDC Data DEC-10 [DEC-20 |HP9000 |IBM IBM IBM
(MTS) {Cyber General 500 MVS VM/CMSVM/
MV
Agfa P400 SEP SEP
Canon Utah Utah
DEC LNO1
DEC LNO3 Utah Utah
Golden Laser 100 Utah Utah
HP LaserJet Pius Utah TA&M2
Utah
IBM 38xx, GMD1 |GMD1
4250, Sherpa Heidelb'g|Wash St
Imagen Arbor T A&M1 {Stanford {Columb. [Utah Arbor Arbor
UBC Vander [Utah W'mann
Philips Eipho
PostScript printers Utah Arbor Arbor
Utah
QMS L asergrafix Arbor UWash2 [T A&M1 T A&M2 |Arbor Arbor
GMD GMD
Symbolics U Wash1
Talaris Talaris |Talaris
Xerox Dover CMU
Xerox 270011 Bochum osu2 ENS
Xerox
Xerox 9700 Arbor Arbor Arbor TA&
U Mich T A&M4 [T A&M4

31

TUGboat, Volume 9 (1988), No. 1

uens
VN7V L SO 0046 x049X
sueje | slieje] stieje]
Pan ER
LIW oqsy uess
ioqiy M-V 10qay xijeadlose] SNO
yein
yein siad
LI) joquy
oquy yein M-V 10QUy 10quy ssound 1011051504
1911194 oyd|3 sdityd
Ul Jaase] hulidlese 21004 M
yein yein
PN N S43d
ung Joquy 27100
loqiy yein M-V yein i0q4y uadew)
yein
191319 sj00)
yein uein J0qly| 3IVdiN P.lutd D41 J9j118 Y 1094V SNid 19r43seT] dH
dH mrar v889Z dH
Siad mrar 0892 dH
yein yein yein yein 00T 48se7 Usp|oH
N USem
yein yein yein yein €0N1 23d
siad 00£d BIEPIOD
yein yein yein yein uoue)
d3S 00vd edv
Suoiin|og 002
NNSpolesdau|| Dd WgI| 0006dH| 000€dH| 000TdH| LS vewv o|jody

8197ULIJ UOISOXF-04399[q ‘o1ydeaola Jose] — SUOIJEISHIOMN pue 8191 dWOI0IIJA] UO BISJUIIJ UOIIN[OSIY-MO]

Typesetters

Apollo |CDC HP3000 [IBM IBM PC |IBM Siemens {Sperry [SUN U
Cyber MVS VM/CMYBS2000 {1100
Allied Linotype
CRTronic
Allied Linotype A-W
L100, L300P Pers
Allied Linotype Pers
L202
Autologic APS-5, |COS Arbor Arbor A
Micro-5 Scan Pers
Compugraphic U Shef Arbor
8400 Pers
Compugraphic UNI.C Arbor Wash St U Wisc
8600 Pers
Compugraphic Arbor
8800
Harris 7500 S
Hell Digiset GMD2 GMD

34

An ASCII Previewer for TEX

Marcus Brown
Texas A&M University

A common complaint among users of TEX is the
problem of the edit-TgX-print cycle, with the
attendant delay of waiting on printer service. One
solution has been to allow for viewing the formatted
dvi file on the terminal. This has been effectively
implemented on workstations. VorTEX for the
SUN and a number of other previewers are all
well documented. However, workstations are not
universal for the TEX user.

Some earlier articles describe terminal preview-
ers, but most have focused on graphics terminals, or
on very low resolution representations on more com-
mon terminals such as the DEC VT100. These are
generally not reasonable alternatives for the CRTs
found on multi-user systems because of the limited
I/O bandwidth. Most terminals are not capable
of handling down-loaded fonts, and attempting a
bit-map display frequently takes a minute or more
to load a screen.

Basic requirements

We believe that significant time and cost could be
saved by developing a previewer for the normal
ASCII terminal found in most working environ-
ments. In order to construct a usable previewer, we
must consider what the user typically needs to see
in a preview of his document:

1. The user will want to see any obvious er-
rors, such as overfull hboxes, misspellings or
typographic errors.

2. The user will want to check on line breaks, page
breaks, and the placement of floating inserts
and tables.

3. The user will want to check on any use of special
fonts. For example, he will want to know if a
closing brace has been omitted causing the last
5 pages to be set in italic font.

4. The user will want to see if the corrections
made to problems detected in the last run gave
the desired result.

Most of these types of questions can be satisfactorily
answered using an ASCII previewer, and they
constitute a large enough percentage of the trial
prints of a document to justify the development and
use of a previewer for an ASCII terminal.

This paper was supported in part by a contract
with the U.S. Forestry Service.

TUGboat, Volume 9 (1988), No. 1

Design model

The following is a list of the relevant characteristics
of ASCII terminals which we will use as a design
model:

1. They have only a single fixed pitch font, al-
though most have the ability to emphasize
selected characters or regions of the screen by
use of color, reverse-video, blinking, underlin-
ing, or brighter-than-normal characters.

2. They often have a limited graphics character
set, but that is of little use in attempting
to simulate typeset output such as math equa-
tions, for example. However, they usually allow
for vertical and horizontal lines.

3. They normally have 24 vertical lines and 80
horizontal columns. This is obviously inade-
quate for viewing a typeset page, with 60 or
more vertical lines and perhaps 100 horizontal
characters plus margins on a typical page.

While this limited set of capabilities cannot do
justice to a typeset document, it is able to provide
enough information to the user to allow several
types of corrections and adjustments. We propose
that an ASCII terminal previewer should allow for
the following options:

1. Margins. The previewer should allow viewing
of the left and right margins of a page. The
primary difficulty with this requirement is that
the terminal does not have enough width to show
a complete line, and in many cases the fixed
width font obliterates TEX’s efforts at right margin
justification or alignment. With these two concerns
in mind, the obvious solution is to allow viewing a
subset of the page which shows the desired margins.
We suggest three options for viewing margins. Each
option is demonstrated using page 1 of the immortal
TrXbook.

e Left Margin. The lines shown on the screen
should begin at the left margin of the screen.
All letters typeset will be shown on the screen
until the point at which the line must be
truncated due to screen width. This method is
demonstrated in Fig. 1. Note that even when
all the letters fit on the line, the right margin
is not justified.

e Right Margin. The right margin of the screen
less 1 column should coincide with the right
margin of the paper. The last column is
reserved for the dreaded overfull rule which is
simulated on the first line of Fig. 2. Characters
should be written to the screen in reverse order
from the right margin. The effect should be

TUGbeat, Volume 9 (1988), No. 1

that of truncating the left portion of each line
where necessary and adjusting the alignment
such that the final character on each line is at
its proper position on the page.
¢ Both Margins. The left and right margins

should be displayed as described above. Char-
acters in the middle of the line will be deleted
or added to allow both margins to appear jus-
tified on the screen. Fig. 3 should make this
option clear.

These viewing alternatives will allow for checking

line breaks, indentations and related information.

The user should be able to switch back and forth

between these alternatives with a single key stroke

and a minimum of display time.

2. Pages. The previewer should allow the display
of page breaks. This could be represented by
displaying the top and bottom of a single page,
with the middle lines omitted. It would also be
desirable to allow display of the boittom of one
page, a horizontal line representing the page break,
and the top of the succeeding page. (This option
should be added to more advanced previewers like
VorTEX.) Perhaps the most commonly used option
would allow for scrolling up and down through a
single page and across page breaks to previous or
succeeding pages. Again, the user should be able to
switch easily between these options.

3. Fonts. The abilities of the terminals mentioned
above to highlight certain characters could be used.
Standard Roman fonts would be shown in the
default text of the terminal, while color, reverse
video or other options could be used to signify bold,
slanted, etc. It would be unwise to attempt too
complex a coding scheme here. Probably the best
scheme would be to use only one or two alternative
display techniques, with a caich-ell category for
all other fonts. For example, let \bf be signified
by using brighter text and \it be signified with
underiined text. Then all other fonts would be
signified by reverse-video. If the representation of
fonts becomes too complex, the user will spend
more effort remembering the coding scheme than
is justified by the additional information gained.
These options might be adjustable by the user for
different documents.

Other issues

The display of tables should be done in a way
that preserves the indentation of the left and right
marging. If internal alignment is to be preserved
when aligned columns are used, significant numbers
of the characters in each column may be dropped,
or some careful adjustment may be necessary when
displaying the right margin. Horizontal and vertical
rules surrounding the tables could be displayed
using the limited graphics characters available.

The treatment of ligatures deserves consider-
ation. One possibility might be to replace the
ligatured characters with a number representing the
number of characters included. Thus, ‘@’ would
be replaced by ‘3, while ‘A’ would be replaced by
‘2’. An alternative would be to replace the single
ligature with the group of letters it represented.
This would replace ‘f’ with ‘££1’. This has the
disadvantage of taking up more screen space, but
the previewer will already be dropping characters
from the line, and it would be easier for the user to
interpret.

Other special characters in a font and all
characters from a primarily symbolic font would be
represented by the default error symbol on most
terminals, the checkerboard box, or perhaps by the
*?> character, as in DVITYPE.

These specifications are designed to be achiev-
able on the lowest common denominator of terminal
likely to be in use in the TRX community. It is prob-
able that most TgX users have terminals with some
special capabilities which could be used to enhance
this type of previewer. For example, we are cur-
rently implementing an ASCII previewer on a Data
General 461, which allows for down-loadable fonts.
These special fonts may be used for some special
characters such as ligatures or other symbols.

While a TgX previewer for an ASCII terminal
has obvicus limitations, we believe that the timeli-
ness of information conveyed to the user will justify
the effort expended. We expect to have the pre-
viewer mentioned above available for distribution in
March. It will also be adapted to run on a DEC
VT220.

36

TUGboat, Volume 9 (1988), No. 1

English words like ‘technology’ stem from a Greek root beginning with the le
???...; and this same Greek word means art as well as technology. Hence the
name TEX, which is an uppercase form of 777.

Insiders pronounce the ? of TEX as a Greek chi, not as an ‘x’, so that
TEX rhymes with the word blecchhh. It’s the ‘ch’ sound in Scottish words lik
loch or German words like ach; it’s a Spanish ‘j’ and a Russian ‘kh’. When y
say it correctly to your computer, the terminal may become slightly moist.

The purpose of this pronunciation exercise is to remind you that TEX
is primarily concerned with high-quality technical manuscripts: Its emphasis
on art and technology, as in the underlying Greek word. If you merely want
produce a passably good document--something acceptable and basically read-
able but not really beautiful--a simpler system will usually suffice. With T
the goal is to produce the finest quality; this requires more attention to d
but you will not find it much harder to go the extra distance, and you’ll be
to take special pride in the finished product.

Figure 1: Display of Left Margin

h words like ‘technology’ stem from a Greek root beginning with the lettersff
?77...; and this same Greek word means art as well as technology. Hence the
me TEX, which is an uppercase form of 777.
Insiders pronounce the 7 of TEX as a Greek chi, not as an ‘x’, so that
X rhymes with the word blecchhh. It’s the ‘ch’ sound in Scottish words like
k or German words like ach; it’s a Spanish ‘j’ and a Russian ‘kh’. When you
it correctly to your computer, the terminal may become slightly moist.
The purpose of this pronunciation exercise is to remind you that TEX
rimarily concerned with high-quality technical manuscripts: Its emphasis is
art and technology, as in the underlying Greek word. If you merely want to
produce a passably good document--something acceptable and basically read-
e but not really beautiful--a simpler system will usually suffice. With TEX
1 is to produce the finest quality; this requires more attention to detail,
u will not find it much harder to go the extra distance, and you’ll be able
special pride in the finished product.

Figure 2: Display of Right Margin

English words like ‘technology’ stem{.]reek root begimning with the letters
??7?...; and this same Greek word meal[.]art as well as technology. Hence the
name TEX, which is an uppercase form[.]?7?7.

Insiders pronounce the 7 of TE[.] a Greek chi, not as an ‘x’, so that
TEX rhymes with the word blecchhh. I[.]Jhe ‘ch’ sound in Scottish words like
loch or German words like ach; it’s [.]ish ‘j’ and a Russian ‘kh’. When you
say it correctly to your computer, t[.]minal may become slightly moist.

The purpose of this pronunciat[.]n exercise is to remind you that TEX
is primarily concerned with high-qual.]chnical manuscripts:~Its emphasis is
on art and technology, as in the und[.]ng Greek word.~If you merely want to
produce a passably good document--so[.]lthing acceptable and basically read-
able but not really beautiful--a sim[.]lystem will usually suffice.”With TEX
the goal is to produce the finest qul.ls requires more attention to detail,
but you will not find it much harder[.]e extra distance, and you’ll be able
to take special pride in the finishel.]

Figure 3: Display of Both Margins

TUGboat, Volume 9 (1988), No. 1

A Screen Previewer for VM /CMS
Don Hosek

A good previewer is a useful tool for working with
TEX, but unfortunately, there are very few available.
For users of TEX under the IBM VM /CMS system,
the only choice available used to be DVI82, a
Versatec driver that, as an added feature, allowed
previewing on IBM 3279 and 3179-G terminals.

To deal with this situation, I wrote DVIview, a
TEX previewer that displays its output on VT640-
compatible displays connected to an IBM mainframe
via either a 3705 controller or a Series-1/7171
protocol converter. In addition, the output routines
are modularized enough that it should be a fairly
simple task to modify the program to drive any
graphics terminal connected to the mainframe. (I
have plans to include support for GDDM-driven
displays in the near future.)

DVlview is a lengthy WEB program that inter-
prets the instructions in a DVI file and displays
them on the user’s screen as determined by com-
mands typed at the keyboard. The entire page may
be viewed with block outlines of the characters, or
smaller portions of the page may be selected and
viewed using the actual shapes of the TEX fonts.
Font information is read from PK files. (I cannot
recommend the PK format enough to people writing
new device drivers; the fonts take roughly half the
space of GF files and about a third the space of
PXL files. And PK readers are easier to write!)

The DVIview distribution includes two man-
uals: “Previewing TEX Output With DVlview”
is the users’ guide and explains how to use the
program from a user’s standpoint. Also included
is “Installing and Customizing DVIview”, intended
for the systems person who installs DVIview. In-
structions are given for installing DVIview as is, as
well as instructions on adding changes to the file
and a “Hitchhikers’ Guide to WEB” (for those who
don’t care how they get where they’re going as long
as they don’t have to ride the bus).

Due to the size of the program, it cannot be
distributed over the networks. To obtain a copy
of DVIview and its documentation, send $30 (to
defray duplication costs), a blank tape, and a return
mailer to:

Don Hosek

Platt Campus Center

Harvey Mudd College

Claremont, CA 91711

This article first appeared in TEXmag, 1987#7.

37

The program is public domain, so feel free to give
it away. However, since it is still a young program,
I'd like to keep track of who has copies for purposes
of distributing updates.

Why TgX Should
NOT Output PostScript — Yet

Shane Dunne
University of Western Ontario

In a recent TUGboat issue [1], Leslie Lamport sug-
gested that since PostScript is becoming accepted as
a standard page description language, perhaps TEX
could be modified to output PostScript instead of
DVI code. This is a good idea, but it should not be
done yet for the following reason: At the moment,
the available PostScript literature does not state
precisely how drawn objects are to be rendered on
the output raster. As I will show in this article, such
a specification of PostScript’s semantics is urgently
needed to allow precision application programs such
as TEX to properly use the language. I have written
to PostScript’s developers, Adobe Systems Inc. of
Palo Alto, California, to draw their attention to this
problem, and suggested that it be resolved publicly
using TUGboat as a forum for discussion.

For readers unfamiliar with the PostScript lan-
guage, a few words of explanation are in order.
PostScript is a language designed specifically for
specifying the output of raster printing devices.
The language is interpreted, with the interpreter
usually resident in the printer itself. It was in-
tended to be human-readable, and hence uses only
printable ASCII characters, but to simplify parsing
it uses a rather cryptic postfix syntax. This is
justified on the grounds that most PostScript pro-
grams will be written automatically as the output
of other applications. PostScript incorporates a
sophisticated device-independent drawing model in
which a single transformation matrix (called the
current transformation matrix or CTM) specifies
the correspondence between the user and device
coordinate systems. User coordinates are floating-
point numbers with essentially infinite resolution;
device coordinates are normally integers.

The incompleteness of the current PostScript
semantic definition is apparent from the following
example. Assume that the CTM of a PostScript de-
vice is set so that one unit in user space corresponds

38

to the distance between adjacent device pixels, and
the point with coordinates (100,100) is well within
the visible part of the output page. (This is what
our TEX driver does.) Now suppose the following
code fragment is executed.

newpath

100 100 moveto

1 0 rlineto

0 1 rlineto

-1 0 rlineto

closepath fill

This draws an outline “path” which is a unit square
with lower left-hand corner at (100, 100), and then
fills it with black. It is reasonable to expect that a
single device pixel will be blackened — after all, that
is a black box one unit high by one wide, with the
units we have chosen. However on our QMS PS800
laser printer, the result is a two-pixel by two-pixel
box — four pixels are blackened. It turns out that
whenever you ask for a box which is = units wide
and y units high, you get one which is z + 1 pixels
by y + 1 pixels. Similar things occur with the stroke
command which draws lines —if you ask for a line
width of one unit you get lines two pixels wide, two
units becomes three pixels, and so on.

The practical upshot of this is that our DVI-to-
PostScript driver, which outputs code according to
what the PostScript reference manual says, always
yields TEX rules which are one pixel too long and
one pixel too high.

Attempting to second-guess the programmers
of the PS800 PostScript implementation, I came
up with the following scenario. We begin with the
outline path with four vertices (100, 100), (101, 100),
(101,101), and (100,101). Since we are working in
one-to-one scale, multiplying these coordinate pairs
by the CTM may add some translation factors,
but should not make any multiplicative change
to the values. The coordinates, which are real
numbers, must next be converted to integers for
the hardware, but they are already integers, and I
have verified that the translation factors are also.
Thus we can suppose without loss of generality that
the coordinates are unchanged by the CTM. Now
comes the strange part. The implementation seems
to interpret integer-valued coordinate positions as
pixels, and thus says that it must blacken all four
different pixels identified by the four vertices (and,
in this case, nothing else).

So apparently, each distinet coordinate position
(a mathematical point in the plane with zero height
and width) has been identified with a device pixel
(something with very real height and width). Of

TUGboat, Volume 9 (1988), No. 1

course, if I am drawing a box 1 inch by 1 inch at 300
dots per inch, the error is only 1 part in 300, but if I
am drawing small things (small with respect to the
device resolution), the error can be quite serious,
as shown by the above example. Unfortunately,
typesetting and related applications involve small
objects almost exclusively.

It would be more consistent with the PostScript
philosophy to identify integer-valued coordinates
(at 1:1 scale) with the lower left-hand corner of
a pixel. This would require a small refinement to
PostScript’s fill algorithms.

The PostScript Language Reference Manual [2]
says nothing definitive about the correspondence
between coordinate positions and device pixels. It
defines a virtual graphics machine separated from
the real device by various mechanisms (such as the
CTM) whose exact operation it does not define.
Now in my experience, anything not defined in
a software specification is usually defined by its
implementation, which in turn means that I can
expect different results from different printers, even
at the same dot resolution.

It is of course tempting to say “Why worry
about such details? If you want higher precision
just go to a device with more dots per inch.” There
are two answers to this. The first is that 300 dpi
laser printers, and lower-resolution mechanical dot-
matrix printers, are probably going to be around for
some time, and people will always want to use them
at least for previewing. The second answer is that
there really is no substitute for doing things right
in the first place. If the sizes of drawn objects can
be predicted with to-the-pixel accuracy, you can get
the most out of whatever printer you have paid for.
If not, you will always have to settle for less than
what you know the machine can do.

As a developer of precision applications like
TEX drivers, I need a formal definition of how
PostScript’s drawing operators (primarily £i11 and
stroke) should be rendered on raster devices, re-
lating the high-level virtual machine defined by the
language to the low-level hardware. Such a defini-
tion could itself be device-independent, speaking in
terms of a target device with z dots per inch reso-
lution horizontally and y dots per inch vertically. It
could take the form of a published article, perhaps
here in the TUGboat.

Aside from the fill-outline problem I have al-
ready mentioned, at least two other aspects would
have to be addressed (and now I must apologize
for using terms which will be unfamiliar to some
readers). First, are CTM-transformed coordinates
rounded or truncated in order to be converted to

TUGDboat, Volume 9 (1988), No. 1

integers for the hardware? (I recommend trun-
cation since it is fast, and the user may change
it to rounding by adding .5 to the translation
components in the CTM.) Second, what is the
precise orientation of bitmap characters generated
by imagemask, with respect to the current point. 1
suggest that the current point should coincide with
the extreme lower left-hand corner of the rendered
image. That is, when the CTM is as described
in the earlier example, the current point should
identify the lower left-hand corner of a pixel, and
this pixel should be overlaid with the lower leftmost
pixel in the bitmap image. (A related issue is that
when the coordinate system is inverted vertically,
the current point should coincide with the extreme
upper left-hand corner of the image — this does not
appear to happen with our printer.)

A description of how the PostScript software is
structured, distributed, and implemented on specific
devices would also help applications developers to
understand its operation. My guess is that the
basic PostScript interpreter is provided by Adobe
Systems, and each device manufacturer writes their
own driver, but this is only a guess. Perhaps device
manufacturers tell Adobe how their machine works,
and later receive a fully-configured interpreter in
machine-code form. Just how much does the device
manufacturer do, and by implication, how much
can be expected from a given PostScript-compatible
product?

The issues raised in this article came up in
the course of research into musical score setting
using TEX. I have been working with a modified
DVI-to-PostScript driver which allows inclusion of
arbitrary PostScript code into TEX source material
using the \special primitive. The idea is to use
the power of PostScript to draw all the variable
elements of musical material (e.g. note stems of
variable length but fixed width). The lack of a
definitive explanation of how PostScript’s graphic
primitives work at the device level forced me to
spend a great deal of time writing tiny Post-
Script programs and examining the results — with
a microscope! —to figure out what the printer was
doing. I needed the microscope only to measure the
extent of various inaccuracies in size and position —
at 300 dpi the existence of these inaccuracies is
immediately obvious to the naked eye.

39

References:

[1] Lamport, L. TEX Output for the Future. TUG-
boat 8,1 (April 1987).

[2] Adobe Systems Inc. PostScript Language Ref-
erence Manual. Addison-Wesley, Reading, Mas-
sachusetts. 1985.

Index to Sample Output
from Various Devices

Camera copy for the following items in this issue
of TUGboat was prepared on the devices indicated,
and can be taken as representative of the output
produced by those devices. The bulk of this issue
has been prepared at the American Mathematical
Society, on a VAX 8600 (VMS) and output on an
APS-u5 using resident CM fonts and additional
downloadable fonts for special purposes.

s Apple LaserWriter (300dpi):
ArborText advertisement, p. 110.
— TgXnology, Inc., advertisement, p. 103.
» Canon CX (300 dpi): Georgia Tobin, The
ABC'’s of special effects, p. 15.
a Compugraphic 8600 (1301.5 dpi):
TEXt1 advertisement, p. 106.
» HP LaserJet (300dpi):
Personal TEX advertisement, p. 99.
Linotronic 100 (1270 dpi):
Design Science advertisement, p. 105.
— Kellerman and Smith advertisement, cover 3.
Micro Publishing advertisement, p. 101.
Xerox 4500 (300 dpi): Greek sample text,
in Silvio Levy, Using Greek fonts with TEX,
p. 22, as indicated.

40

Site Reports

The Commodore Amiga:
A Magic TgX Machine
Tomas Rokicki

The Commodore Amiga makes an impressive TEX
machine, able to compete with computers costing
several times its price. In this report on the status
of AmigaTgX, features will be discussed that might
well be profitably implemented on other machines.
Let me tantalize you, first, by mentioning that
it is possible with this package to go from your
document in your favorite editor to the first page
of your TEX’ed document in a preview window
in about a second of real time and with a single
keystroke or menu selection.

But before I discuss some of the more esoteric
features, let me tell you what the basic package
contains and requires. AmigaTEX comes on eight
floppies including TEX 2.9, iniTEX, IATEX, BibTEX,
preview, over 1200 previewer fonts, and some font
conversion utilities. Printer drivers are available
separately for the HP LaserJet Plus, standard
PostScript printers, the QMS Kiss and SmartWriter,
the NEC P6/P7 series, the Epson LQ series and
MX series, and some other less popular dot-matrix
printers. Plain TEX will run on a 512K machine;
IATEX requires a megabyte of memory. A hard disk
is not necessary; an extra two megabytes of memory
is cheaper and much more useful. Two floppy
drives are highly recommended. Three megabytes
of memory gives you the best environment.

The first question that pops up is, how can a
hard disk not be necessary if the package requires
eight floppies to distribute? Is it really possible
to put an entire TEX environment, including TEX,
the preview program, a printer driver, the editor,
previewer and laser printer fonts, and all of the
system software onto two floppies and still have
room for TEX source files? Indeed it is. The TEX
software less the previewer and laser printer fonts
requires less than 400K, including even the plain
format file and an editor. The key feature that
makes a floppy TEX environment practical is font
caching.

Font caching is based on the idea that, of
the thousands (literally) of fonts supplied with the
previewer and a printer driver, the typical user
will need only a few dozens, or maybe a hundred.
The idea is to find which fonts the user needs.
These fonts should be made easily available. This

TUGboat, Volume 9 (1988), No. 1

is easily accomplished. A directory is assigned
to hold the commonly used fonts; this directory
resides on a single disk that is always in one of
the disk drives when the user is using TEX. This
directory is initially empty. As the previewer or a
printer driver requires a font and cannot find it in
this font directory, it queries the user to insert the
appropriate distribution disk on which the floppy
was supplied. The driver program then copies it
into this cache directory, so the next time it is
needed, it is there.

This system works quite well in actual experi-
ence. The first few times a printer driver is run, the
user has to swap some floppies. But after the fonts
are in the cache directory, things go smoothly and
quickly. And two floppies are now sufficient for a
nice working environment.

But floppies are slow. Even fast floppies are
slow. The data rate of standard double density 90
mm floppies is 250,000 data bits per second, or about
31,000 bytes per second maximum. Actual transfer
rate is typically around 18,000 bytes per second on
good days. Thus, to load the TEX executable image
of 128,000 bytes takes seven seconds. This is a long
enough delay to get annoying after a period of use.

On a single-tasking computer, there would not
be much one could do about this. The Amiga
comes with a true multitasking operating system,
however, so it is a simple matter to run TEX in a
loop mode, where after finishing one document, it
hangs around and waits for the next rather than
exiting.

The plain format file is almost as large as the
TEX executable, so the delay in loading it is as
long as the delay in loading TEX itself. But, since
TEX is hanging around in memory, a copy of the
format file might as well stay in memory too. On
the Amiga, as TEX loads the format file the first
time, it copies the portions of the data structures
that will be destroyed as a document is processed
into another area of memory from which it can be
quickly restored as soon as the document is done.
Since some portions of the format file contain data
that does not change as a document is processed,
such as the string pool, these areas need not be
saved or reloaded after the first time.

Now, actually, it has not been mentioned that
on a single-tasking computer, both TEX and the
format file can be loaded into a RAM disk, from
which loading is quick. Nonetheless, the above tricks
require less memory and yield faster operation than
a RAM disk alone would provide. In addition, while
I've expounded these ideas in the light of floppy
drive storage, they are also useful when all of the

TUGboat, Volume 9 (1988), No. 1

files reside on a hard disk, although their impact is
not as great. The difference is that using the above
ideas, TEX is ready and preloaded at the instant
you decide to use it.

Still, TEX spends most of its time actually pro-
cessing documents. Even when run off floppies, the
fourteen second load time is dwarfed by processing
times of several minutes for sixty page documents.
TgX is doing a lot of work, so it is doubtful that
this processing time can be cut significantly using
the current hardware. A 68020 board can always
be plugged in, but the TEXbook will still take a
good quarter hour or more. So what facilities can
be provided that will allow the user to make the
best possible use of the time during which TgX is
working?

With a multitasking environment, the user can
read net news. But more often than not, the user
is wondering what the document looks like. With
the Amiga, TEX can send each page as it is finished
to the previewer. (Of course, the previewer stays
around waiting for new jobs just like TEX does.)
This way, as TEX is working on page twenty of that
forty page report, the user can preview any page
up to page twenty, and make changes in his editor
buffer as he finds things to change.

It is true that the message-passing executive
of the Amiga makes such communication easy to
implement; TEX simply sends messages containing
the page data as it completes each page, and the
previewer actually writes and re-reads the DVI file
as necessary. It should be possible to do a similar
trick under, for instance, the Unix operating system
using sockets.

So, at the moment, Joe User saves his file
from the editor, clicks on the TEX window with his
mouse and hits carriage return (it’s easy to make
TEX remember the last file name processed) and,
just as soon as that first page is done, it pops up
in a previewer window. But, if TEX encounters
an error, Joe must find the place where the error
happened in his file. In addition, he has no easy
way to process just a small portion of his document,
say the equation on page twenty-four, to see how

. his changes look.

At this point, it is not difficult to take care of
the problem for Joe. All we need to do is add some
small changes to his editor so that it understands a
function key or two, and sends the proper messages
to TEX. For instance, function key nine might be
programmed to take the current cut region, append
it to just the top of his file containing macros,
saving this file and telling TEX to start processing.
Joe uses EMACS, so such hacks are easily made.

41

But Bob uses TxED (by Charlie Heath) and Paul
likes vi, and Peter has his own homebrew editor.
Source isn’t even available for most of these editors,
so how do you add such facilities?

Out of the sky appears William Hawes, author
of ARexx, an implementation of the REXX language
so revered on IBM mainframes. On the Amiga,
ARexx is so much more than a script language. It
is a general interprocess communication manager,
programmable in an interpretive language so simple
that anyone can use it. To make any program
talk to any other program on the Amiga, all the
developer must do is make it talk to ARexx. Then,
a set of four-line ARexx macros can be written by
either the user or the developer to transfer data
back and forth between the applications.

As of this writing, only two editors exist with
ARexx ports, so only these two can be used to make
an integrated environment with AmigaTEX. But
as more and more programs appear with ARexx
ports, the versatility of all of them will increase
dramatically. For instance, it is now possible to
integrate an editor, TEX, the previewer, a terminal
communications program and any number of other
programs in a single, unified working environment
that is remarkable to behold. A similiar situation
will soon exist with OS/2 on the IBM PC’s.

But enough soapboxing. You have to see it for
yourself. If you send me, Tomas Rokicki, a letter, to
Box 2081, Stanford, CA 94309, I will send you an
Amiga diskette containing a demonstration version
of the AmigaTEX package, and pricing and ordering
information. For information on ARexx, write Bill
Hawes at Box 308, Maynard, MA 01754.

DG Site Report

Bart Childs
Texas A&M University

We are now delivering TEX 2.9. It went in as easy
as the previous releases. We are also delivering
METAFONT 1.3. (We had been delivering out-of-
date 1.0 versions for more than a year.) We now
have a stochastic ArpaNet connection and should
find it easy to stay current.

42

IBM VM/CMS Site Report

Dean Guenther
Washington State University

In February I sent the TEX 2.9 VM/CMS distribu-
tion tape to Maria Code. This tape includes a few
new programs, upgrades, fixes, etc.

SLITEX has been added to the distribution. It
has been requested for some time, but has been
difficult to get ahold of. Thanks to Barbara Beeton,
who sent me a copy of the fonts and macros. The
other newcomer to the distribution is DVI3279,
a screen preview program for the IBM 3279 or
3179¢g terminals. It works well on DVI files and
METARFONT output run through GFTODVI. Thanks
to Georg Bayer at the Technische Universitaet
Braunschweig in Germany for this contribution.
It is written in WEB, and requires GDDM and
FORTRAN. The messages from this program are
all in German, so héffentlich ist ihr deutsch gut.

Upgrades on the distribution tape along with
TEX 2.9 include IATEX, thanks again to Barbara. I
upgraded DVITYPE to version 2.9, and METAFONT
and all of its MF files to version 1.3. GFTOPXL was
also modified to output 1K blocks.

Bob Creasy made several upgrades and fixes
to the IBM printer support. We worked out a
scheme for DVI2LIST and PXLCVT to support larger
magnifications, a requirement necessary to support
SuTEX. Bob also modified DVI2LIST’s absolute
horizontal alignment to match DVITYPE. This fixed
a problem reported by several, who were unable to
get the following to line up:

{\obeylines\obeyspaces\tt

I I I I
0123456789012345678901234567890
I I I I
3

This now works. Bob also made upgrades to his
PFS font building EXECs, including allowing larger
magnifications, and support for generating the PXL
fonts used by DVI3279.

TUGboat, Volume 9 (1988), No. 1

Fujitsu Announces TEX Port

Fujitsu Limited, a member of the TEX Users Group
of Japan, announced that it has completed the
porting of TEX V1.0 into their M-series, large-scale
mainframe computer. This product, FACOM OSIV
TEX VO01L10, is now available to users. The com-
mand procedure provides support for various print-
ing devices and formats; it allows users to specify
execution units (INITEX, DVlwrite, printing), to
set printing devices (including display) and printing
sizes, and to establish execution environment (batch
or TSS). For more information:

Shozo Taguchi

Deputy General Manager

Software Division

Fujitsu Limited

140 Miyamoto, Numazu-shi

Shizuoka-ken 410-03, JAPAN

UnixTEX Site Report
Pierre A. MacKay

The January 1988 upgrade of the UnixTEX distri-
bution is the most important and far-reaching in
several years. The changes in TEX itself since the
last site report are relatively trivial, and correct
bugs that only very advanced users of the program
would ever be likely to run into, but almost ev-
ery other part of the distribution has undergone
major changes. TEX has now reached Version 2.9,
and the source file has been slightly reformatted
with ASCII form-feeds immediately preceding each
starred module. This has no particular effect on
UnixTgX, except in the change files, where the last
starred module before the index:

"L@* \[54] System-dependent changes.

(the module for system-dependent code) is usually
referenced, and will cause an error if the form-feed
is not added to the change file.

The most important news associated with the
compilation of TEX however, is the successful com-
pletion of TEX-to-C, an interpreter which takes the
Pascal output from tangle, and converts it into
clean C source code, lintable, and so far as we
know, completely consistent with the ANSI draft C
standard. This interpreter is the result of several
years of work by Tom Rokicki and Tim Morgan.
Rokicki did the ground work a few years ago, and

TUGboat, Volume 9 (1988), No. 1

Tim Morgan has refined and restructured the whole
system so that it now promises to make it possi-
ble to eliminate the proliferation of system-specific
change files. The code generated is smaller and
substantially faster in execution than even the best
Pascal compilations, and it makes the generation of
a truly immense TEX possible, since C is not subject
to the Berkeley Pascal compiler restriction on array
sizes. (Berkeley pc restricts array indices to a 16-bit
range.) The code can be compiled in two modes,
one with standard variables, which seems to work
on just about every system tried so far, and one
with register variables, which works if your compiler
is clever enough, and produces executables that are
about 10% faster than the non-register versions. (I
note, with some amusement, that the 68010 Sun-2
compiles correctly with register variables under OS
3.2, but the 68020 Sun-3 does not.)

METAFONT is still at version 1.3. There have
been some slight changes in the Computer Modern
mf files over the past year, and it is probably
advisable to compile all fonts again. There are small
problems with low resolutions still in CMMI6, CMTT8
and CMTEX8, which produce strange paths when
compiled at 118 dpi resolution for the BitGraph and
Sun screen previewers. Readers of TEXhax will have
followed the recent discussion of mode_specials
added to compiled fonts in GF format. The purpose
of these is to provide, in the font itself, a record
of the settings used when the font was made. A
typical group of mode_specials as printed out by
the UNIX strings utility is:

cmri0

mag:=2.0736;

mode:=RicohFortyEighty;

pixels_per_inch:=300;

blacker:=0.2;

fillin:=-0.2;

o_correction:=0.5;

The macros to produce this information are part
of the file U_Wash.mf in the directory ./utility-
fonts/bases on the UnixTEX distribution tape.
Because we run both write-white and write-
black printers at the University of Washington, we
have had to think more clearly about the adjust-
ment for write-white devices (discussed by Neenie
Billawala in TUGboat Vol. 8, No. 1, pages 29-32).
Both the changes to cmbase.mf described there oc-
cur in the font_setup macro, and there is really no
need to have an entire write-white cmbase_w.mf and
a separate preloaded version of METAFONT as we

43

have had for the past year. The ./cmfonts/mf di-
rectory now contains the short white_setup.mf file,
which is used in place of the write-black font_setup
when appropriate through the addition of the line
let font_setup=white_setup to all write-white
mode_defs. Add the line input white_setup to
your local mode_def file. The fonts currently on
the tape have all been recompiled with the macros
described above.

There has been only one significant change in
TrXware since the last distribution. The dvitype
program has been changed to reflect a change made
in TEX itself. Make sure you have the latest version
(2.9) before you try to trip, or you will get some
misleading discrepancies in the dvitype output file.

A sub-directory of ./tex82/TeXware contains
the CWEB programs, which extend the whole idea of
integrated documentation to the C language (which
desperately needs it). These programs are not to
be confused with TEX-to-C, which starts from the
original Pascal-based WEB files. CWEB is the work of
Silvio Levy of Princeton.

A few minor bug-fixes have improved the suite
of PK utilities in ./mf84/MFware. These, and some
C versions of the same programs were provided by
Tom Rokicki. A new directory, ./mf84/MFcontrib,
includes some PostScript utilities and PXtoGF, which
was brought into Unix compatibility by Karl Berry.
It was the availability of this program which made
it possible to convert the AMS Cyrillic and special
symbol fonts into GF format. Tom Rokicki is
presently putting the finishing touches on the WEB
source for PKtoGF, which will make it possible to
send out more fonts in less space without excluding
the large number of output drivers which use GF
format.

The most important unfinished business in all
the above is the extension of the TEX-to-C approach
to METAFONT, TpXware and MFware. If all the
standard WEB programs could be interpreted into
ANSI draft standard C code, as has been done
with TEX, it would be possible to eliminate the
proliferation of system-dependent change files from
the UNIX distribution and to target the large and, so
far, inadequately served System V UNIX community.
Above all, we need a bootstrap tangle.c.

Up till now, the distribution tape has offered
a small range of precompiled binaries of TEX and
METAFONT. This makes less and less sense when
even VAX no longer means a single architecture
and the binaries will soon be dropped. It might
be desirable, however, to send out a variety of
precompiled tangle executables. I can offer tangle
precompiled on a VAX11-750, a VAX8550, a Sun2

44

(MC68010) and a Sun3 (MC68020). If people will
send me precompiled tangle executables for other
architectures in btoa format, I will put them on the
distribution as I receive them.

Since almost all DVI drivers now use either
GF or PK format fonts, the PXL directory has been
removed from the distribution. In compensation, a
larger range of precompiled GF format files is being
sent out, but even these can target only a small
number of devices. Lowres and CanonLBP fonts
(200 and 240 dpi) are still well represented, but
I wonder how many 240 dpi devices are still in
use? At 300 dpi, both write-white and write-black
fonts are provided (the write-white is tuned for the
Ricoh 4080 print engine, and the write-black for
the ubiquitous CanonCX). If you have any 300 dpi
device at all, one or other of these compilations
will serve as a temporary resource, but you will
probably want to recompile to get the best out of
a print engine that is neither of the above. That
unhappy compromise, the 118 dpi font, is also still
with us. The AMS Cyrillic and special symbol
fonts exist only in write-black versions because they
were compiled long ago on a Tops20 machine in old
METAFONT-in-sAIL, and I cannot recompile them.

Several of the output drivers have been revised
by various contributors to the distribution. Scott
Simpson of TRW has completely rewritten the
driver for QMS/Talaris, which is now known as
quicspool. The basic README file for this is worth
reading even if you don’t run a QMS machine.
The entire ctex system has been reworked, and
enhanced by the addition of System V code and
routines for a previewer on the ATT 5620 supplied
by Lou Salkind of NYU. There is also a new
pair of previewers, texsun and texx, running
under SunViews and X, respectively, which was
contributed by Dirk Grunwald of the University
of Illinois. The backbone of the system is the
library developed by Chris Torek at the University
of Maryland. The ctex library has already spawned
a larger number of derived systems than any other,
and it seems appropriate to suggest here that drivers
written in C might profitably be adjusted to make
use of as much common code from ctex as possible.
GF and PX interpreter modules are beginning to
proliferate, and they all do essentially the same
thing. If there is some strong argument of increased
efficiency in one of the interpreters outside ctex
then surely the techniques could be incorporated
into the ctex library.

The LN03 was provided with a new driver by
Matt Thomas in September, but his shipment of
code got lost in a mail crunch. My apologies for

TUGboat, Volume 9 (1988), No. 1

not unwrapping it earlier. In any case it is on the
distribution now.

There is no major new development in dvi2ps
ready for release as yet. I have increased the array
sizes to reflect the fact that GF format permits 256
character fonts, and have changed the meaning of
the -d flag so that it can be used to change pixel
density. The default remains 300 dpi, but a flag
value of -d 600 is available for devices such as the
Varityper VT600. The header file tex.ps needs to
be completely rewritten to eliminate the dozen or so
300 dpi-isms, and allow for some sort of conditional
coding. For now, a 600 dpi version has been added
to the distribution under the name tex6.ps. This
automatically replaces the default tex.ps when the
600 dpi flag is used.

The foreign-language ./babel directory is at
last beginning to grow. In addition to Portuguese
there is now a German section, with a German
hyphenation file, a Swedish section with a complete
package of macros for Swedish-Language I#TEX,
and a Semitics section with a first pass at TeX-XeT.
In the near future, I hope to add a machine-
independent change file for use with TEX-to-C,
which will make TeX-XeT much easier to compile.

TEX to C Converter

Tim Morgan
University of California, Irvine

Tomas Rokicki and I have developed a set of
programs, makefiles, shell scripts, and a changefile
which can automatically convert tex.web into a C
program. We are very glad to say that the entire
conversion package has been placed in the public
domain, and it is being distributed by the UNIXTEX
site coordinator, Pierre MacKay, at the University
of Washington. It’s also available for anonymous
ftp from Internet host “ics.uci.edu”.

There are still a number of developments in
progress as of this writing. Several people are
working on adapting the conversion software to
work for METAFONT, and this effort is nearing
completion. We are currently looking for someone to
convert the TEX ware and METAFONTware programs
to C as well, preferably via an automated process.
Once tangle, in particular, is available in C, a site
with only a C compiler will be able to bring TEX

TUGboat, Volume 9 (1988), No. 1

and METAFONT up starting with only sources on
the UNIXTEX distribution tape.

The C source which is generated is fairly
efficient and portable. It passes through lint with
no unexpected complaints, and I've tried the code
on a number of different UNIX systems. In all
cases, and with versions of TEX from 2.2 to 2.9,
the resulting executables easily pass the trip test
on the 4.2BSD-based machines available to me for
testing. The environments in which I've tested
the code include a VAX-11/750 running 4.2BSD,
SunOS 3.2 on a Sun-3, Sequent Dynix 2.1.1, and
Integrated Solutions UNIX version 3.07. The code
turned up minor bugs in the VAX, Sun, and Sequent
compilers, but workarounds were found in all cases.
I was also able to compile the C sources and pass
the trip test using the System V compilers supplied
by Sun and Sequent. As long as there is sufficient
memory available, I believe that this code can be
easily ported to any C environment. It has been
in production use at the University of California,
Irvine, for over six months. Although improvements
in the conversion process are still being made, the
code which is generated remains almost the same,
so I consider it to be highly stable.

Obviously, the most important thing is that
TEX is converted automatically into C. This feature
makes it easy to track new versions of TEX as they
become available. A changefile is used to handle
many of the necessary changes, and therefore a
working tangle is required. The output from tangle
is mainly PascaL, although with a C flavor. It
is then converted into C and split into multiple
modules by a pipeline of other programs. The
entire process is automated, so all the user need do
is type “make”.

45

VAX/VMS Site Report

David Kellerman
Kellerman & Smith

There is a new version of the VAX/VMS distribution
available from Kellerman & Smith. TEX is at version
2.9 and changing quickly, METAFONT is at version
1.3. Most of the other software, most of the macro
packages, the font sets, and the packaging of the
release have also changed since our last release.

The repackaging is perhaps the biggest change
to the new distribution. Over the years, our
conversations with new users of TEX have made it
clear that this enormous and complex package has
all the intrigue of a giant puzzle for many users,
but has, well, the frustration of a giant puzzle for
many others. To help make TEX more accessible to
the increasing number of users who hold the latter
view, we have rearranged it into pieces that can be
installed selectively with the standard VMSINSTAL
mechanism. This should be of particular benefit to
users who want to get TEX or I£TEX going quickly,
who need to fit a system into very little space, or
who are working in a cluster environment. (You old
pros can still install it by hand if you want to.)

The font sets, based on new Computer Modern
METAFONT sources, have been expanded to mag-
steps 0-8 for both the XEROX XP-12 (QMS) and
the Canon CX (IMAGEN). They are distributed in
PK format and come with a new utility program,
XXtoXX, that converts between GF, PK, and PXL
formats (all combinations) and converts from one
RMS record format to another. The XXtoXX
utility is fast, it can convert multiple files in one
execution, and we have tested it more thoroughly
than some of our earlier changes to font conversion
utilities.

The TATEX and SLITEX macros are updated.
Also, we now provide all the fonts they require, and
the XXtoXX utility can produce SLITEX “invisible”
fonts to match any normal font.

The contributed software on the release in-
cludes the LNO3 driver from Flavio Rose, the
PostScript driver and screen previewers from An-
drew Trevorrow, and the MWEB software (Modula-
2 WEB) from Wayne Sewell.

The software is now available on either 2400’
magtape at 1600 bpi or TK50 cartridge, and costs
$200.00 (U.S.) including shipping within the U.S.
and Canada. Add $50.00 (U.S.) for air parcel post
shipment to other countries.

46

Typesetting
on Personal Computers

Writer’s Tools I:
PC Spelling and Grammar Checkers

Alan Hoenig and Mitchell Pfeffer

In my pre-TEX days, I was “heavy” into spelling
and grammar checkers. They were such convenient
shortcuts that it was like getting something for
nothing. These programs were tailored to suit my
word processor, and I had to give them up when I
replaced that word processor with TEX. None of
them had any problem accepting my TEX source
files— ASCII was usually easier for them than
the special-format word processing files— but they
usually stumbled over TEX’s embedded commands.
Since then, these programs have become much more
robust. It’s appropriate to take a look at them to
see how helpful they might be today.

Spelling Checkers

Spelling checkers offer the fewest problems for use
with TEX, and almost any decent one is worth
your while. It’s notoriously difficult to proofread
your own work anywhere near accurately. All spell
checkers let you build up auxiliary dictionaries for
the TEX commands in your documents. I looked
for speed and the absence of idiosyncratic behavior
in the presence of TEX. One particularly annoying
problem is the inability of some of them to use digits
to delimit a word. Thus, “vskiplpt”, “vskip2p”,
“yskip3p”, and so on are all distinct words to these
spell checkers. You can’t, therefore, add “vskip” to
an auxiliary dictionary. (This problem won't apply
to all the Goody-Two-Shoes who conscientiously
add proper spacing to separate their commands
from their qualifiers.)

I tried several programs for this column, and
two are worth commenting on. Webster’s New
World Spelling Checker was fast, but it suffered
from the embedded digit syndrome I mentioned
above. Its dictionary contains 110,000 words, and
it will catch repeated words. Apart from the
embedded digit problem, it was also difficult to run
NWS across subdirectory boundaries. That is, if
a file is in directory \articles and the software
is in \spell, I could not invoke the program
from the \articles subdirectory. This is a bit
of a bother. The brightly-bound user manual is
quite adequate; you’ll have no problem getting

TUGboat, Volume 9 (1988), No. 1

this program up and running. (Webster’s New
World Spelling Checker, Simon & Schuster Software,
1230 Avenue of the Americas, New York City 10020;
$59.95)

Altogether more satisfactory is the top-rated
MicroSpell from Trigram Systems, even though
its dictionary contains a ‘mere’ 80,000 words. It
works like lightening, and I can run it from my
document subdirectory. I can configure it to treat
digits as word boundaries, so I can add “vskip”
and so on to my auxiliary dictionary. It also will
catch repeated words and do simple capitalization
and punctuation checking. It's particularly good
at guessing at what [really meant in instances
when I really mangle a spelling. You’ll have no
problem with the manual, or with installing and
using it. A winner. (MicroSpell, Trigram Systems,
5840 Northumberland Street, Pittsburgh, PA 15217;
(412) 422-8976); $69.95)

T was unable to locate any spelling checker that
treats the backslash as a letter. Therefore, while all
could catch my “hobx-es” and my “medksips”, none
could tell me when I forgot the leading backslash.

Grammar Checkers.

Grammar checkers are more problematical. Are
they ever any good? It’s doubtful they can make
you a great writer, or even a good writer, but their
suggestions will prevent you from committing most
major solecisms. They are particularly good at
catching the passive voice syndrome (“it is to be
hoped...”) which infects so much technical writing.
Since TEX's commands fit into no syntax scheme,
grammar checkers usually stumble badly over TEX
source. The problem is acute in those programs
which provide on-line analyses of your writing. You
can’t tell them to bypass command sequences, about
which they persist in complaining. It takes forever
to analyze a file in these circumstances.

If used conscientiously, grammar checkers put
themselves out of business. After awhile, one
becomes adept at avoiding the errors grammar
checkers pick up.

The best for use with TEX is Right Writer. It
creates a separate file for its analysis. Although
this contains a record of every unmatched delimiter
(it won't look to the next line) and of every
halign table (which is a long, complex sentence
to it), at least you can zip past these messages
and concentrate on matters of substance, like the
passive voice, padded and redundant phrases, and
archaic or technical usage. As a bonus, the program
“orades” you by assigning numerical values to the
readability, strength, degree of description, and

TUGboat, Volume 9 (1988), No. 1

usage of jargon of your document. Yuppie writers
will enjoy competing against themselves! Finally,
when you've finished ignoring or implementing its
comments, you run your file through the program
to strip out its comments. RightWriter is easy to
set up and use. (RightWriter; RightSoft, Inc., 2033
Wood Street, Ste. 218, Sarasota, FL 33577, (813)
952-9211; $95)

In non-typesetting situations, reviewers award
first place to Grammatik II, and it’s easy to see
why. Its developers gave it slick packaging and
included well-written manuals. Not only does it do
its job well, but it is almost endlessly configurable.
You can tell it which error types to ignore, and
you can revise its rule dictionaries so Grammatik
will search documents for your own idiosyncratic
mistakes. You can instruct it to run silently and
include its error reports within your file, but it lacks
one essential capability for TEX users: the ability to
strip these messages out when you're finished with
them. (It’s easy enough to create a Pascal filter
to excise them because these inclusions all have a
standard format. You may decide Grammatik’s
extra functionality is worth this extra effort.) One
of Reference Software’s personnel told me that they
have scheduled the release of a major upgrade,
Grammatik III, for mid-spring. (Grammatik II;
Reference Software, 330 Townsend St., Ste. 131, San
Francisco, CA 94107 (800) 872-9933; $89.00)

A program called Readability is not quite a
grammar checker, but not quite not one either.
Originally developed in Sweden (of all places),
it performs extensive statistical analyses on your
prose, informing you (in sophisticated displays) how
many long sentences you have, how many long
words you use, how many runs of long words you
have, and so forth. The program generates some
overall comments on your document, and allows
you to redo these analyses assuming your document
fits into several different categories, such as novel,
juvenile book, newspaper article, bureaucratic gob-
bledygook, and others. Readability won't catch the
passive voice or repeated words, which is why it
isn’t a grammar checker. This program displays
its non-English origins in some amusing typograph-
ical errors in its (otherwise excellent) manuals and
screen displays.

My impression is that the quality of one’s
writing will soar should an author conscientiously
use the results of Readability to re-work the doc-
ument, particularly if you use it in conjunction
with a program like RightWriter. The key word
in that sentence is conscientiously. A lot of work
is involved, and most of the people I know who

47

put pen to paper (or the electronic equivalent) are
wanting in that trait. (Readability; Scandinavian
PC Systems, 3 Brookside Park, Old Greenwich, CT
06870, (203) 698-0823; $59.95)

In a forthcoming TUGboat, we’ll cover addi-
tional writer’s tools.

Grapevine Reports of
Inexpensive Versions of TEX

Alan Hoenig and Mitch Pfeffer

The TEX community may be interested in two prod-
uct announcements we received & propos of cheap
versions of TEX available for PC-based systems. We
have not yet verified any of the claims of these
announcements, but we hope to report on them in
greater detail in an upcoming issue.

Gary Beihl (cad.beihl@MCC.COM; postal ad-
dress is MCC, 3500 West Balcones Center Cr.,
Austin, TX 78759; 512-353-0978) has recently com-
pleted a port of TEX2.7 to MSDOS using Datalight’s
C compiler. ‘DosTEX’ has passed the TRIP test and
may be freely distributed provided that all copies
are complete and unmodified, and that no fee may
be charged for redistribution. Your system will need
640K memory and 4.5MB hard disk space. A mod-
ified version of Nelson Beebe’s Epson .dvi driver
is included. Output is 420hx216v dpi. DosTEX
compiled the TEXbook at about 15 sec/page on
a 6Mhz, 1 wait state, AT clone. The package
contains a fairly complete texinputs directory, and
a reasonable subset of the grand ensemble of CM
fonts. DosTEX comes to you complete on seven
360K floppy diskettes plus installation instructions
minus any warranty or support, although Gary will
attempt to fix bugs in a timely fashion. DosTEX
is priced at US$75 (US$85 foreign), and a check
or money order payable to Electronetics should be
mailed to Electronetics, Inc., ¢ Gary Beihl, 119
Jackrabbit Run, Round Rock, TX 78664.

Richard Kinch has also ported TEX to the
C language, and dubbed the result ‘Turbo-TEX.’
Pricing for the Turbo-TEX software and documen-
tation range from $99 for the IBM-PC compatible
version to $2000 for a VAX version. The price for
a source-code kit for the IBM FC, including the
Turbo-TEX C source code and the Microsoft C com-
piler 5.0, is $650. Complimentary demonstration
copies of Turbo-TEX for PCompatibles, AT&T Unix

TUGboat, Volume 9 (1988), No. 1

complex expressions) when encountering limits of a
given C compiler.

Since we wrote the translator itself in C, the
only compiler needed to build TurboTgX from
tex.web on a new, stand-alone machine is a C
compiler. (We also apply the translator to TANGLE.)
We maintain portability for all the translation tools,
and not just the TEX program.

A further goal was to have a single C source
for all target machines and operating systems. C is
suitably adept at conditional compilation with its
standard preprocessor, and we used that language
feature to keep a unified C source for both Unix
System V and MS-DOS. We used only features
common to the various C language standards to
minimize the amount of conditional code. We
also combed out all operating system dependen-
cies into small, hand-written, separately-compiled
source filles. We maximized the portability of the
source code by carefully designing the translator to
produce only portable C constructs.

Finally, our watchwords were “correctness”
and “certifiability”. We designed a product that we
could finish on a limited schedule and budget, but
which would still be a full implementation of TEX.
Thus we tended to decide design details in favor of
conserving simplicity of the handwritten code wvs.
saving execution time or code size.

Creating PASCHAL, Our Pascal-to-C
Translator

The bulk of the TurboTEX project involved the
Pascal-to-C translator, which we named PASCHAL.
We chose a name so close to “Pascal” because
we wanted to emphasize the equivalency of the
C output to the Pascal input. When speaking
aloud, one may pronounce the name “PASCHAL”
with a Mediterranean accent to distinguish it from
Pascal, and thereby also emphasize the etymology
of both terms in Greek (Pdscha) and Hebrew
(Pesakh). (Those unaccustomed to these languages
may simply raise the pitch of the second syllable
over the first.)

We were fortunate to have had experience
writing large programs in both Pascal and C, so
that we had a clear understanding of the issues
involved in translating one into the other. We also
have written several language-based translators for
other applications.

The two languages are thoroughly similar in all
but a few features, and TgX is restrained in the use
of Pascal’s distinctives. In the cases of a few hapar
legomena, we simply rewrote the difficult Pascal
statements in a more common dialect.

49

Our development system, an AT&T 3B1 run-
ning Unix System V, provided the YACC and
Lex tools to automate the production of PASCHAL’s
parser. We also referred to the grammar from
the Berkeley pc Pascal compiler (likewise written
in YACC) to guide us in designing and writing
PASCHAL’s parser.

To date, PASCHAL has required 240 hours of
senior programmer effort and a total of 3200 lines
(10,800 words) of source code in YACC, Lex, and
plain C. The PASCHAL executable on our machine
is only 62K bytes (not counting dynamic memory
used for storing pending output).

The various modules of PASCHAL organize as
follows: the main function to interpret command-
line options and input file names, the lexical ana-
lyzer, the syntax tables and semantic actions of the
parser, dynamic memory allocation, string handling,
symbol table, parameter list interpreter, subrange
interpreter, non-scalar type analyzer, variant record
decomposition, and function-return-value replace-
ment.

Besides the PASCHAL translator proper, we
created a run-time “Pascal Compatibility Library”
in C to replace the Pascal run-time library, and a
header file, paschal.h, which contains macros used
by the PASCHAL output.

Translating TEX to “Pure” C

We will now discuss translating TEX in Pascal to
TEX in C. We will defer the details of how we
translated operating-system dependencies, such as
the run-time library and I/O, until the following
sections on Unix and MS-DOS.

The easiest parts to translate include most of
the control structures, such as compound state-
ments, conditionals, loops, and so on. Using YACC
and a few string-handling functions does the job.
Certain cases, like Pascal for loops, have a more
complex meaning in Pascal than in C, and PASCHAL
puts in extra C statements to achieve the absolutely
equivalent effect.

One aspect we handle on the lexical level
is conflicts in reserved words. Some of TEX’s
identifiers, like int, are reserved words in C, so
we recognize them specially and prefix a “PCL” on
them before they reach the parser. In this way we
avoid any conflicts in the C output.

Also on the lexical level, we recognize the Pascal
built-in functions and procedures, and change them
into the names used in the “Pascal Compatibility
Library.” This library eventually links with the final
executable.

50

The lexical analyzer also handles conversion of
numeric and character constants into appropriate C
constants. Most operators also have a simple lexical
equivalent, such as Pascal’s “<>” and C’s “!=",

The operators and precedence in the two lan-
guages have a few subtle differences, requiring
special care in certain cases. For example, Pascal’s
“/" is strictly real division, while in C it is either
the integer modulo or real division, depending on
the operands. PASCHAL recognizes all such special
cases and is careful to clothe them in appropri-
ate parentheses and type casts. Built-in functions
can also be very tricky. For example, the Pascal
“abs” adapts implicitly to the type of the operand
while C’s “abs” is strictly integer. PASCHAL cages
chameleons like this with C preprocessor macros
that mimic the Pascal behavior.

Most cases of the Pascal type statement trans-
late into a C typedef. PASCHAL does an optimal
mapping of each Pascal subrange type into a C
char, short, int, or long, based on the storage
or execution speed profile of the target machine.
PASCHAL uses the C unsigned modifier to optimize
use of storage or execution time. PASCHAL trans-
lates Pascal const statements into C preprocessor
#define’s, thus permitting the C compiler to reduce
constant expressions at compile-time.

A Pascal record translates into an equivalent
C struct. In the case of variant record’s, C
union’s appear. The syntax of Pascal’s variant
record’s, however, is different enough from C’s
struct’s and union’s to make coding of the task
difficult. In some cases PASCHAL must generate
extra synthetic identifiers to label parts of the C
struct.

Arrays pose several problems. Pascal separates
items in lists of array subscripts with commas,
while C requires them to be each in square brackets.
Pascal permits array bounds to start from any
integer, while C always uses a zero lower bound.
Thus PASCHAL must keep a symbol table of array
names and their lower bounds, and insert an offset
into each dimension of each reference to an array
element.

When an array appears on the left side of an
assignment, we know in the case of TEX that it is a
string assignment. PASCHAL outputs C code to copy
a string in that case.

In Pascal, a function or procedure call may or
may not have a parenthesized actual parameter list,
so the translator has to maintain a symbol table to
know whether an identifier reference is to a variable
or a call.

TUGboat, Volume 9 (1988), No. 1

Pascal and C take different approaches to
declaring formal parameters to functions and pro-
cedures. Pascal does it sensibly, whereas C expects
you to recite the identifier list once in the paren-
theses and once again (with types this time, please)
after the parentheses.

Pascal and C use radically different methods
to return a value from a function. Pascal requires
that the returned value be assigned to the function
name and that control flow exit at the end of
the function body. C simply uses a built-in
“return” statement. Thus PASCHAL must insert
a synthetic returned-value variable declaration into
each function, convert all Pascal assignments of
return values to assignments to that variable, and
insert a return statement at the end of the function
to return the value of the variable.

To make separate compilation possible, PASCHAL
will gather external declarations for the whole Pas-
cal program together and create a C “include” file
from them. The functions of the C source may then
be arbitrarily split into separate source files for sep-
arate compilation. The PASCHAL accessory program
splitp, given an arbitrary number of lines, splits
the PASCHAL C output into smaller source files, each
containing about that number of lines.

In a few cases of Pascal language features, we
just change the TEX source (with the changefile) to
avoid a difficult Pascal feature that is rarely used
by TgX. For example, TEX uses Pascal’s non-local
goto's for error termination, and we follow Knuth'’s
suggested strategy by substituting a call to the C
exit () function.

Connecting TEX to the Unix System V
Environment

The matter of file I/O does not permit much in
the way of automatic translation. We modified by
hand TEX’s code for file opening/closing, text line
input, and read and write statements. The changes
convert these operations to use the C standard I/O
library. While this hand-crafted modification was
tedious, it amounted to only a few hundred lines
and was mechanical.

To the list of handmade modifications we must
add the *“dirty Pascal” which Knuth cites in the
index to TgX: The Program. C is able to perform
these tricks as well as Pascal.

C provides a standard way to access command-
line arguments, and we provide the customary TEX
features in that respect. Also straightforward in C
under Unix System V are: inveoking a sub-shell for
editing during a TEX run, detecting an interrupt
key-press, and determining the date and time.

TUGboat, Volume 9 (1988), No. 1

We use a novel method made possible by C
to obtain pre-loaded versions of TurboTEX. We do
not process core dumps into modified executable
images, which has been the strategy of such pro-
brams as the Berkeley Unis undump utility. Instead,
we created a utility program fmt2init in C, which
adds C initializers to the global declarations of the
TurboTEX source code, thus creating source code
for pre-loaded versions of TEX. The fmt2init
utility determines the proper global variable initial-
izations by executing the initialize function from
the TurboTEX source, and by analyzing the initex
format file which defines the preloaded state. This
method has several important advantages over the
core-dump method: (1) Complete portability of the
pre-loading process, since C initializers are portable
(as opposed to core-dump files which are inher-
ently non-portable), (2) Smaller executable files
and faster program loading, since C global variables
which are initially undefined or zero take no space
in executables compiled from C, and (3) Portability
of the initialized data, since C correctly initializes
items like character data for the underlying machine
architecture.

Once we had debugged our first version of
TurboTEX for Unix System V to where it would
process complex documents, we were ready to try
the TEX TRIP. To our satisfaction, TurboTgX
processed the entire TEX TRIP without error on the
first attempt.

Sugar-Coating Our Translation for
MS-DOS PC’s

Having finished our initial version for Unix System
V, we turned our attention to porting the TurboTEX
translation to the IBM PC and compatibles. For
this effort we chose the Microsoft C Compiler version
5.0, since this compiler offered a run-time library
compatible with the Unix standard I/O library, a
reputation of being bug-free, and accommodating
memory models for large programs like TEX.

The main issues of porting a large program
like TEX to the PC have to do with the unfriendly
architecture of the 8086 processor. Its limitations
arise partly from its being a 16-bit processor with
a 16-bit (64K byte) address space, and partly from
an illogical design to expand the address space to
20 bits (1M byte, reduced to 640K on the PC).

Taking the verified TurboTEX C source to
the PC and getting the code to compile and
run correctly required an unpleasant amount of
effort, almost as much as that to create PASCHAL.
However, we were aided by PASCHAL itself in that
as we discovered quirks in the way the PC executes

51

C, we were able to make small changes to PASCHAL
to correct whole classes of problems in the PC’s use
of the source code.

The main problems were: getting the pro-
gram %o run in 640K, getting correct coercion of
parameters in function calls, and getting I/O to
work properly with the changed operating system
environment.

Finishing with Output Drivers and Utilities

We ported Nelson Beebe's output drivers in C (see
TUGboat Volume 8, No. 1} to Unix System V.
Beebe’s source code, at the time we received it,
required only a few changes to compile and run
perfectly. At our site we use DVIJEP for the HP
LaserJet+ and DVIIBM for IBM-compatible dot-
matrix printers.

The font metric and bitmap files require no
translation, since they are in a completely portable
format to begin with.

Encore!

We have a number of items on our wish-list of
future upgrades.

In the course of translating TEX we first trans-
lated TANGLE. The WEB and other Pascal-based
utilities not strictly required to run TEX (WEAVE,
TFtoPL, etc.) will follow soon.

Previewers must be written for specific graphics
hardware, so we will first produce them for ounly a
few machines, namely the AT&T 3Bl and the IBM
PC, in order to have control over our own versions.

We would like to turn PASCHAL loose on META-
FONT next. The METAFONT source provides some
new challenges, but we are confident that our design
will adapt well to any problems involved.

As to ports to other machines, we hope to
complete them for the Apple Macintosh, IBM’s
0S/2, and VAX Unix and VAX/VMS. TurboTgX
may run unchanged on the two VAX operating
systems, but we have not yet attempted that port.

Since there is no object code standard for
the hundreds of various Unix System V machines,
those with Unix machines which we do not support
should obtain the TurboTEX source code from us
and compile it for their machine.

There are several optimizations to TEX which
we hope to hand-craft in C for TurboTgX, including
rewriting the “inner-loop” code, optimizing near
and far pointers in the PC version, and using C
dynamic memory to optimize at run-time the use of
memory for arrays.

We would like to improve PASCHAL, or possibly
write a post-processor, to improve the looks of the

52

resulting C code. Like processed cheese, the food
value of the original is there, but the flavor is
changed and the texture is gone.

Distributing the Product

We have elected to make TurboTEX a “semi-
commercial” product within the US, that is, we
will charge a modest license fee for each copyrighted
copy of the binary and/or source code. However,
unlike other commercial versions of TEX, the source
code will still cost less than the other’s binaries.
We will distribute a complete package including
TurboTgX, utilities, and printer drivers.

Late-breaking News. We have completed some
preliminary benchmarks on the VAX BSD version of
TurboTEX, with encouraging results. We compared
TurboTEX in C to the public-domain Unix TEX
distribution in Pascal on a VAX 750. We observed
an execution speed-up factor of between 1.6 to 3.0
compared to the Stanford distribution TEX (the
factor varies depending on the type of document
being formatted). The size of the TurboTgX
executable code is about 60% of the distribution
version.

easy TpX

Ester Crisanti
Alberto Formigoni
Paco La Bruna

1 Introduction

1.1 easyTgX; o

TEX has introduced new powerful tools for scien-
tific documents typesetting, allowing formulae to be
easily built up through a linear language. As a new
tool using TEX, a project was born in 1984 at the Is-
tituto di Cibernetica (now Dipartimento di Scienze
dell’Informazione) dell’Universita degli Studi di Mi-
lano, Italy.

That project has produced easyTEX; o that we
propose as a new powerful tool for TEX documents
typesetting.

easyTEX is an interactive Formula Processor,
developed from the initial idea of Prof. Gianni
Degli Antoni, Dipartimento di Scienze dell’Informa-
zione, planned and implemented by TE CO GRAF

TUGboat, Volume 9 (1988), No. 1

with the collaboration of Dipartimento di Scienze
dell’Informazione dell’'Universitad degli Studi di Mi-
lano.

It allows the interactive typewriting of mathe-
matical formulae on IBM-compatible Personal Com-
puters. The formulae produced by easyTEX are
memorized in ASCII standard files, prepared in or-
der to be processed by TEX, either including such
files in other ones by means of the TEX command
“\input”, or using usual editor commands for file
merge.

The formula being built up is displayed on the
screen through the fonts created with METRFONT
and it is also possible to use every symbol and math-
ematical font.

The use of easyTREX is very simple, since the
user is driven in his work by a pop-up menu inter-
face, by means of which the choice of operators and
mathematical symbols is easily made. It is also pos-
sible to select some virtual keyboards which, because
they can be displayed on the screen, achieve a cor-
respondence with the physical keyboard, allowing
insertion of characters belonging to different alpha-
bets, like the greek, or a wide selection of mathe-
matical symbols.

Also, complex mathematical formulae can be
typeset in an easy way, similar to the one used in
writing by hand the same formula. Both for the
foregoing reasons, and because the positioning of
the cursor is automatically obtained through an in-
teractive construction of the formula on the screen,
easyTEX offers to the user a good facility for the
preparation of a TEX document.

easyTEX has been implemented using attrib-
uted grammar techniques, as developed by D.E.
Knuth. Programs have been written in C language.

2 Functional characteristics
2.1 User interface

The user communicates with easyTEX using pop-
up menus making the selection of commands simple
and fast. Using easyTEX, it is not necessary to know
editing languages or to learn a particular syntax for
the commands, because everything is done in an in-
teractive way.

2.1.1 The screen layout
The screen handled by easyTEX is structurally di-
vided into three separated areas named:

e Menu line

¢ Work area

s Status line

TUGboat, Volume 9 (1988), No. 1

The Menu-line is on the upper part of the screen
and displays a sequence of names each representing
a Menu name.

The Status-line is on the lower part of the
screen and contains a set of information concerning
easy TEX' state.

The Work-area occupies the whole part of the
screen extending between the Menu-line and the
Status-line and contains the formula the user is
working on.

2.1.2 The pop—up menus

Every pop—up menu contains a sequence of elements:

o Menu-name: its selection displays a different
pop—up menu

o Command-name: its selection executes the as-
sociated command

Selecting commands inside the pop—up menus is
very easy. You have first to activate the “menu
mode” through the F1 key. On the screen you will
see the pop—up menu and any command or menu
may be selected by stroking the name capital let-
ter or positioning the cursor on the name (through
the two keys <|> and <1>) and then stroking the
< ~ > key. If you have chosen a Command-
name, the operation is immediately performed; on
the contrary, if you have chosen a Menu-name, on
the screen you will see the corresponding pop-up
menu.

The organization of pop—up menus in easyTEX
is hierarchical. At the first level there is the Menu-
line and at the second the Operator and General
pop—up menus. In the Operator pop—up menu there
are some Menu—names, whose selection performs the
displaying of other pop—up menus forming the third
level.

2.1.3 Virtual keyboards

The selection of the characters belonging to different
character fonts is made through a system of virtual
keyboards.

easyTEX associates to every character font a
virtual keyboard, in which a symbol of the cur-
rent character font corresponds to each key of the
physical keyboard. During the working session of
easyTEX it is possible to display the virtual key-
board. easyTEX provides five virtual keyboards:

e Italic

Romanic
Boldface
Greek

Symbols

53

2.2 How to build up a formula

Suppose you to want to input the formula:

Viz) = /01 F(z)dz

You first have to write the “V(z) =" string; this
is done very easily: the association between the
virtual keyboard and the physical one has not
changed the meaning of the keys. We have there-
fore the following result, with the position of the
cursor represented by the box:

Viz)=0U
Now you have to write the integral. After activat-
ing the “menu mode” by the function key F1, from
the Menu-line you select the Menu—name Operator.
On the screen you will see, under the element se-
lected from the Menu-line, the corresponding pop-
up menu:

Operator
Triple
Fraction
Root
Exponent
Index
Block
Matrix
triG
Accent
Dots

General |

Let’s now select the Menu-name Triple and you will
see now on the screen, by the side of the element se-
lected by the pop—up menu, the window containing
the corresponding pop—up menu:

Let’s finally select from the Triple pop—up menu the

Operator | General
Triple Integral
Fraction | Sum
Root limiT
Exponent | loG
Index Ln
Block Min
Matrix maX
triG uniOn
Accent interseCt
Dots proD
iNf
sUp
liminF
limsuP
overbrAce
underBrace

Command-name Integral, obtaining:

94

Viz) = /E]

Not only the integral symbol has been displayed, but
also the cursor has been correctly positioned to write
the lower limit and the font in use has been reduced
from size 10 pt to size 7 pt. This size reduction
has also changed the cursor dimension. It is now
possible to insert the lower limit, obtaining:

In order to set the end of the lower limit you stroke
< 2>

The cursor is automatically positioned on the upper
limit. This is written as the lower limit and, when
closing it through the < . >, you obtain:

/ 0

At last you input the “F(z)dz” string, obtaining the
complete formula:

1
V(z):/o F(z)dz O

2.3 The editing commands
2.3.1 The cursor movements

A mathematical formula consists of strings (i.e.,
strings of alphanumeric characters and symbols) and
of a class of structures, such as fraction, triple, root
and so on.

Every complex mathematical formula may
therefore be decomposed into simple formulae,
which are in turn reduced to single characters. For
instance, in the same way as the string consists of

single characters
[a[+]b[=Tc]

you can single out in a fraction the numerator and
the denominator; each of these may in turn consist
of other mathematical structures or of strings.

numemtor
denommator

e [

sin [trigonometric, stm’ngJ

The splitting of a formula into strings and struc-
tures simplifies the movements across a mathemati-
cal text. easyTEX allows two movement modes:

e by character
e by structure

The initial movement mode is by character.

TUGboat, Volume 9 (1988), No. 1

Let’s now see how the structure movements take

place, considering a simple formula:
(oo}

2. (=Dun
=
As you want to move in structure mode, you have

to stroke the < home > key. On the screen you will

now see:
[e)

> (-
The cursor contains the “string” structure “n = n”.
This is consistent with what we said above; actually
the lower limit consists of a string and of an index,
and the cursor was positioned on one of its charac-
ters. By again stroking < home > the cursor gets

the dimensions of the entire summation lower limit:
oo

Z (=1)"un

n=no

By stroking < home > again the cursor gets the di-
mension of the entire “Triple Summation” structure:

Z (=1)"un

n=ng

and at last, by stroking < home > again the cursor
gets the size of the entire formula:

o0

Y (1) un

n=ng

Let’s now stroke the < end > key. The cursor gets
the size of the summation lower limit:

Z (=D uy

and stroking again the < end > key, the cursor gets
the size of the first structure of the lower limit:

(oo}

2 (1)un
and by typing another < end >, the cursor gets the
size of the first string character:

> (1"un
[n =m0
This explanation may appear very complex, but us-
ing the < home > and < end > keys is actually very
easy and allows the crossing of a formula in a faster
way than the one provided by the character mode.
If any mistake is made, for example by including a
structure more external than the one you want, this
is immediately visible, as the cursor gets always the

TUGboat, Volume 9 (1988), No. 1

size of its content, and the two keys < home > and
< end > let the user re-establish the desired situa-
tion.

2.3.2 Deletion of characters and structures

easyTEX provides the possibility of deleting any
character or mathematical structure that the cur-
sor movements can visit. Two keys are available for
deletion:

o < BS > (backspace key)
e < del> (delete key)

Backspace The usefulness of this key is evident
during the input of a formula in case of a stroking
mistake. For example, in the formula:

2.

nznGD

We have a wrong index. By stroking < BS > you

obtain:
>

n:nD

Delete By means of this command, it is possible
to delete the portion of the formula included by the
cursor. The combined use of < home > and < end >
makes easier the selection of what is to be deleted.

2.3.3 Insertion of characters and structures

To add a new part to the formula, it is sufficient
to stroke what you want to input, with the normal
procedure. On the contrary, if the new part is to be
inserted in the middle of the formula, you have first
to move the cursor to the position immediately after
where the new part is to be placed. Considering
our example, if you want to vary the lower limit by
adding the “; = 0,” string, you have to stroke the
key <>, positioning the cursor as follows:

n
Ti= —) ATk
O

and then to input the string, obtaining:

n
T, = — Z ATk
j=0,=1
If you want to input a mathematical structure,
you have to use the same method. For example, let’s
insert a fraction before the summation. You have to
move the cursor to the Summation, by using the keys
<> and < home >, and you get to this situation:

n=- %

7k Tk

55

Let’s now select from the Operator pop—up menu
the Command-name Fraction, yielding:

D m,n
T, = —— Z /\J‘k:llk

7=0,k=1
Let’s then insert the numerator and the denomina-
tor, yielding:

W m,n
Ty, = ——— Z /\3'ka
SOD]‘:O,k:l
easyTEX provides also the insertion of mathemati-
cal structures and of characters after the cursor po-
sitioning.

2.4 The TgX-interface command

easyTEX .o is designed only to produce formulae to
be inserted into TEX documents. Therefore, after
building up the formula, easyTEX has to properly
organize it so that it can be processed by TEgX, i.e.
easyTEX has to translate it into TEX source format.
TEX is able to produce a formula in two different
ways:
e in text mode: when the formula is on a line
with normal text
e in display mode: when the formula is alone on
a line.

The two representations differ remarkably only as to
the size.

2.5 How to insert the formulae into the text

The combined use of easyTEX1 0 and of TEX allows
the creation of documents consisting of normal text
and mathematical formulae.

You first have to recognize the parts of the doc-
ument you have to produce with easyTEX and to
associate a name to each one. Then, you have to
build each formula up by easyTEX and to request
its translation into TEX format.

Next, you build up the current text by means
of the text—editor and then, in the proper positions,
you input the mathematical formulae produced by
easyTEX in one of the two possible ways:

e by using the TEX command:
\input < file name>

e by using the text—editor command to merge
two files (for every formula).

At this point, the document is ready to be processed
by TEX.
Future developments

Two other releases will be carried out for easyTEX.

56

easyTEXq ¢ will have an interactive Word-Pro-
cessor that will immediately show the action of all
commands.

Besides all the usual word processing func-
tions, easyTEX will allow the interactive and auto-
matic pagination of the text and will perform wrap-
arounds, applying, if necessary, an algorithm for hy-
phenation.

The document layout may be established by the
author or selected from a library of standard doc-
ument layouts. This library may be updated and
extended by the author, thus allowing him to cre-
ate his own document layouts library. The author
may, anyway, locally change the document layout
for special purposes.

A fundamental characteristic of the Word-Pro-
cessor is the usage of fonts. easyTEX enables the use
of several typographical fonts; the author may select
different fonts within the text, and the resulting text
image will be displayed interactively on the screen
yielding a WYSIWYG interactive Word-Processor
and Formula-Processor. Fonts can be selected from
a library.

Since easyTEX, to set a page, looks up the dif-
ferent sizes of characters, the space between two
lines is adjusted according to the biggest charac-
ter (box) of the second line; the justification, on
the other hand, is carried out re-arranging adequate
units (pixels) of white space between words.

easyTEX2 o will have a Box—Processor that will
allow text integration with “objects” (i.e., texts such
as spread sheet tables, and images such as pictures
and drawings) produced by other systems and whose
file formats are known.

Using several commands, the author will be
able to define, edit (copy, move, change, etc.) and
format empty “boxes” within the text, which may
be filled with the “objects” created by other systems,
and contained in ASCII (for instance, PostScript
files) or bit-map files whose file format is known;
in the latter case, the images must already have all
the characteristics necessary to make them printable
on the target device, as easyTFX ¢ performs scaling
of images only between printer and screen formats.
Anyway, easyTEX2 ¢ is not an “Image Processor”; it
is able, however, to give a text—image integration.

easyTFXs o will also produce a source file for
TEX, for more powerful processing through passive
commands, i.e., commands ignored by easyTEX and
passed to TgX for fine-tuning purposes.

We have received some other suggestions for ex-
tensions to easyTEX, such as the integration of an-
other environment devoted to graphs design, useful

TUGboat, Volume 9 (1988), No. 1

in industrial project design; we are now evaluating
the opportunity for such extensions.

We have also been requested to design a Doc-
ument Data Base, based on a Local Area Net-
work among PCs and a host system and using
CD-ROMS, able to solve documentation (also tech-
nical) problems in industrial organizations. Such
a system, based on TEX and easyTEX, builds on
the experience we have gained with SDDS, to-
gether with Mondadori publishing company, CILEA
and Universitd di Milano, Dipartimento di Scienze
dell'Informazione, as one of the DOCDEL experi-
ments supported by the Commission of the Eurc-
pean Communities.

4 easyTEX hardware requirements

easyTEX runs on PC-IBM and compatibles
equipped with the MS DOS operating system, re-
lease 2.0 or later.

easyTEX needs one of the following graphic
cards:

e Hercules or Herculeslike card

(720x348 pixels),

e IBM Enhanced Graphic Adapter (640x350
pixels),

o OLIVETTI M24 Graphic Card (640x400 pix-
els},

e NCR P(C6/8 Graphic Card (640x400 pixels),

e other graphic cards compatible with those de-
scribed.

graphic

5 References

TE CO GRAF snc. is a company working on elec-
tronic publishing, in collaboration with the Dipar-
timento di Scienze dell’Informazione dell’Universita
degli Studi di Milano, Italy.

Refer to Paco La Bruna for any question.

TE CO GRATF snc

Via Plinio, 11

20129 MILANO, ITALIA

Phone: 2-20 81 50 and 2-27 80 63

Telex: “340160 PER TECOGRAF”

56

easyTEXz o will have an interactive Word-Pro-
cessor that will immediately show the action of all
commands.

Besides all the usual word processing func-
tions, easyTEX will allow the interactive and auto-
matic pagination of the text and will perform wrap-
arounds, applying, if necessary, an algorithm for hy-
phenation.

The document layout may be established by the
author or selected from a library of standard doc-
ument layouts. This library may be updated and
extended by the author, thus allowing him to cre-
ate his own document layouts library. The author
may, anyway, locally change the document layout
for special purposes.

A fundamental characteristic of the Word-Pro-
cessor is the usage of fonts. easyTEX enables the use
of several typographical fonts; the author may select
different fonts within the text, and the resulting text
image will be displayed interactively on the screen
yielding a WYSIWYG interactive Word-Processor
and Formula—Processor. Fonts can be selected from
a library.

Since easyTEX, to set a page, looks up the dif-
ferent sizes of characters, the space between two
lines is adjusted according to the biggest charac-
ter (box) of the second line; the justification, on
the other hand, is carried out re-arranging adequate
units (pixels) of white space between words.

easyTEX2 o will have a Box-Processor that will
allow text integration with “objects” (i.e., texts such
as spread sheet tables, and images such as pictures
and drawings) produced by other systems and whose
file formats are known.

Using several commands, the author will be
able to define, edit (copy, move, change, etc.) and
format empty “boxes” within the text, which may
be filled with the “objects” created by other systems,
and contained in ASCH (for instance, PostScript
files) or bit-map files whose file format is known;
in the latter case, the images must already have all
the characteristics necessary to make them printable
on the target device, as easyTEX2.o performs scaling
of images only between printer and screen formats.
Anyway, easyTEX2 ¢ is not an “Image Processor”; it
is able, however, to give a text-image integration.

easyTEXs o will also produce a source file for
TgX, for more powerful processing through passive
commands, i.e., commands ignored by easyTEX and
passed to TgX for fine-tuning purposes.

We have received some other suggestions for ex-
tensions to easyTEX, such as the integration of an-
other environment devoted to graphs design, useful

TUGDboat, Volume 9 (1988), No. 1

in industrial project design; we are now evaluating
the opportunity for such extensions.

We have also been requested to design a Doc-
ument Data Base, based on a Local Area Net-
work among PCs and a host system and using
CD-ROMS, able to solve documentation (also tech-
nical) problems in industrial organizations. Such
a system, based on TEX and easyTEX, builds on
the experience we have gained with SDDS, to-
gether with Mondadori publishing company, CILEA
and Universita di Milano, Dipartimento di Scienze
dell'Informazione, as one of the DOCDEL experi-
ments supported by the Commission of the Euro-
pean Communities.

4 easyTgX hardware requirements

easyTEX runs on PC-IBM and compatibles
equipped with the MS DOS operating system, re-
lease 2.0 or later.

easyTEX needs one of the following graphic
cards:

e Hercules or Hercules-like card

(720x348 pixels),

e IBM Enhanced Graphic Adapter (640x350
pixels),

e OLIVETTI M24 Graphic Card (640x400 pix-
els),

e NCR PC6/8 Graphic Card (640x400 pixels),

e other graphic cards compatible with those de-
scribed.

graphic

5 References

TE CO GRAF snc. is a company working on elec-
tronic publishing, in collaboration with the Dipar-
timento di Scienze dell’Informazione dell’Universita
degli Studi di Milano, Italy.

Refer to Paco La Bruna for any question.

TE CO GRAFT snc

Via Plinio, 11

20129 MILANO, ITALIA

Phone: 2-20 81 50 and 2-27 80 63

Telex: “340160 PER TECOGRAF”

TUGhboat, Volume 9 (1988), No. 1

Macros

A Tutorial on \expandafter
Stephan v. Bechtolsheim

Introduction

I have found from my own experience teaching TEX
courses that \expandafter is one of the instructions
that people have difficulty understanding. After
starting with a little theory, we will present a
number of examples showing different applications
of this instruction. Later in the article we will also
deal with multiple \expandafters.

This article is condensed from a draft of my
book, Another Look at TEX. See the end of this
article for more information about the book.

The theory behind it

\expandafter is an instruction that reverses the or-
der of expansion. It is not a typesetting instruction,
but an instruction that influences the expansion of
macros. The term erpansion means the replacement
of the macro and its arguments, if there are any,
by the replacement text of the macro. Assume
you define a macro \xx as follows: \def\xx{ABC};
then the replacement text of \xx is ABC, and the
expansion of \xx is ABC.

As a control sequence, \expandafter can be
followed by a number of argument tokens. Assuming
that the tokens in the following list have been
defined previously:

" \expandafter (token.) (token;) (token,)
... (token,) ...
then the following rules describe the execution of
\expandafter:
1. (tokene), the token immediately following \ex-
-~ pandafter, is saved without expansion.
2. Now (token;), which is the token after the

{tcken.}, is analyzed. The following

cases can be distinguished:

(a) (token;) is a macro: The macro (token;)
will be expanded. In other words, the
macro and its arguments, if any, will be
replaced by the replacement text. After
this TEX will not look at the first token
of this new replacement text to expand
it again or to execute it. See 3. instead!
Examples 1-6 and others below fall in this
category.

(b) (token;) is primitive: Here is what we can
say about this case: Normally a primitive

anvad
[sle) 4w 04

87

can not be expanded so the \expandafter
has no effect; see Example 7. But there
are exceptions:

i. (token;) is another \expandafter:
See the section on “Multiple \ex-
pandafters” later in this article, and
also look at Example 9.

ii. (token;) is \csname: TEX will look

- for the matching \endcsname, and
replace the text between the \csname
and the \endcsname by the token
resulting from this operation. See
Example 11.

iii. (token;) is an opening curly brace
which leads to the opening curly brace
temporarily being suspended. This is
listed as a separate case because it
has some interesting applications; see
Example 8.

iv. (token;) is \the: the \the operation
is performed, which involves reading
the token after \the.

3. (token,) is stuck back in front of the tokens
generated in the previous step, and processing
continues with (token,).

Examples 1 and 2: Macros and \expandafter

In these examples, (token;) is a macro. Assume the
following two macro definitions (Example 1):

\def\xx [#11{...}
\def\yy{[ABC]}

We would like to call \xx with \yy’s replacement
text as its argument. This is not directly possible
(\xx\yy), because when TEX reads \xx it will try to
find \xx’s argument without expansion. So \yy will
not be expanded, and because TEX expects square
brackets containing the argument of \xx on the main
token list, it will report an error stating that “the
use of \xx doesn’t match its definition”.
On the other hand \expandafter\xx\yy will

wark Naw hafara \ve ic avnandad +ha avnanginn
WOIK. IvOW, OCIOIC \XX 1S CXPaliGed, i CXPaiiSiunl

of \yy will be performed, and so \xx will find [ABRC]
on the main token list as its argument.

Now assume the following additional macro defini-
tion is given (Example 2):

\def\zz {\yy}

Observe that \expandafter\xx\zz will not work,
because \zz is replaced by its replacement text
which is \yy. But then \yy is not expanded any
further. Instead \xx will be substituted back in
front of \yy. In other words the expansion in an
\expandafter case is not “pushed all the way”; to

58

accomplish a complete expansion, one should use
\edef, where further expansion can be prevented
only with \noexpand. This example (using \zz as
an argument to \xx), which would not work with
\expandafter, does work with \edef:

% Equivalent to "\def\temp{\xx[ABC]}".

\edef\temp{\noexpand\xx\zz}

\temp

As a side remark: Example 1 can also be pro-
grammed without \expandafter, by using \edef:
% Equivalent to "\def\temp{\xx[ABC]}".
\edef\temp{\noexpand\xx\yy}
\temp

Example 3

In this example, (token;} is a definition.

\def\xx{\yy}
\expandafter\def\xx{This is fun}

\expandafter will temporarily suspend \def, which
causes \xx being replaced by its replacement text
which is \yy. This example is therefore equivalent
to

\def\yy{This is fun}

Examples 4 and 5: Using \expandafter to
pick out arguments

Assume the following macro definitions \Pick...
of two macros, which both have two arguments and
which print only either the first argument or the
second one. These macros can be used to pick out
parts of some text stored in another macro.

% \PickFirst0fTwo

% This macro is called with two

% arguments, but only the first

% argument is echoed. The second

% one is dropped.

% #1: repeat this argument

% #2: drop this argument

\def\PickFirst0fTwo #1#2{#1}

% \PickSecondOfTwo

./. RS EEEEEEEEEE=

% #1 and #2 of \PickFirst0fTwo
% are reversed in their role.
% #1: drop this argument

% #2: repeat this argument
\def\PickSecond0fTwo #1#2{#2}

TUGboat, Volume 9 (1988), No. 1

Here is an application of these macros (Examples 4
and 5) where one string is extracted from a set of
two strings.

% Define macro \a. In practice, \a

% would most likely be defined

% by a \read, or by a mark.

\def\a{{First part}{Second part}}

% Example 4: Generates "First part".
% Pick out first part of \a.
\expandafter\PickFirst0fTwo\a

% Example 5: Generates "Second part".
% Pick out second part of \a.
\expandafter\PickSecond0fTwo\a

Let us analyze Example 4: \PickFirst0fTwo is
saved because of the \expandafter and \a is
expanded to {First part}{Second part}. The
two strings inside curly braces generated this way
form the arguments of \PickFirst0fTwo, which
is re-inserted in front of {First part}{Second
part}. Finally, the macro call to \PickFirstO0fTwo
will be executed, leaving only First part on the
main token list.

Naturally the above \Pick... macros could be
extended to pick out x arguments from y arguments,
where r < y, to offer a theoretical example.

Example 6: \expandafter and \read

The \expandafter can be used in connection with
\read, which allows the user to read information
from a file, typically line by line. Assume that a
file being read in by the user contains one number
per line. Then an instruction like \read\stream
to \InLine defines \InLine as the next line from
the input file. Assume, as an example, the following
input file:

12

13

14

Then the first execution of \read\stream to \In-
Line is equivalent to \def\InLine{12 3}, the second
one to \def\InLine{13_}, and so forth. The space
ending the replacement text of \InLine comes from
the end-of-line character in the input file.

This trailing space can be taken out by defining
another macro \InLineNoSpace with otherwise the
same replacement text. The space contained in
the replacement text of \InLine matches the space
which forms the delimiter of the first parameter of
\temp in the following. Here, the macro \readn
reads one line from the input file and defines the

TUGboat, Volume 9 (1988), No. 1

macro \InLineNoSpace as that line without the
trailing space:
\newread\stream
\def\readn{%
\read\stream to \InLine
% \temp is a macro with one
% parameter, delimited by a space.
\def\temp ##1_{%
\def\InLineNoSpace{##1}}%
\expandafter\temp\InLine
}

Example 7: Primitives and \expandafter

Most primitives trigger no actions by TEX because
in general, primitives can not be expanded (a few
primitives are treated differently). In this sense,
characters are primitives also. Let’s look at an
example:

\expandafter AB

Character A is saved. Then TEX tries to expand, but
not print B, because B cannot be expanded. Finally,
A is put back in front of the B; in other words, the
two characters are printed in the given order, and
we may as well have omitted the \expandafter. So
what’s the point here? \expandafter reverses the
order of expansion, not of execution.

Example 8: \expandafter to temporarily
suspend an opening curly brace

\expandafter can be used to temporarily suspend
an opening curly brace. In the following case this is
done to load a token register.
% Allocate token registers \ta and \tb.
\newtoks\ta \newtoks\tb

% (1) Initialize \ta to "\a\b\c".
\ta = {\a\b\c}

% (2) \tb now contains "\a\b\c".
\tb = \expandafter{\the\ta}

% (3) \tb now contains "\the\ta".
\tb = {\the\ta}

% (4) \tb now contains "\a\b\c".
\tb = \ta

In (1) we load the token register \ta. In (2) the
\expandafter temporarily causes the opening curly
brace to be hidden, so that \the\ta is evaluated,
resulting in the generation of a copy of \ta’s
content. In (3) \ta is not copied because when
a token register is loaded, the new content of
it, enclosed within curly braces, is not expanded.
Finally, (4) is equivalent to (2), without using
\expandafter. '

59

More theory: Multiple \expandafters

Sometimes one needs to reverse the expansion,
not of two, but of three tokens. This can be
done. Assume that \a, \b and \c are macros
without parameters and \ex; stands for the ith
\expandafter. Then \ex; \exz \exz \a \exs \b
\c reverses the expansion of all three tokens. Here
is what happens:

1. \ex; is executed causing \exs to be saved.
Then TEX looks at \exs.

2. \ex3 is another \expandafter: TEX will
continue performing \expandafters!

3. \a is saved (the list of saved tokens is now \ex;
e \a).

4. \exy4 is now executed: \b is saved (the saved
token list is now \exs e \a e \b), and \c is
expanded.

5. Now all saved tokens \ex e \a e \b are
inserted back in front of the replacement text
of \c.

6. The first token on the main token list which
resulted from the operation of the previous step
is \exp, another \expandafter, which causes
\a to be saved again, and \b to be replaced by
its replacement text.

Finally \a is inserted back into the main token
list and replaced by its replacement text. The
execution continues with the first token of the
replacement text of \a.

One could summarize the net effect of this
sequence of \expandafters and other tokens as
follows (this is important for Example 8): in front
of the expansion of \c the ezpansion of \b is
inserted and in turn the expansion of \a is inserted
in front of that.

The above example can be “expanded” to
reverse the expansion of any number of tokens.
Very rarely the reversed expansion of four tokens
\a, \b, \¢ and \d is needed. Assume that all four
tokens are macros without parameters. Here is how
this is done:

\let\ex = \expandafter

% 7 \expandafters

\ex\ex\ex\ex\ex\ex\ex\a

% 3 \expandafters

\ex\ex\ex\b

% 1 \expandafter

\ex\c

\d
In general, to reverse the expansion of n tokens
(token;) ... (tokeny,), the ith token has to preceded
by 2"~% — 1 \expandafters.

-~

60

Example 8: Forcing the partial expansion of
token lists of \writes

\expandafter can be used to force the expansion
of the first token of a delayed \write. Remember
that unless \write is preceded by \immediate,
the expansion of the token list of a \write is de-
layed until the \write operation is really executed,
as side effect of the \shipout instruction in the
output routine. So, when given the instruction
\write\stream{\x\y\z}, TEX will try to expand
\x, \y and \z when the \shipout is performed, not
when this \write instruction is given.

There are applications where we have to expand
the first token (\x in our example) immediately, in
other words, at the time the \write instruction
is given, not when the \write instruction is later
actually performed as side effect of \shipout. This
can be done by:

\def\ws{\write\stream}

\let\ex = \expandafter

\ex\ex\ex\ws\ex{\x\y\z}

Going back to our explanation of multiple \ex-
pandafters: \ws corresponds to \a, { to \b, and \x
to c¢. In other words \x will be expanded (!!), and
{ will be inserted back in front of it (it cannot
be expanded). Finally, \ws will be expanded into
\write\stream. Now \write will be performed
and the token list of the \write will be saved
without expansion. But observe that \x was al-
ready expanded. \y and \z, on the other hand,
will be expanded when the corresponding \shipout
instruction is performed.

Example 9: Extracting a substring

Assume that a macro \xx (without parameters)
expands to text which contains the two tokens \aaa
and \bbb embedded in it somewhere. You would
like to extract the tokens between \aaa and \bbb.
Here is how this could be done:

% Define macro to extract substring

% from \xx.

\def\xx{This is fun\aaa TTXXTT

\bbb That’s it}

% Define macro \extract with three

% delimited parameters.

% Delimiters are \aaa, \bbb, and \Del.
% Macro prints substring contained

% between \aaa and \bbb.

\def\extract #1\aaa#2\bbb#3\Del{#2}

TUGDboat, Volume 9 (1988), No. 1

% Call macro to extract substring

% from \xx.

% Prints "TTXXTT".

\expandafter\extract\xx\Del

% which is equivalent to:

\extract Thig is fun\aaa TTXXTT
\bbb That’s it\Del

In a “real life example” \xx would be defined
through some other means like a \read. There is
no reason to go to that much trouble just to print
TTXXTT.

Example 10: Testing on the presence of a
substring

Now let us solve the following problem: We would
like to test whether or not a macro’s replacement
text contains a specific substring. In our example,
we will test for the presence of abc in \xx’s replace-
ment text. For that purpose we define a macro
\@TestSub$S as follows: (\@Del is a delimiter):

\def\@TestSubS #labc#2\@el{...}

Now look at the following source:
\def\xx{AABBCC}
% #1 of \Q@TestSubS is AABBCC.
\expandafter\QTestSubS\xx abc\@Del
\def\xx{AABBabcDD}
% #1 of \@TestSubS is AABB.
\expandafter\@TestSubS\xx abc\@Del

Observe that

1. If \xx does not contain the substring abc
we are searching for, then #1 of \@TestSubS
becomes the same as \xx.

2. In case \xx does contain the substring abc,
then #1 of \Q@TestSubS becomes that part of
\xx which occurs before the abc in \xx.

We can now design \IfSubString. It is a
simple extension of the above idea, with a test
added at the end to see whether or not #1 of
\Q@TestSub$ is the same as \xx.

\catcode‘@ = 11

% This conditional is needed because

% otherwise we would have to call the

% following macro \IfNotSubString.

\newif\ifQ@TestSubString

% \IfSubString

Y s=====s=s===

% This macro evaluates to a conditional

% which is true iff #1’s replacement

% text contains #2 as substring.

TUGboat, Volume 9 (1988), No. 1

% #1: Some string
% #2: substring to test for whether it
% is in #1 or not.
\def\I1fSubString #1#2{%
\edef\@MainString{#1}y
\def\@TestSubS ##1#2##2\QDel{’
\edef\QTestTemp{##1}}%
\expandafter\QTestSubS
\@MainString#2\Q@Del
\ifx\@MainString\QTestTemp
\@TestSubStringfalse
\else
\@TestSubStringtrue
\fi
\1f@TestSubString
}
\catcode‘@ = 12

Example 11: \expandafter and \csname

A character string enclosed between \csname and
\endcsname expands to the token formed by the
character string. \csname a?a-4\endcsname, for
instance, forms the token \a?a-4. If you wanted to
use this token in a macro definition you have to do
it the following way:
\expandafter
\def\csname a?a-4\endcsname{...}

The effect of the \expandafter is of course to
give \csname a chance to form the requested token
rather than defining a new macro called \csname.

Summary

These examples have shown some typical applica-
tions of \expandafter. Some were presented to
“exercise your brains a little bit”. I recommend
that you take the examples and try them out;
there is very little input to enter. I also encourage
you to tell Barbara Beeton or me what you think
about tutorials in TUGboat. There are many more
subjects which could be discussed and which may
be of interest to you.

This article is, as briefly mentioned in the
introduction, an adaptation of a section of my
book, Another Look At TgX, which I am currently
finishing. The book, now about 800 pages long,
grew out of my teaching and consulting experience.
The main emphasis of the book is to give concrete
and useful examples in all areas of TEX. It contains,
to give just one exarmple, 100 (!!) \halign tables.
In this book you should be able to find an answer
to almost any TEX problem.

61

Macros for Outlining

James W. Walker
Department of Mathematics
University of South Carolina

The purpose of this note is to describe stand-
alone macros for the preparation of outlines in the
standard format. For instance, the desired output
might look like:

1. Vegetables
A. Green ones

1. lettuce
a. iceberg
b. leaf

2. Broccoli, almost universally despised
by children. The strong flavor is only
made palatable by quick stir-frying.

B. white ones
1. potatoes
2. turnips

II. Animals.
III. Minerals.

Notice that a topic is allowed to be a paragraph,
not just one line, as in topic 1.A.2. I wanted
TEX to take care of the counting and indentation
as painlessly as possible. Something like this
can be done in IATEX using nested enumerate
environments, but I wanted the input format to be
even simpler.

When typing an outline, it is natural to show
the structure by indenting with the tab key. This
is particularly easy if one has a text editor with an
automatic indentation feature. With that feature,
hitting the Return key produces a new line with the
same amount of indentation as the previous line.
When the input is typed this way, we can tell the
indentation level of a topic by counting tabs. We
also need to mark the beginning of a topic, since
not every line begins a new topic. I chose to mark a
new topic with a pound sign (#). Thus, the input
to produce the outline above could lock something
like:

62

\beginoutline
Vegetables
Green omes
lettuce
iceberg
leaf
Broccoli, almost
universally despised
by children. The
strong flavor is
only made palatable
by quick stir-frying.
white ones

potatoes
turnips
Animals.
Minerals.
\endoutline

To make this work, an obvious step is to
make the pound sign an active character which
will typeset a label for a topic. However, there
is no obvious way to make it look backwards and
count tabs. Therefore I decided to make the tab
character active also, and make it count itself. More
precisely, the first tab on a line uses \futurelet
to see whether the next token is a tab, a pound
sign, or something else. If the next token is
a tab, it increments a counter, gobbles the tab,
and recursively looks for more tabs. If a pound
sign is the first thing after a sequence of tabs,
then the macro formats a topic at the appropriate
indentation level. If the first thing after a sequence
of tabs is anything else, nothing happens. Notice
that the pound sign comes into play as an active
character only for level 1 topics, i.e., when the
pound sign is not preceded by any tabs.

And now, the macros. We begin by making
sure that the macros are not loaded twice, and
resetting the category code of the at sign. We save
the old category code of the at sign, because in
some formats (e.g., AMS-TEX) the at sign might
have a category code other than “other”.

\ifx\outlineformatloaded\relax

\endinput
\else

\let\outlineformatloaded=\relax
\fi

\chardef\oldatsigncatcode=\catcode ‘\@
\catcode ‘\@=11

There is one count register for each of 5 levels
of indentation, which is perhaps a bit extravagant.

TUGDboat, Volume 9 (1988), No. 1

The counter \outline@lastlevel is used to write
an error message if the indentation level increases
by more than 1 at a time. The only parameter
that should be directly altered by the user is
\outlineindent, the width of each indentation. If
this is not large enough, and if the topic numbers
get large, an overfull hbox could result.
\newdimen\outlineindent
\outlineindent=2em

\newcount\outline@i
\newcount\outline@ii
\newcount\outline@iii
\newcount\outlineQiv
\newcount\outline@v
\newcount\outline@lastlevel
\newcount\outline@levelcount

Next we define \beginoutline and \endout-
line. Be warned that we must not format the
definition of \beginoutline with tabs, only with
spaces.

{%

\catcode ‘\#=\active
\catcode‘\~"I=\active
\gdef\beginoutline{%
\par
\bgroup
\outline@i=1
\outline@lastlevel=0
\catcode‘\#=\active
\let#=\outline@topicmarker
\catcode‘\""I=\active
\let~"I=\outline@selfcount
}Y, End of \beginoutline.

i

\def\endoutline{’
\par
\medbreak
\egroup

}i

TUGDboat, Volume 9 (1988), No. 1 63

A level 1 topic is marked with an active pound

sign, which is let equal to the following macro. \def\outline@subtopic#1{}
\def\outline@topicmarker{/, \par

\par \parindent=/

\parindent=\outlineindent \outline@levelcount\outlineindent

\medbreak \ifnum \outline@levelcount=2

\hang \smallbreak

\indent \fi

\1lap{\hbox to \outlineindent{% \advance\outline@lastlevel by 1
\global\outline@ii=1 \ifnum \outline@levelcount>%
\uppercase \outline@lastlevel
\expandafter \errmessage{The outline level
{\romannumeral can’t increase by more
\outline@i}y, than 1 at a time!}%
% \fi
\hfil \outline@lastlevel

}}% end of \hbox and \llap. =\outline@levelcount

\globall\advance\outline@i by 1 \hang

\outlineQlastlevel=1 \indent

\ignorespaces \1llap{\hbox to \outlineindent{}

}% End of \outline@Qtopicmarker. \ifcase\outline@levelcount

\or % case 1: done elsewhere.

\or % case 2: A, B, C, etc.
\globalloutline@iii=1
\countO0=\outline@ii
\advance\count0 by ‘A%
\advance\count0 by -1

The active tab character is made to count tabs
using the following macros. Note that the parameter
of \outlineQinnerselfcount will always be an
\outline@selfcount token, which is just counted
and then thrown away.

\def\outline@selfcount{}, .

\outline@levelcount=2 \char\count0. 4

\futurelet\next\outline@next \global\aqvangé
Y \outline®@ii by 1

\or % case 3: 1,2,3, etc.

\def\outline@innerselifcount#1{Y% \globalloutline@iv=1

\advance\outline@levelcount by 1 \number\outline@iii.%

\futurelet\next\outlineQnext \global\agvan?g.
Y \outline@iii by 1

\or % case 4: a,b,c, etc.
\global\outline@v=1
\count0=\outline@iv
\advance\count0 by ‘al
\advance\count0 by -1
\char\count0.%
\global\advance

\outline@®iv by 1

\or % case 5: i,ii,iii,iv etc.

\romannumeral\outline@v.

\def\outline@next{/,
\ifx\next\outline@selfcount
\let\next
=\outlineQinnerselfcount
\else
\ifx\next\outlineQtopicmarker
\let\next=\outline@subtopic
\else
\let\next=\ignorespaces

\fi \global\advance
\fi \outline@v by 1
\next \else ¥% all d?eper levels
}% End of \outline@next. . \bullet’
A sequence of tabs ended by a pound sign \hfil
starts 2 subtopic. }}% end of \hbox and \llap.
\ignorespaces

}% End of \outline@subtopic.

64

The outlining macros are now complete. There
is one small problem: One might occasionally need
to use the pound sign for its normal TEX function of
marking a parameter in a \def or \halign, inside
an outline. We can make that possible by providing
a macro that temporarily changes the category code
of the pound sign back to normal.

\def\normalpoundsign{y

\bgroup
\catcode‘\#=6
\innernormalpoundsign

Y

\def\innernormalpoundsign#i{#i\egroup}’

Thus an \halign could be enclosed in \nor-
malpoundsign{...}.

Finally we restore the at sign to its former
category code.

\catcode‘\@=\oldatsigncatcode

A Macro Writing Tool:
Generating New Definitions

Amy Hendrickson
TgXnology Inc.

Suppose you come upon a situation where you need
a macro which will generate another new macro
every time it is used. I came upon a solution to this
problem and want to share it with TUG readers in
case someone would find it an useful macro writing
tool, or maybe just find it amusing.

The problem that I ran into that necessitated
this kind of macro (it is by no means the only
application) had to do with a set of macros that I
was writing recently for slide generation: How can
you take large chunks of text possibly containing
tables, listings, verbatim text, or section headers,
and a) print the chunk where it appears in the
document, then b) send it to the end of the file
to be printed in slide format. (This format would
include larger font and baselineskip, possibly be in
landscape mode, and have rounded corner edging.)

Since you cannot send a large body of text
to an auxiliary file, the solution seemed to be to
write one macro which would generate as many
definitions as there were chunks of text to be made
into slides, and send only the control sequence and
slide formatting information to an auxiliary file.
The auxiliary file can then be input at the end of

TUGboat, Volume 9 (1988), No. 1

the original file, and the definitions that were made
earlier in the file will produce the slides.

But how can one generate such a series of
definitions, each with a new name? The solution
involves using the letters of roman numerals as the
name of the each new macro. A counter is advanced
to produce a new roman numeral each time the
macro is used. With the right macro expansion, the
roman numerals will be interpreted as a sequence
of letters, and a new sequence of letters will be
available each time.

For instance, say we set the counter equal to
637 to start, and advance it by one every time the
macro is used. The first set of letters that will
become a control sequence will be \dcxxxvii, the
second \dcxxxviii, etc.

To make certain that these letters have not
already been used in a definition, we can also
supply, following the roman numeral, a sequence of
letters that does not change, and thus make the
possiblity of renaming a previously defined control
sequence very small. That is the function of the
\unique definition below.

Here is some code, showing how \newdefs can
be used to define #1 as a new definition every time
the macro is used.

\newcount\definitionnum \definitionnum=2001

\def\newdefs#i{\advance\definitionnum by 1
\def\unique{\the\definitionnum ZZZZ}
\expandafter\gdef

\csname\romannumeral\unique\endcsname{#1}}

In use,

\newdefs{This is a chunk of text}

will produce

\gdef\mmiiZZZZ{This is a chunk of text}

a control sequence that can be called for later in
the file in whatever application it might be useful.

TUGDboat, Volume 9 (1988), No. 1

French in TgX

Alonzo Gariepy

Abstract

This paper describes a method of producing French
documents with TEX that is much simpler than the
other available alternatives. No preprocessing of tex
files is required and the system operates with stan-
dard versions of the TEX program, the Computer
Modern pixel files, and available device drivers. For
IBM PC systems, accented letters can be directly
entered from the 8 bit graphics character set. The
preloaded version of TEX encompassing all of these
changes is called FTEX. It fully hyphenates and
kerns French text containing lowercase accented let-
ters. I have used the work of M.J. Ferguson and
J. Désarménien where applicable.

1 Introduction

TEX is particularly well known for the variety of its
symbols, the accuracy of its hyphenation, the beauty
of its output, and the standardization of its various
implementations. All of these things suffer when
TgX is used for French language typography.

The Computer Modern fonts are as much a part
of standard TgX as the program itself. They do not
contain accented letters, but provide separate let-
ters and accent symbols that can be combined using
TEX’s \accent primitive. Computer Modern does
not contain French quote characters (guillemets) or
flattened accents for use with uppercase letters. So
the symbol set is not really suitable for typesetting
French.

Rules for hyphenating the French language can
be formulated much more simply than can those for
English. The comprehensive algorithm used by TgX
handles French with a minimal set of hyphenation
patterns. But the \accent primitive inserts ezplicit
kerns when forming accented letters, and TEX has
been specifically designed not to hyphenate in the
vicinity of an explicit kern.

One of the things that makes TEX’s output so
beautiful is the automatic kerning of letter pairs.
But the manner in which the \accent primitive
operates, prevents this automatic kerning within
French text.

Editor’s note: The techniques described here
seem to be architecture-dependent. Production of
this article was not possible on either a TOPS-20
or a VAX/VMS system, but required that TEX be
run on an IBM PC compatible, and the .DVI file
transferred to the VAX for printing.

65

As a result of these three factors, any attempts
at using TEX for French language typesetting have
necessitated major deviations from the standard sys-
tem. Three approaches to French language TEX are
described in the following paragraphs.

One approach to this problem, implemented
by W. Appelt, involves changing the tfm files so
that accent/letter pairs become ligature characters
with positions above '177 in the fonts.! Such lig-
atures have no character pattern, but are assigned
attributes identifying the associated accent and let-
ter. The tfm file can be modified so that automatic
kerning takes place around the ligature. A special
device driver must be created to output this dummy
ligature using the character patterns for the accent
and letter. The dvi file cannot be printed without
the special driver and modified tfm files.

J. Désarménien came up with another approach
that relies on Computer Modern based French fonts
incorporating already-accented letters.? Some room
can be found for these letters at the beginning of a
Computer Modern text font by eliminating all the
uppercase Greek letters. The vowels & and @ occur
only in the words ‘4’ and ‘ot’ and therefore need
not be included in the French fonts for the purposes
of hyphenation. These vowels may still be accented
with the \accent primitive. The problem with this
approach is the necessity to maintain a complete
set of French Computer Modern tfm and pixel files
in all needed sizes, resolutions, and magnifications.
Such maintenance demands the possession and use
of METAFONT and the storage and distribution of
large amounts of data.

More recently, M.J. Ferguson has made changes
to the TEX program itself to produce a multilingual
version called TfX.® This program circumvents the
restrictions within TEX that prevent hyphenation of
words containing accented letters. To this it adds a
facility for loading multiple sets of hyphenation pat-
terns and switching between them. There is no in-
dication that TEX will automatically kern accented
letters from standard Computer Modern. Alas, TEX
is not really TEX.

W. Appelt: The hyphenation of non-english
words with TEX. Proceedings of the First European
Conference on TEX for Scientific Documentation,
Addison-Wesley, 1985, pp. 61-65.

2]. Désarménien: How to run TgX in a French en-
vironment: hyphenation, fonts, typography. TUG-
boat, Vol. 5 (1984), No. 2, pp. 91-102.

3M.J. Ferguson: A Multilingual TEX. TUGboat,
Vol. 6 (1985), No. 2, pp. 57-58.

66

2 French TgX for the IBM AT

At my installation we are using Addison-Wesley’s
MicroTEX (written by David Fuchs). We produce
large quantities of unilingual French and English
documents. The software is run on IBM ATs. Mi-
croTgX and its French partner, FTEX, operate as
components of an interactive text management sys-
tem (TMS).

Computer editing French language documents
that contain normal TEX accent macros (such as \~,
\¢, \? and \") is very awkward. With the aid of a
macrokey program and the IBM PC graphics char-
acter set, accented letters can be typed directly into
the word processing facilities of the TMS.

With limited disk space on both production and
development machines, it is crucial that the TMS
and TgX leave enough room for a large quantity
of data. The space used by the files and programs
needed to develop, distribute, operate, and maintain
FTEX must be minimized.

The system maintenance and user support will
be performed by a single individual. This will in-
volve a large amount of user training and some TEX
macro writing, leaving little time for anything else.

We expect the materials created with this sys-
tem to have a long lifespan and eventually to be
made available for interactive retrieval.

Thus, the constraints for our French language
version of TEX:

e a minimum of software maintenance

e minimal storage requirements

e 1o maintenance of fonts

e easy distribution

e high quality output

e direct editing of accented text on screen
e portability of tex and dvi files

The three approaches to a French TgX already
described were ruled out because of the requirement

for developing and maintaining modified versions of
device drivers, pixel files, or the TEX program itself.

2.1 Accenting with FTEX

FTEX produces words that can be hyphenated, by
forming accented letters in a way that makes use of
implicit kerns instead of explicit ones. This kerning
is specified by the ligature/kern table in a tfm file
modified for French.

To produce an accented letter, FTEX inserts
three characters in the form: (letter)(accent)(letter).
For example, on encountering \~e in the input file,
FTEX will insert e”e into the dvi file, including the
new implicit kerns from the modified tfm file.

TUGboat, Volume 9 (1988), No. 1

This works in the following way:

e accent characters in Computer Modern (CM)
are already at the right height to go above the
lowercase letters

e words that contain uppercase letters will not
often need hyphenation and can be accented
in the conventional way

e letters that come before and after the \"e will
automatically kern with the sequence e”e in
the same way they would with a single e

e the three characters e, =, and e can be cen-
tered on one another by interposing, between
the = and each e, identical kerns of value
—(width(e) + width("))/2

o the sum of the widths of these three characters
and the two kerns is equal to that of a single
e

e font substitution (widely available on TEX's
device drivers) allows the standard pixel files
to be used in concert with FTEX’s t£fm files.

e the three characters, when superimposed on
an output device, appear as the printed char-
acter pattern 8.

2.2 Modifying tfm files

I have written a program that produces a French tfm
file (eg., fmr10.tfm) from the standard Computer
Modern tfm file (eg., cmri0.tfm). The program,
called fkern, actually works with pl files, which are
easier to parse and modify, and leaves the trans-
lation between tfm and pl formats to the utilities
tftopl and pltotf.

Fkern reads the widths of all of the accents and
accentable letters, and adds new entries to the kern
table for accent/letter pairs that occur in French.
These kerns are negative and equal to the average
of the widths of the two characters involved.

There are three strategies for integrating French
tfm files into your TEX system. The first, already
mentioned, is to use FM fonts in your TgX file, but
substitute CM fonts when you run the device driver.
A second way, requiring more disk storage, would be
to make exact copies of all the CM pixel files, naming
them FM instead.

The third alternative is to directly modify the
CM tfm files and use them both for TEX and FTEX.
The unusual kerns for French will not cause prob-
lems for most applications and could be used to cre-
ate accented letters in TEX as well. This approach
avoids the necessity of redefining the various fonts
used by plain.tex or I#TgX, and setting up font
substitutions, but then the names of the files would
not distinguish them from the standard set.

TUGDboat, Volume 9 {1988), No. 1

2.3 Inputting accented letters

Accented characters from the graphics portion of the
IBM PC character set can be directly entered using
many IBM PC editors (sometimes with the help of
a macrokey program). The TMS we use for entering
and managing our documents, allows us to do this.

One solution to the problem of converting these
extended (8 bit) characters to a form that TEX can
work with would exploit the ability of some editors
to substitute any string of characters during output.
The substitution facility of such an editor could be
customized to convert the IBM graphic character &
to the TEX sequence \"e (or e~e). Unfortunately,
the printer driver for our TMS and many editors
does not allow this kind of thing.

When MicroTgX inputs an extended character,
it entirely ignores the eighth bit, effectively subtract-
ing 128 from the value of the character. Serendip-
itously, all French lowercase accented letters in the
graphics character set fall into the range from 1 to 23
when the eighth bit has been stripped. These char-
acters may be made active and defined to substi-
tute the (letter){accent)(letter) sequence described
above.

One must be careful that the extended charac-
ters moved into this range do not conflict with char-
acter codes in use by TgX. Fortunately, none of these
conflicts with (return). The characters i, &, 1 and
1 conflict with (control A), (tab), (control K) and
{form feed) defined by plain.tex to be equivalent
to (Subscript), (Space), {Superscript) and (\par).
The codes (control A) and (control K} are assigned
this way because they correspond to the characters
4 and 1t on some non-PC keyboards. FTEX super-
sedes these definitions. The & and 1 may safely be
used as long as the input file contains no {(tab) or
(form feed) characters. These four accented vow-
els are used rarely enough in French that one could
do without the direct entering of them, in order to
avoid conflicts.

There are two French uppercase accented let-
ters in the graphics character set. The E can be
declared active but, due to its height, must be ac-
cented by TEX in the conventional manner. The ¢
conflicts with the ASCIT NULL when the eighth bit
is stripped. FTEX currently uses no uppercase ac-
cented letters from the graphics character set.

The guillemets in the IBM graphics charac-
ter set conflict with alphabetic characters when the
eighth bit is stripped. The < and > characters can
be used for this purpose in text input while retain-
ing their meanings as relational operators in math

67

mode. There are several ways, using Computer
Modern, to create guillemets < of a sort ».

The direct entry of 8 bit characters is very sys-
tem dependent. This feature can be removed from
FTEX for non IBM PC systems.

2.4 FTEX and hyphenation

FTEX’s French hyphenation patterns are translated
from those developed by M.J. Ferguson based on
work by J. Désarménien. Examples of the kind of
pattern that FTEX needs to perform its hyphenation
include .de"e3s2e’e3gr and ic,c. Direct entry
of accented characters has been made to apply to
the hyphenation patterns as well, so that if you edit
ftex.tex you will actually see lines that look like
.dé3s2é3gr and 1g. Hyphenation exceptions can
also be entered in this fashion.

3 Putting it all together

The files that are required to create the preloaded
version of FTEX include ftex.tex, plain.tex and
the French Modern tfm files created by fkern. Two
TEX primitives must be temporarily modified when
inputting plain.tex. The \patterns primitive is
redefined so that the English hyphenation patterns
will be ignored, and the \font primitive is redefined
to substitute fm fonts for cm or am fonts. A French
version of IATEX can be generated this way if there
is enough memory for FTEX’s larger ¢£m files.

With the FM versions of all the necessary fonts
preloaded, FTEX can be distributed as a single file
(either ftex.fmt or ftex.exe). Alternatively, the
utilities fkern, tftopl, and pltotf can be included
for conversion of tfm files on site.

3.1 Limitations

FTEX formats French text only. Words containing

uppercase accented letters cannot be hyphenated.
In this version of FTEX, none of the accented

characters has been given a \uccode. For the

\uppercase operation to have any effect it should

be performed before the active characters have been

expanded. Two approaches to setting \uccodes are

demonstrated below:

%

YA if you want the uppercase letter accented

%

{\catcode‘A=13 \gdefA{\’E}} \uccode‘\é=‘A

{\catcode‘B=13 \gdefB{\"E}} \uccode‘\é&=‘B

% etc.

68

%

% if you do not want it accented

%

{\catcode‘A=13 \gdefA{E}} \uccode‘\é=‘4
\uccode ‘\&=‘A \uccode‘\é=‘A \uccode‘\&=‘A
% etc.

TEX device drivers must be careful how they
correct the incremental roundoff errors accumulated
while setting the letters in a word. The algorithms
used ensure identical spacing within a word wher-
ever it is used, while maintaining a correspondence
between dvi coordinates and actual pixels. But, in
the short run, one cannot be sure that two characters
with the same dvi coordinates will be rounded to the
same pixel. The obvious impact of this on FTEX is
that identical superimposed letters may end up one
pixel out of alignment, creating a slightly thicker let-
ter. I believe that a minor improvement to the way
that the device drivers are written will remove this
imperfection.

4 The source of ftex.tex
I t sl o T e T e et e e fa

% YA
% FTEX, Copyright 1987 by Alonzo M. Gariepy %
% %
% NOTICE! This file contains IBM graphics Y%
% characters %
% %

VY YA A YA AN Y NSNS NSNS AN NSNS YN YA

%

\catcode‘\{=1) begin-group character

\catcode‘\}=2 ¥ end-group character

\catcode‘\$=3 /| math shift

\catcode ‘\&=4 }, alignment tab

\catcode ‘\#=6 % macro parameter character

%

%

\let\fpatterns=\patterns

\def\patterns#1{}

A

\let\ffnt=\font % save primitive

\def\font#1=#2#3{\ffnt#1=\ifx#3mfm\else
#2#3\fi}

%

% save primitive
% disable for English

\input plain
% \input lplain

\let\patterns=\fpatterns

\let\font=\ffnt

%

\def\multi#1#2#3{\def\multI##1{\ifx\end##1\else
#1##1#3\expandafter\multI\fi}\multI#2\end}

% enable

TUGboat, Volume 9 (1988), No. 1

%
AR AT R RO A AR AR RRRA LR ARSI AN
%
% Define macros to represent the accents as
% category 12. Assign appropriate lccodes.
%
\begingroup
%
\catcode ‘+=7
\catcode127=12
%
\multi{\catcode‘}

{++S = ++7 ++R ++X ++P ++[++"}{=12}

% so category changes are local

% we’ll be using - temporarily
% make DELETE valid character

h

\def\fdef#1=#2{{\global\def#1{#2}
\global\lccode ‘#2=‘#2}}

%

\fdef\Aa=++$

\fdef\Ac="

\fdef\Ad=++7?

\fdef\Ag=++R

\fdef\Cc=++X

\fdef\i =++P

\fdef\oe=++{

\fdef\DE=++"

\fdef\Ap="’

h

\endgroup

h

PN AN A Yy AN Y AN YA Y Y Y Y AN YA AN YA

%

% Activate the IBM PC graphics characters that

% correspond to the lowercase French accented

% letters. Comment out this section if you are

% not using an IBM PC.

\lccode ‘++ =‘++[

% Let ""A and ""K be active in verbatim modes

\def\dospecials{\do\ \do\\\do\{\do\}\do\$\do\&%
\do\#\do\"\do_\do\%\do\"}

%

\multi{\catcode‘}
{\d \é \& \a \¢ \& \é \& \i \1 \& \& \a \i}
{=13}

\def ii{u\Ad u} %1 129
\def é{e\da e} % 2 130
\def a{al\Ac a} %3 131
\def a{a\Ag a} %5 133
\def ¢{c\Cc c} T 135
\def &{e\Ac e} % 8 136
\def &{e\Ad e} %9 137
\def &{e\Ag e} % 10 138
\def i{\i\Ad\i} % 11 139
\def 1{\i\Ac\i} % 12 140
\def 8{o\Ac o} % 19 147
\def &{o\Ad o} % 20 148
\def a{u\hc u} % 22 150

\def a{u\Ag u} % 23 151

TUGboat, Volume 9 (1988), No. 1

%
YA

YN Y AN YYYNYS AN Y AN NN YA N AT YA YA

% Modify plain’s accent macros so they make
% lowercase French accented letters with FTEX
%
\begingroup
h
\def\ftxset#1#2{\expandafter\gdef
\csname#1#2\endcsname{#1}}
%
\ftxset\Aa e
\ftxset\dc a
\ftxset\Ac e
\ftxset\Ac\i
\ftxset\Ac o
\ftxset\Ac u
\ftxset\Ad e
\ftxset\Ad\i
\ftxset\Ad o
\ftxset\id u
\ftxset\Ag a
\ftxset\Ag e
\ftxset\Ag u
\ftxset\Cc ¢
\endgroup
%
\def\ftxacc#1#2{\if#1\csname#1#2\endcsname
#2#1#2\else {\accent\expandafter ‘#1#2}\fi}
%
\def\‘{\ftxacc\Ag}
\def\’{\ftxacc\Aa}
\def\~{\ftxacc\Ac}
\def\"{\ftxacc\Ad}
\let\ftexc=\c %, save cedilla macro
\def\c#1{\if\Cc\csname\Cc#1\endcsname
#1\Cc#1\else\ftexc#1\fi}
%
Ittt ettt te Tttt Tttt e T Tt he e N A AN AT DRI AN DD T
A
% French spacing macros by J. Désarménien
% given in TUGBoat, Volume 5 (1984), No. 2
%
\frenchspacing
\catcode‘\;=13
\catcode‘\:=13
\catcode‘\!=13
\catcode‘\?=13
\def;{\relax\ifhmode\ifdim\lastskip>Opt\unskip
\kern\fontdimen2\font
\kern~1.2\fontdimen3\font\fi\fi\string;}
\def:{\relax\ifhmode\ifdim\lastskip>Opt
\unskip\nobreak\ \fi\fi\string:}
\def'!{\relax\ifhmode\ifdim\lastskip>Opt
\unskip\kern\fontdimen2\font
\kern-1.2\fontdimen3\font\fi\fi\string!}
\def?{\relax\ifhmode\ifdim\lastskip>Opt
\unskip\kern\fontdimen2\font
\kern-1.2\fontdimen3\font\fi\fi\string?}

69

%
VYA Y AN NSNS VAN AN TS SNy

YYAYANANI YN N IAA

% Hyphenation patterns for French. Accented
% letters in this table can be represented in
% any of three forms for FTEX:

% 1) e\ic e or \i\Ad\i
% 2) \e or \"\i
% 3) & or i

% On non-IBM PC systems where you are not
% using the graphics characters, you will
% mneed to use grep or an editor to put the
% patterns into one of the other forms.

\patterns{
272 a2 ’é2 ’e2 ’02 ’62 ’u2 ’i2 .é2 1ba 1bi 1be
1bé 1bé 1bé 1bi 1bi 1bo 1b3 1bu 1bd 1by 4be.

enli2vr .enlo2 .eu2rla2 extral extralc extrali
hémilé hémolip2t hypera2 hyperé2 hyper\oe2
hyperi2 hypero2 hypers2 hyperu2 hypeé4rl hypola2

archilé2pis moye2n1a2g polastre unilo2v
unila2x vélols2ki vol2tlamp tachyla2 tchin3t2
chlo2r3a2c chlo2r3é2t n3s2at. n3ds2ats.

}

70

German TgX

Hubert Partl
EDP Center of the
Technical University Vienna

Although TgX and IATpX have been designed for
American standards only, they are being used all
over the world and with a lot of different languages.
This article 1s intended to show an example of the
problems that arise when modifying TEX or BTEX
for easier application with a language other than En-
glish.

One of the great advantages of TEX and IATEX is the
portability of document files among all TEX installa-
tions. In order to prevent users from each inventing
their own incompatible modifications, which would
destroy that portability, the first step should be to
standardize the user interface—i.e. the control se-
quences and commands to be used in the TEX input
files. Together with this “standard”, a “quick and
dirty” or “prototype” solution should be provided,
so that users can start to apply the new features.
Then, usually in several steps, better and more com-
plete and finally even optimized solutions should be
developed in such a way, that the users’ (authors’)
input files need not be changed, but only the style
files, font files, hyphenation patterns and other files
that comprise a TEX implementation are replaced or
improved by the installation’s TEX guru.

This is the way that has been adopted for
“German TgX”. As Joachim Lammarsch reported in
TUGboat No. 8/3, the German TgX Users Group
has agreed on a standard for a “Minimal Subset
of German TEX Commands” at its 6th meeting in
Miimster (Germany) last October. These commands
will make it easier to set German texts — both with
Plain TEX and with the commonly used macro pack-
ages like IATEX, AMS-TEX etc. It is recommended
that all TEX installations in the German speaking
countries (Germany, Austria, Switzerland) imple-
ment at least these commands on all their main-
frames and Personal Computers. Then, all TEX and
IATEX input files that use these commands can be
exchanged freely among all participating sites.

1 The User Interface

The German TEX commands fall into two categories:

e commands that provide additional features
which are needed to typeset German texts,
e.g. the German , Anfithrungszeichen*,

e “shorthand” commands that are easier to type
than the corresponding original TEX com-
mands, e.g. "s instead of \ss{}, or "ck in-

TUGboat, Volume 9 (1988), No. 1

stead of the corresponding \discretionary
command.

The standardized “Minimal Subset of German
TEX Commands” cousists of the following control
sequences and commands:

e "3 for the umlaut a (&, short for \"a) —also
for the other vowels,

e "g for the sharp s (8, short for \ss{}),
e "ck for ‘ck’ that is to be hyphenated as ‘k-k’,

e "ff for ‘ff’ that is to hyphenated as ‘ff-f’—
also for certain other consonants,

e "‘ or \glqq for German left double quotes
and "’ or \grqq for German right double
quotes, to produce ,,deutsche Anfithrungszei-
chen®, also known as ,,GinsefliBchen”,

e \glq for German left single quotes and \grq
for German right single quotes, to produce
.einfache Anfiithrungszeichen’,

e "< or \flqq for French left double quotes and
"> or \frqq for French right double quotes,
to produce «French quotes», also known as
<guillemets». These quotes are also used in
certain German text styles, sometimes point-
ing »in« rather than «out=.

o \flq for French left single quotes and \frq for
French right single quotes <like this>,

e "| to disable forbidden ligatures in words
that consist of several parts—e.g. to produce
‘Auflage’ (not ‘Auflage’) for the word meaning
‘Auf-Lage’,

e "- to mark a hyphenation exception within a
long word (like \~, but without disabling au-
tomatic hyphenation in the rest of the word),

e "" for an analogous hyphenation exception,
where no hyphen sign is added in the case of
hyphenation (e.g. in a hyphenated word like
‘Eingabe-File),

e \dq to print the quote character ("),

e \setlanguage{\zzz} to switch to the lan-
guage ‘czz’. Arguments to this command
are predefined command names like \german,
\austrian, \english, \USenglish, \french
etc. This command will switch everything
that is language specific, e.g. the format of
today’s date, and the texts of the captions
used with chapters, tables, figures and the
like. In a more complete implementation, this
should also include language specific hyphen-
ation patterns and exceptions, special fonts
or ligatures, different enumeration conventions

TUGboat, Volume 9 (1988), No. 1

and so on. However, the German TEX com-
mands remain available, regardless of the lan-
guage specified. This is useful for multi-lin-
gual documents, e.g. an article that is written
in English but contains German citations {like
this one).

e \originalTeX to reset everything to its origi-
nal meaning in TEX or I#TEX. This is needed
to generate environments that are completely
compatible with the rest of the TEX world.

e \germanTeX to switch on the German TgX
commands (modifications) again.

The last three commands are usually applied locally
for different parts of a multi-lingual document. They
have been designed in such a way that they can be
easily extended to other languages in the obvious
way. The author expresses his hope that other na-
tional TEX Users Groups will adopt similar or per-
haps even compatible conventions for their language
specific TgX modifications.

Both the shorthand forms and the original
forms of the commands for the Umlaute and for the
sharp s will be modified so that automatic hyphen-
ation remains in effect —either for the whole word
(with Umlaute and sharp s included in the hyphen-
ation patterns) or at least for the rest of the word,
which can be accomplished by using constructs like

\nobreak\hskip\z@skip

which make TEX “think” that a new word is started
after the umlaut. (This trick has been found and
reported by Norbert Schwarz from Bochum.)

The standard does not include layout conven-
tions. On the contrary, a variety of document lay-
outs is encouraged. As with conventional typeset-
ting methods, all authors, editors, and institutions
should be free to chose their individually preferred
document styles and should not be forced to an un-
natural uniformity.

Tables 1 and 2 show examples for typical appli-
cations of the German TEX commands.

Table 1: Examples

sch'on produces: schon
Stra'"se produces: Strafle
"“Ja, bitte!"’ produces: ,Ja, bitte!“

"<Merci bien!"> produces: «Merci bien!»

Dru"cker produces: Drucker or Druk-ker
Ro"lladen produces: Rolladen or Roll-laden
Auf"|lage produces: Auflage

71

Table 2: Date Formats

\setlanguage \today

\german 31. Januar 1988
\austrian 31. Janner 1988
\english 31st January 1988
\USenglish January 31, 1988
\french 31 janvier 1988

With Plain TiX, the German commands are
made available by an input command like

\input german
With IATEX, they are made available by speci-
fying the document style option german, e.g. with

\documentstyle[1ipt,german] {article}

In addition, the user should take care that the
correct hyphenation patterns for his language are
used — usually by specifying the appropriate format
file when calling the TX program. Among the Ger-
man TEX users, the German hyphenation patterns
generated by Jost Krieger and Norbert Schwarz at
the University of Bochum are the preferred ones.

2 The Present Solution

A “quick and dirty” realization of these German
TEX commands has been compiled by the author
with the help of several other TEX users in Basle,
Bonn, Bochum, Darmstadt, Stuttgart, and Vienna.
The file, known as GERMAN.TEX or GERMAN.STY, is
public domain. Mainframe installations can ob-
tain it via Electronic Mail from several file servers:
ArpaNet users can FTP it from the Rochester IXTEX
Style File Collection, and BitNet users can GET it
from NETSERV AT AEARN in Linz (Austria) or from
LISTSERV AT DHDURZ1 in Heidelberg (Germany).
PC users can obtain it on floppy disk from the Ger-
man PCTEX distributor.

Besides being quick and dirty, this solution has
the advantage that it can be used with the origi-
nal versions of TgX and IATEX and with the fonts
and hyphenation patterns as they are available now.
Everything is defined and re-defined using TEX corm-
mands only, and it is just one TEX input file that can
easily be ported to every computer (including Per-
sonal Computers) and is independent of the output
devices used.

Care has been taken to make the same file us-
able both with Plain TpX and with IATEX and other
macro packages. This has been accomplished by us-

72

ing Plain TEX commands only, with the only ex-
ception of the I#TEX command \protect which is
defined to \relax within this file if it has not been
defined before.

The umlaut accent is redefined such that with
the letters A, a, O, o, U, and u, the dots are posi-
tioned a bit lower than in the original version, and
that the commands \nobreak and \hskip are added
to enable automatic hyphenation in the rest of the
word, as mentioned above.

For the sharp s (8), the command \lccode is
used to enable automatic hyphenation in words con-
taining this letter.

The German left double quotes (,,) are formed
by taking the English right double quotes (") and
lowering them by the height difference between
quotes and comma, with some extra kerning. The
German right double quotes (“) are the same as the
English left double quotes except for the kerning.
The German single quotes are formed in a similar
way.

For the French quotes, the appropriate math
symbols are used.

The quotes character (") is made an active char-
acter and is defined as a control sequence that takes
the following character as its parameter and, de-
pending on the value of this character, does the
appropriate actions, i.e. it prints the corresponding
umlaut or sharp s or quotes character, or it per-
forms the required combination of \discretionary,
\nobreak, and \hskip commands.

The quotes character is added to the
\dospecials command which is used in the ver-
batim environments.

The different versions of today’s date are ob-
tained by re-definitions of the \today command in
analogy to the original definition by Leslie Lamport.

The different versions of the chapter and ta-
ble titles are obtained in the following way: The
language changing commands re-define command
names like \contentsname to contain the appropri-
ate texts (e.g. ‘Inhalt’ for German texts and ‘Con-
tents’ for English texts). With Plain TgX or other
macro packages, this will have the desired effect only
if these command names are actually used to print
the respective title lines. With IATEX, it means that
the original document style files have to be modified
in the following way: The hard coded English words
(like ‘Contents’) have to be replaced by the cor-
responding command names (e.g. \contentsname),
and these command names have to be defined to
contain the original words, e.g. with

\def\contentsname{Contents}

TUGDboat, Volume 9 (1988), No. 1

Leslie Lamport’s comments in the DOC-Files provide
help in finding all places where such modifications
are necessary. There has been some discussion re-
cently, whether these modified style files should be
available from one official central “clearinghouse”.

The three language switching commands are de-
fined to switch on and off all the appropriate mod-
ifications. Finally, the command \germanTeX is ex-
ecuted, which switches on everything that is appro-
priate for typesetting German texts.

3 Future Work

For the future, a better realization of the German
TEX commands is planned by a team of advanced
TEXperts in Germany. This solution will include
the following features:

o The Umlaute and special quotes will be de-
signed with METAFONT as separate characters
in the text fonts, and they will be accessed as
ligatures.

e New hyphenation patterns will be generated
that include the umlauted characters, the
sharp s, the special ck, and the special dou-
ble consonants that hyphenate as triple conso-
nants.

e The multi-lingual TEX software will be used to
enable the switching of hyphenation patterns
for the different languages.

Due to the complexity of this project, it will take
some time until this solution becomes available for
all TEX installations (i.e. all computer types and
all fonts for all output devices). However, the
user interface (i.e. the TEX commands described
above) will remain unchanged with this new solu-
tion. Therefore, users who start using them now
will not have to change their TEX input files later,
and they will still be able to exchange their TEX
files with all installations where either the present
or the future version of the German TEX commands
is installed.

TUGDboat, Volume 9 (1988), No. 1

BTEX

Contents of IATEX Style Collection
as of 4th February 1988

Ken Yap
University of Rochester

The IATEX style collection now contains the files
listed below. They are available for anony-
mous ftp from cs.rochester.edu in directory
public/latex-style. You should retrieve the
file 00index first to obtain a brief description of
current directory contents. The file 00directory
contains a reverse time sorted list of files; this may
be helpful in keeping your collection in sync with

IATEX -style.
File
OOdirectory

0Oindex
OOreadme

a4.sty
adwide.sty

aaai-instructions.

aaai-named.bst
aaai.sty

acm.bst
agugrl.sty

agugrl-sample.tex

agujgr.sty

agujgr-sample.tex

*alltt.sty

amssymbols.sty
*apalike.doc
*apalike.sty
*apalike.bst

article.txt
arti10.txt
artll.txt
art12.txt
biihead.sty
*btxbstl.doc

*btxbst.readme

cyrillic.sty

Description

Set page size to A4

Adjusts width too to suit A4

tex

Instructions to authors

BiBTEX style to accompany
aaai.sty

Style file for AAAI
conference 1987

ACM BibTgX style

AGU Geophysical Research
Letters style, sample

AGU Journal of Geophysical
Research style, sample

Like verbatim, but permits
other commands inside

Load AMS symbol fonts

American Psychological
Association style files

requires BiBTEX version
0.99a

Standard files in text format,
with places to make
language specific
changes indicated

Underlined heading

A master file for BibTEX
styles
with standard styles and
some new ones

Load cyrillic font

dayofweek.tex

deproc.sty
deprocldc.tex

docsty.shar

doublespace.sty
draft.sty

drafthead.sty
dvidoc.shari
dvidoc.shar?2

epic.shari
epic.shar2
espo.sty

format.sty

fullpage.doc
fullpage.sty
geophysics.sty
german.sty
ieeetr.bst

ist2l.sty
latex.bug
layout.readme

layout.tex
lcustom.tex

1fonts_ams.readme

lfonts_ams.tex
lgraph.shar

local-suppl.tex

memo .Sty
mfr.sty
mitthesis.sty

73

Macros to compute day of
week and phase of moon

Examples of how to use TEX
arithmetic capabilities

DECUS Proceedings style

Paper that describes the
above

Program to convert .doc
to .sty by stripping
comments

Double spacing in text

Draft option for documents
for “debugging”

Prints DRAFT in heading

Sh archive of DVIDOC, DVI
to character device filter
for Unix BSD systems

Sh archive of extended
picture environment

Style file for Esperanto

Print FP numbers in fixed
format

Get more out of a page

Geophysics journal style

Style file for German

IEEE Transactions BibTEX
style

IST21 document style option
for cover page

Latest listing of bugs found
in IATEX

Prints nice diagram
showing page parameters

Useful macros and definitions

for IATEX
Use AMS symbols in IMEX

Sh archive of data to graph
command filter in Pascal

Supplement to local guide;
describes tgrind, sfwmac,
trademark, lcustom,
xxxcustom, and xxxslides

Memo style option

Modifier to memo.sty

Massachusetts Institute of
Technology thesis format

mitthesis-sample.tex

natsci.bst

natsci.sty

Natural sciences generic
BibTEX style

Formats citations created
with natsci.bst

74

newalpha.bst
nl.sty

nopagenumbers.doc
nopagenumbers.sty
remark.sty
resume.sty
resume-sample.tex
rscsencode. shar
sc2i.sty

sc2i-wgl.sty
sfwmac.sty

showlabels.sty

siam.bib
siam.bst
siam.doc
siam.sty
siam.tex
siaml0.doc
siaml0.sty
siamli.sty
siaml2.sty
slem.doc
slem.sty
spacecites.doc
spacecites.sty
suthesis.doc
suthesis.sty
texindex.shar

texnames.doc
texnames.sty

tgrind.sty

threepart.sty

% ftp cayuga.cs.rochester.edu

Modified alphabetic BibTEX
style

Style file customized for
Dutch

Remove page numbers

Like newtheorem but no \it
Format for doing resumes
Sample file

ISO/TC97/SC21 document
style

option for cover page

Useful macros for Unix
documentation

Shows labels and references
to them

SIAM BibTEX style

SIAM IATEX style

Change \sl to \em

Modified to give spacing
between citations
Stanford U thesis style

Style file and processor for
index entries for VMS

Define a couple more
TEX names

Tgrind macros for IATEX
instead of TEX

Three part page headers

TUGhboat, Volume § (1988), No. 1

titlepage.txt Style file in text format to go
with article.txt

Definitions of common
trademarks

U of California thesis style

trademark.sty

uct10.doc
uctli.doc
uctl2.doc
ucthesis.doc
ucthesis.readme

vdm.doc Vienna Development Method
vdnm. sty IATEX style
vdm.tex

wsltex.shar Wordstar to IATEX filter, C
and Pascal versions
Supplementary macros for
xxx-tex, for some xxx
Supplementary macros
for SLITEX, includes

slides.sty

xxxcustom.tex

xxxslides.sty

New entries since the last TUGboat listing are
marked with an *. More submissions are very
welcome. Send them to

Ken

LaTeX-Style@cs.rochester.edu

..!rochester'!latex-style

Editor’s note: People sending future submissions
should note that some gateways to Bitnet strip off
everything beyond 80 columns, and perhaps corrupt
some other data as well (ASCII tabs may or may
not remain intact). Please structure your file so
that it will survive.

For Internet users: how to ftp

An example session is shown below. Disclaimer: ftp
syntax varies from host to host. Your syntax may
be different. The syntax presented here is that of
Unix ftp. Comments in parentheses.

Sample FTP session for Internet users

(a.k.a. cs.rochester.edu, a.k.a.

192.5.53.209)

(general blurb)

user: anonymous
password: <any non-null string>

ftp> cd public/latex-style

ftp> 1s

ftp> get 0O0index

ftp> quit

(where the files are)

(to see what is there)

(lots of output)

(more blurb)

TUGboat, Volume 9 (1988), No. 1

Non-Internet users: how to retrieve by mail

An archive server for I#TEX files has been in-
stalled. Send a piece of mail to LaTeX-Style
(@cs.rochester.edu, via UUCP or your favourite
gateway) in the following format.

— Subject line should contain the phrase
“@file request”.

— The body of the mail should start with a line
containing only an @ {at) sign.

Important! The first line following the “at” line
should be a mail address from Rochester to you.
{(Undeliverable mail will be silently dropped on the
floor.)

— Follow your return address by the names of the
files you want, either one to each line, or many
to each line, separated by spaces.

—~ End with a line containing only an @ sign.

~ Case is not significant.

For example, if you are user at site.bitnet, thisis

what you should send: (don’t forget your address!)
To: latex~style@cs.rochester.edn
Subject: €file request

@

userksite.bitnet@cunyvm. cuny.edu
O0readme

00index

@

A word to the wise: it is best to fully qualify
your mail address. Our mailer is pretty ignorant of
Bitnet, CSnet or UUCP addresses unless they are
in registered domains. It is best that you supply
explicit gateway routes. Use the new domainized
form or addresses whenever possible. Examples:
userisite.bitnet@cunyva.cuny.edu
usersite.csnet@relay.cs.net
siteluser@uunet.uu.net

Long UUCP paths are discouraged. System admin-
istrators get upset and your turnaround is very slow
anyway.

If the Subject: line looks like:

Subject: @file request uuencode
or

Subject: @file request rscsencode

then the mail will be encoded with the requested
scheme before sending. This might help sites
that get mail through gateways with unfriendly
EBCDIC/ASCIH mappings. You can find sources
for the two types of en/decoders in the collection.
You may have to do some porting of sources.

75

Be patient as the server is actually a batch
program run once a day. Files will be sent in
batches, each not exceeding 100kbyvtes in size.

Distribution for IBM PC and clone users
There are two sources.

e David W. Hopper
446 Main Street
Toronte, Ontario
Canada M4C 4Y2

has IATEX style files only.

1. Either one 1.2 MB diskette or three 360KB
diskettes, blank and formatted.

2. Indication of the format required,

3. A self-addressed mailer, and

4. A 85.00 donation per set of files, to cover
postage and equipment wear & tear. (If you
live outside North America, airmail delivery
will prebably require more postage. You should
probably contact David for details.)

5. No phone calls or personal visits please.

= Jon Radel
P. O. Box 2276
Reston, VA 22090
has IATEX style files and other goodies. For a list
or other info send a SASE.
1. 360KB diskettes, blank and formatted.
2. A stamped, self-addressed mailer, and
3. $1.50 per disk. If you live outside North
America, skip the stamps and send additional
money or International Reply Coupons.
As a convenience for people who have more
money than floppies, Jon will supply everything for
$6.00 per disk to U.S./Canada/Mexico addresses.

Editor’s note: Traffic on the network servers and
gateways has been very high recently, and in order
to provide improved service, there have been some
volunteers to maintain local “slave” repositories
of the IATEX style collection. There is usually a
geographic or network restriction requested, since
the ides is to cut down traffic, not add to it. The
following areas will be covered by the volunteers
listed.

e Bitnet users: Texas A&M maintains a list-
and file-server which is already handling (with
TEX-L) much of the Bitnet distribution of
TeXhax. An inquiry via listserv will retrieve a
list of all TEX-related fles:
tell listserv at tamvml get tex filelist

Additional volunteers should contact Ken.

76

The IATEX User’s Column

Jackie Damrau
University of New Mexico

Since the last column, I have received one question
and two answers to questions that appeared in the
last issue. Leslie Lamport has agreed to lend his fine
knowledge in helping me to answer those questions
that I cannot answer. Should you send a question,
I will answer it as soon as possible via electronic
mail and then publish the question and answer in
the next issue of TUGboat.

A challenging question of my own is included.
This question was given to me by one of my pro-
fessors who said, “I am sure that IATEX cannot do
this.” But after a little hard work on my part, I
did manage to prove that IATEX could do what he
wanted.

Until the next TUGboat, happy [ATEXing.

Question 1

Jackie - I noticed in TUGboat that you were pre-
pared to accept questions from beginners. Well I
was wondering if you could suggest a way in IATEX of
allowing text to “wrap-round” a small square space
(say 3 inches square) set flush right or flush left.
The space would contain a line drawing or photo-
graph. The macros given by Alan Hoenig in TUG-
boat Vol 8, No 2 would appear to do the job. Can
I use these macros within a IATEX document? Any
help or suggestions would appreciated.

Ian Gibson
GUELPH2QWATDCS .BITNET

Answer

A quick glance at Hoenig’s macros reveals no reason
why they shouldn’t work in IATEX. However, users
of such sophisticated macros should be aware that
it is very difficult to make them robust, and there
are bound to be IATEX or Plain TEX commands
that “break” when used with them. For example,
I would not be surprised if errors resulted when a
IATEX \footnote command appears in one of the
shaped paragraphs, or if Hoenig’s macros are used
inside a IATEX ‘figure’ environment. So, my guess
is that Hoenig’s macros would work properly 95%
of the time for a IATIX user. A TEX hacker could
probably figure out what to do the other 5% of the
time; a naive user could be in trouble.

TUGboat, Volume 9 (1988), No. 1

Even when the macros do work, they are not
going to be easy to use; one will have to do page lay-
out one page at a time, and changes to the document
may require extensive manual reformatting. IATEX
was designed so that users don’t have to worry about
this kind of formatting; a user should think very
hard about whether the advantage of this kind of
figure placement is worth the hassle. I can think of
no justification unless the user is producing camera-
ready copy for a book—or perhaps for a journal arti-
cle.

Answers to earlier questions

These answers to Questions 2 and 4 from the last
TUGboat [Vol. 8 (1987), No. 3] were submitted by
R. A. Bailey, Statistics Department, Rothamsted
Experimental Station.

Answer (Question 2)

You have to be very careful with verbatim.
After \begin{verbatim}, no other command is
obeyed until \end{verbatim} is encountered. In
particular, if \begin{myenv} is translated as
\begin{verbatim}, then the \end{myenv} is pro-
cessed as verbatim text, and so is not interpreted as
\end{verbatim}. This is why verbatim must not
appear in the argument of any command, including
the \newenvironment command: see page 168 of
the IATEX manual.

Answer (Question 4)

The table environment creates a box of exactly the
right size, into which it puts the table contents and
the caption. Unlike a page, this box has no prede-
termined height, so there is nothing for \vfill to
stretch to. I can suggest only one method for achiev-
ing the requested result, and it is not very elegant:
replace \vfill by a \vskip of a length calculated
after a trial run. (I tried using the picture envi-
ronment to put the table contents and the caption
in the correct places in a box whose size is the same
as the usual text, but you do not seem to be allowed
to use \caption in this environment.)

TUGboat, Volume 9 (1988), No. 1

Example

maximized area = zy

224 = perimeter = 2z + 2y,
224 — 2z
= =112~z

A=zy=1z(112 — 1) = 11222
dA
d—=112—2x=0&t:c=56

!

Answer

\parbox[b]{1.5in}{
\setlength{\unitlength}{.25in}
\begin{picture}(5,5)
\put(1,1){\line(1,0){2}}

\put (1,3){\1line(1,0){2}}

\put (1,1){\1line(0,1){2}}

\put (3,1){\1ine(0,1){2}}

\put (2,0) {\makebox(1,1) {x}}

\put (3.25,2) {\makebox(1,1){y}>}
\end{picture}

} \quad

2

\parbox [b]{2.5in}{

maximized area $ = xy $ \\

$ 224 = $ perimeter $ = 2x+2y $, \\
$ y’ = \dfrac{224-2x}{2} = 112-x $ \\
$A=xy=x(112-x) = 112x"2 $ \\

$ \dfrac{dA}{dx} = 112-2x = 0 $ at $ x=56 $ \\
dim. for largest area are $ 56 \times 56 $} \
%

\parbox [b]{1.5in}{
\setlength{\unitlength}{.25in}
\begin{picture}(5,5)

\put (1,1){\1line(1,0){6}}

\put (2,1){\1line(0,1){2}}

\put (3, .75){\1ine(0,1){.5}}

\put (3,0) {\makebox(1,1) {56}}

\put (6, .75) {\makebox (1,1) {x}}

\put (1, 3) {\makebox(1,1) {A}}
\end{picture}

}

x
dim. for largest area are 56 x 56

77

78

Page Layout in IATEX

Kent McPherson
SLI Avionic Systems Corp.

One of the most frequently asked questions about
I4TEX is “How can I change the layout of a page?”
The answer is really not that difficult if one knows
how the page is designed in the first place. Let
me point out here that the author of IATEX, Leslie
Lamport, will be the first to point out that IATEX
is supposed to relieve the author of formatting
concerns. However, there are cases where none of
the styles defined for TATEX will satisfy everyone’s
needs.

So, let’s start with the basic layout of a page
that is typeset using the article style in 10pt
type. See Figure 1. The first thing to note is that
IATEX assumes the page starts one inch down and
one inch from the left as indicated by the dashed
lines in Figure 1. The boxes that are identified
as “Header” “Body; “Footer) and “Margin Notes”
are where any text you write gets placed on the
page. The issue, then, is to adjust the appropriate
parameters so that the page layout is changed to
the desired format.

Let’s look at each of the page layout parameters
individually. Again, refer to Figure 1.

1. \hoffset: This is initially set to 0 points. This
corresponds to a 1 inch horizontal offset.

2. \voffset: This is initially set to 0 points. This
corresponds to a 1 inch vertical offset.

3. \oddsidemargin: This is the additional space
that is added for the left margin, i.e. the true
left margin is equal to \oddsidemargin plus
one inch. This parameter can be negative.
For example, if \oddsidemargin is set equal to
-.5in, then the body will start /2 inch to the
left of the dashed line.

4. \topmargin: This is the additional space that
is added for the top margin, i.e. the true top
margin is equal to \topmargin plus one inch.
This parameter can also be negative with the
same relative effect as \oddsidemargin.

5. \headheight: This is the height of the box
containing any header information.

6. \headsep: This is the distance between the
header box and the body of the page.

7. \textheight: This is the height of the body of
the page.

8. \textwidth: This is the width of the body of
the page.

TUGhboat, Volume 9 (1988), No. 1

Dashed lines represent \hoffset and \voffset

|
|
4 12
|
RS VIS O
| — Y 1 Header
1
1 ‘FT 9
| |t
|
| 3 10
|
]
1
|
l
1 : Margin
' BOdy 7 Notes
1
1
|
|
:
1
! 8
1
|
|
Ly
| - 1 Footer
|
o Ty
[
:

1 \hoffset = Opt 2 \voffset = Opt

3 \oddsidemargin = 63pt 4 \topmargin = 27pt

5 \headheight = 12pt 6 \headsep = 25pt

7 \textheight = 528pt 8 \textwidth = 345pt

9 \marginparsep = 1lpt 10 \marginparwidth = 90pt
11 \footskip = 30pt 12 \footheight = 12pt

Figure 1: Sample I#TEX page layout

9. \marginparsep: This is the distance between
the right edge of the body and the marginal
notes box.

10. \marginparwidth: This is the width of the box
containing marginal notes.

11. \footskip: This is the distance between the
baseline of the last line in the body and the
baseline of the footer box.

12. \footheight: This is the height of the box
containing footer information.

With this in mind, I have designed a substyle
option that will graphically show the layout of a
page based on the page layout parameters discussed
above.

Gboat, Volume 9 (1988), No. 1 79
Dashed lines represent \hoffset and \voffset Dashed lines represent \hoffset and \voffset
! i
! I
! I 2 | I 2

e e e e e e e Y e e R S
! I
| L —] Header | C — HeJ der
! |
| I
! 1
! |
! |
! |
! |
! I
! !
! |
! I
! |
! !

1 | Bod Margin 1 i Bod Mirgin
: o Notes : oy Nptes
! i
! I
' |
! i
! !

! I
! |
! \
! I
! |
!)
f |
I — 1 Footer | [— Fodter
! 1
| 1
! |
! |
L 1

1 \hoffset = Opt 2 \voffset = Opt

3 \oddsidemargin = 63pt 4 \topmargin = 27pt

5 \headheight = 12pt 6 \headsep = 25pt

7 \textheight = 528pt 8 \textwidth = 345pt

9 \marginparsep = iipt 10 \marginparwidth = 90pt
11 \footskip = 30pt 12 \footheight = 12pt

Figure 2: Sample output from \layout
command

For example, if your test looked like
\documentstylel[layout]{article}
\begin{document}

\layout

\end{document}

you would get a page that looks like Figure 2.
Now, lets assume you want to make the body
wider so that you can get more text printed per
page. The obvious parameter to modify is \text-
width. The not-so-obvious parameters would be
\oddsidemargin and possibly \marginparwidth.
Let’s say you want to make the body 6 inches wide
with a 1 inch margin on both sides. If you set
\textwidth to 6 inches without changing anything
else, you would get what is shown in Figure 3. As
you can see from Figure 3, the body has the same
left margin and simply extends 6 inches to the right

1 \hoffset = Opt 2 \voffset = Opt

3 \oddsidemargin = 63pt 4 \topmargin = 27pt

5 \headheight = 12pt 6 \headsep = 25pt

7 \textheight = 528pt 8 \textwidth = 433pt

9 \marginparsep = 11pt 10 \marginparwidth = 90pt
11 \footskip = 30pt 12 \footheight = 12pt

Figure 3: Page layout with \textwidth increased
to 6 inches

causing the margin notes box to be pushed partly
off the page.

You can also reset \oddsidemargin and de-
crease the size of the margin notes box. For
example (remembering that 1 inch ~ 72pt), with

\documentstyle[layout]{article}

\setlength{\textwidth}{433pt}

\setlength{\oddsidemargin}{Opt}

\setlength{\marginparwidth}{72pt}

\begin{document}

\layout

\end{document}

you would get a page that looks like Figure 4.
Another useful idea is to see the layout of
existing IATEX document styles. Tor example, the
layout of the book style is shown in Figure 5.
In summary, when you want to change the
layout of a page in I#TEX, remember the following:

80

Dashed lines represent \hoffset and \voffset

TUGboat, Volume 9 (1988), No. 1

Dashed lines represent \hoffset and \voffset

— — 1 Header

Margin|

BOdy Notes

] Footer

{
|
I
I
|
1

1
1
\ 2

R (N Sy VU
i
1
! [1 Header
1
i
i
i
1
1
1
1
i
!
t

1 !

DU [Margjn
1
) BOdy INoteg
1
!
I
1
1
1
i
[
1
i
|
: C] Footer
i
{
1
i
1

1 \hoffset = Opt

3 \oddsidemargin = Opt
5 \headheight = 12pt
7 \textheight = 528pt
9 \marginparsep = 11pt
11 \footskip = 30pt

2 \voffset = Opt

4 \topmargin = 27pt

6 \headsep = 25pt

8 \textwidth = 433pt

10 \marginparwidth = 72pt
12 \footheight = 12pt

Figure 4: Properly adjusted page layout

e First, do you really need to change the layout?

After all, if it is simply a matter of trying to
make something look “prettier] 1 would say
don’t do it.

Secondly, if it is necessary to change the
page layout, remember to place all \setlength
commands prior to the \begin{document}
command.

Thirdly, don’t forget to adjust the not-so-
obvious parameters.

Lastly, when in doubt, use the \layout com-
mand to display the layout of a page as shown
in the examples.

The following file must be placed in the

TEX$INPUTS directory.

1 \hoffset = Opt

3 \oddsidemargin = 74pt
5 \headheight = 12pt

7 \textheight = 504pt
9 \marginparsep = 7pt
11 \footskip = 25pt

2 \voffset = Opt

4 \topmargin = b4pt

6 \headsep = 18pt

8 \textwidth = 325pt

10 \marginparwidth = 54pt
12 \footheight = 12pt

Figure 5: Page layout of 10-point book style.

LAYOUT.STY
h

% This file should be called LAYOUT.STY
% and should be placed in the TEX_INPUTS

% directory.

h

% Define \bs if it is undefined, redefine
% it if it is already defined.

h

\@ifundefined{bs}{\newcommand\bs{\char ’134 }}%
{\renewcommand\bs{\char ’134 }}

\Q@ifundefined{1b}{\newcommand\1b{\char ’173 }}%
{\renewcommand\1lb{\char 173 }}

\Qifundefined{rb}{\newcommand\rb{\char *175 }}%
{\renewcommand\rb{\char ’175 }}

\newcount\hofset
\newcount\vofset
\newcount\hofref
\newcount\vofref

TUGboat, Volume 9 (1988), No. 1

\newcount\omargin
\newccount\omarginref
\newcount\emargin
\newcount\emarginref
\newcount\marginref
\newcount\tmargin
\newcount\hheight
\newcount\hsep
\newcount\theight
\newcount\twidth
\rewcount\mparsep
\newcount\mparwidth
\newcount\fskip
\newcount\fheight
\newcount\headref
\newcount\bodyref
\newcount\footref
\newcount\margnoteref
\newcount\oneinch
\newcount\eighthalfinch
\newcount\teninch
\newcount\eleveninch

%

% Constants

%

\oneinch=72
\eighthalfinch=615
\teninch=723
>eleveninch=795

% Define the calculations macro

%

\def\layout{

%

% Convert dimensions to scalar values

% for use in the picture environment

%

\hofset=\hoffset
\divide\bofset by 65536

\hofref=\hofset

\advance\hofset by \oneinch

\vofset=\voffset
\divide\vofset by 65536

\vofref=\vofset

\vofset=\teninch
\advance\vofset by -\vofref

%

\tmargin=\topmargin
\divide\tmargin by 65536

%

\hheight=\headheight
\divide\hheight by 65536

\headref=\teninch
\advance\headref by -\vofref

81

\advance\headref by -\tmargin
\advance\headref by -\hheight
%
\hsep=\headsep
\divide\hsep by 65536
%
\theight=\textheight
\divide\theight by 65536
\bodyref=\headref
\advance\bodyref by -\hsep
\advance\bodyref by —-\theight
%
\fskip=\footskip
\divide\fskip by 65536
%
\fheight=\footheight
\divide\fheight by 65536
\footref=\bodyref
\advance\footref by -\fskip
%
\omargin=\oddsidemargin
\divide\omargin by 65536
#\omarginref=\omargin
\advance\omarginref by \oneinch
%\advance\omarginref by \hofref
%
\emargin=\evensidemargin
\divide\emargin by 65536
#\emarginref=\emargin
\advance\emarginref by \oneinch
%\advance\emarginref by \hofset
%
\twidth=\textwidth
\divide\twidth by 65536
%
\mparsep=\marginparsep
\divide\mparsep by 65536
%
\mparwidth=\marginparwidth
\divide\mparwidth by 65536
%
\if@twoside
\ifodd\count\zQ
G/’
% Twosided, odd page
%
\typeout{Two-sided document
style, odd page.}
\margnoteref=\oneinch
\advance\margnoteref by \hofref
\advance\margnoteref by \omargin

82

\marginref\margnoteref
\advance\margnoteref by \twidth
\advance\margnoteref by \mparsep

\else

% Twosided, even page

\typeout{Two—sided document

style, even page.}
\margnoteref=\oneinch

\advance\margnoteref by \hofref
\advance\margnoteref by \emargin
\marginref\margnoteref
\advance\margnoteref by -\mparsep
\advance\margnoteref by -\mparwidth

\fi

\else

%

% Not twosided, do odd page

%

\typeout{One-sided document style.}

\margnoteref=\oneinch
\advance\margnoteref by \hofref

\advance\margnoteref by \omargin

\marginref\margnoteref

\advance\margnoteref by \twidth

\advance\margnoteref by \mparsep

\fi

Dashed lines represent

{\tt \bs hoffset} and

{\tt \bs voffset}.

\medskip

h

% Define the picture to be drawn

%

\setlength{\unitlength}{.5pt}

\begin{picture}(\eighthalfinch,\eleveninch)

\centering

>thicklines

% Page box and reference lines

%

\put (0,0) {\framebox(\eighthalfinch,
\eleveninch){\mbox{}}}

\put (0, \vofset){\dashbox{10}
(\eighthalfinch,0){\mbox{}}}

\put (\hofset,0){\dashbox{10} (0,
\eleveninch) {\mbox{}}}

% Header

%

\put (\marginref ,\headref){\framebox
(\twidth,\hheight){\footnotesize Header}}

TUGboat, Volume 9 (1988), No. 1

%

% Body

%

\put (\marginref ,\bodyref){\framebox
(\twidth, \theight){Body}}

%

% Footer

%

\put (\marginref ,\footref){\framebox

(\twidth,\fheight){\footnotesize Footer}}

%

% Marginal notes

%

\put (\margnoteref,\bodyref){\framebox
(\mparwidth,\theight)¥

{\footnotesize

\shortstack{Margin\\Notes}}}

\end{picture}

\medskip
%
% Display the settings used to make
% the picture. Note: fractiomal
% points are truncated, i.e.,
% 72.27pt is displayed as 72pt
%
{\tt
\begin{tabular}{1@{\hspace{20pt}}1}
\bs hoffset = \number\hofref pt &
\bs voffset = \number\vofref pt \\
\bs
\if@twoside

\ifodd\count\z@ oddsidemargin

\else evensidemargin

\fi

\else oddsidemargin
\fi
= \number
\if@twoside

\ifodd\count\z@ \omargin

\else \emargin

\fi

\else \omargin
\fi
pt & \bs topmargin = \number\tmargin pt \\
\bs headheight = \number\hheight pt &
\bs headsep = \number\hsep pt \\
\bs textheight = \number\theight pt &
\bs textwidth = \number\twidth pt \\

\bs marginparsep = \number\mparsep pt &
\bs footskip = \number\fskip pt &

\bs footheight = \number\fheight pt \\ [10pt]

\multicolumn{2}{c}{72pt \approx 1 inch}
\end{tabular}}
} % end of \def\layout

TUGboat, Volume 9 (1988), No. 1

Queries

Automatic Page Balancing Macros Wanted

One of the shortcomings of TEX (all right, all right,
the only shortcoming) is its inability to handle page
makeup simply. If one wishes (as one should)
to find the most elegant pagebreaks, one must go
into one’s file and manually insert \breaks and
{\looseness=1\tolerance=2000... \par}s or add
lines of the form
\ifnum\pageno=68 \global
\advance\vsize by-1\baselineskip\fi
\ifnum\pageno=72 \global
\advance\vsize byl\baselineskip\fi

to the end of \plainoutput.

Altering the \vsize by one line in either
direction (but not more) is a standard trick of good
typesetting, but both pages of a spread must be the
same size.

If one is unfortunate enough to have an article
or chapter that has long unbreakable displays and
more insertions than pages, one can end up spending
altogether too much time determining pagebreaks.
While, admittedly, it may be perfectly legitimate
to expect an author to struggle with his file over
half a dozen or so runms to make it perfect, a
typesetter’s time is much too valuable to indulge in
such foolishness.

I had thought that it would be a simple
matter to alter \plainoutput to {\ifodd\pageno
\oddpageout \else \evenpageout \fi}, where
\evenpageout would define a \vbox called \even-
pagebox while the analogous \oddpagebox was
created. Once one has the two boxes, one would
add the badnesses and, if the sum is greater than,
say, 2000, lengthen or shorten the \vsize by 1
\baselineskip and \unvbox both boxes.

What a simple idea, I thought. All I was
worried about at first was insertions: I had no very
clear idea how they would go back on the list of
recent contributions. Then I discovered that there
was no way for TEX to tell me how bad a \vbox
was before it was shipped out!

Is there a Grandmaster or Wizard out there
who can show me how to discover the badness of a
box before it’s too late?

Frederick H. Bartlett
The Bartlett Press, Inc.

83

Inverted Pyramidal Titles

Stephen C. Lipp’s request (8(3): 326) for a title
macro that (i) requires only spaces between words,
(ii) capitalizes, (iii) double-spaces, (iv) centers,
(v) has an inverted pyramidal shape, (vi) preferen-
tially breaks at commas, and (vii) smoothly varies
line length is hereby granted:

\newcount\initiallinesdone
\newcount\finallinesdone
\newcount\endhere
{\catcode‘\,=\active
\gdef\invpyramid#1#2{{\catcode‘\,=\active

\def,{\char"2C\penalty-5000\ }%

\multiply\normalbaselineskip by2
\normalbaselines
\parfillskip=0Opt\parindent=0pt
\leftskip=Opt plus9pt minus9pt
\rightskip=\leftskip
\endhere=0\initiallinesdone=#2
\loop

\everypar={\prevgraf=\initiallinesdone}

\global\setbox0=\vbox{

\parshape=12 1pc25pc 2pc23pc 3pc2ipce
4pci19pc bpcl7pc 6pclbpec 7Tpcidpe
8pcilpc 9pcSpc 10pc7pc 1llpchpe
12pc3pc

\noindent\uppercase{#1}\endgraf

\global\finallinesdone=\prevgraf}

\ifnum\endhere=1
\global\advance\endhere byl

\else
\ifnum\finallinesdone>12

\globalladvance\initiallinesdone
by-2\global\finallinesdone=11
\global\advance\endhere byl
\fi
\ifnum\finallinesdone<12
\globalladvance\initiallinesdone
byl
\else
\globalladvance\endhere by2
\fi
\fi
\ifnum\endhere<2
\repeat
\box0}}}

Example (I fudged the example with a \kern
-4.16667pc since this column is 83 picas narrower
than the measure assumed for \invpyramid):
\invpyramid{This is a long, ses\-qui\-

pe\-da\-lian, verbose title}7

84

THIS IS A LONG, SES-
QUIPEDALIAN,
VERBOSE

TITLE

The second group reflects the user’s guess
of how many lines the title should take up. I
thought that this one would take four, so I set
\initiallinesdones to 7. If the guess is too high,
the result may be rather ugly, so use 11 — (guess)
instead of 12 — (guess). (This is not strictly
necessary, but it speeds the process up at a small
cost in human thought.)

The \parshape is not variable; that is, it must
be determined afresh for each \hsize (unless the
user wishes to use a variable dimension, as Knuth
did in his answer to Exercise 14.18 on p. 315 of The
TpXbook, and further complicate the \looping).

If the user wishes to break at commas even
more often, he could increase the \penalty to
-9999.

If the user wishes to discourage (or encour-
age) hyphenation, he could give \pretolerance,
\exhyphenpenalty, and \hyphenpenalty new val-
ues.

If the user wishes to allow more variation from
a perfect pyramid, he could increase the \leftskip
and \rightskip.

The subtle part of this macro is the \loop and
its use of \prevgraf.

Without the \1loop, it is obvious that only titles
that are exactly 12 lines long will have appropriately
narrow last lines. So, at the end of the first pass,
TEX checks \finallinesdone. If \finallinesdone
is 12, we stop and set the \vbox. If (as is more
likely) \finallinesdone is less than 12, we add 1
to \initiallinesdone, which fools \parshape into
setting the first line shorter, and try again.

If \finallinesdone is greater than 12, 1
is deducted from \initiallinesdone and 1 is
added to \endhere. Being interpreted, this means,
“There’s no way to make the last line 3 picas wide,
so I'm going to do the next best thing.”

It is assumed that the user’s title is less than
approximately 168 picas long. If it is longer,
then the \parshape will have to be respecified
for more than 12 lines. The attentive reader will
note that an error (and a terrible result) would
ensue if this condition is not met, for that would
ensure that the very first pass would produce a
\finallinesdone greater than 12, which would
cause \initiallinesdone to be reduced to —1,

TUGDboat, Volume 9 (1988), No. 1

which TEX will not allow. Thus, instead of 12
lines, you'd get about 20, the last 9 of which would
all be 3 picas wide. In ten-point roman, however,
168 picas is about forty-five words, which is too
long for any reasonable title anyway.

Frederick H. Bartlett
The Bartlett Press, Inc.

Logarithmic Time Scales

I should like to make a first (approximate) stab
at responding to James Alexander’s request in
(8(2): 216) for a time scale macro.

I should admit immediately that there is a lot
of grunt work to be done: I haven’t (1) provided
the necessary code to read dates and events from
a separate file, (2) given a method for producing
a linear time scale, (3) provided a method for
determining the length, starting point, and finishing
point of the scale, (4) met Alexander’s specifications
for typing the entries, or (5) addressed the problem
of clustered entries.

Items (1) and (2) seem to me quite straight-
forward; I’'m just too lazy to complete them. Item
(3) is slightly more difficult: if you absolutely must
have only two parameters to the \entry macro,
you could have TEX determine the value of what I
call \exponent by dividing the length of a \hbox
containing the date string by the width of a number
in the current font. A new command, \parse,
say, could then determine \integer and \decimal
(\def\parse#1#2//{\integer=#1\decimal=#2}).

Item (4) is more difficult still: you must either
have the user specify the three (dimen)s or run TEX
on the file twice: once to get the logarithms of the
first and last dates and once to set the scale (if the
length of the scale is not equal to \vsize, the user
would have to specify it—unless you want TEX to
determine an optimum scale length).

Item (5) is a real bear. I don’t see how TEX
could remember an arbitrary number of dates to
see if they are “too close” to one another (if it
can, then TEX could also give the optimum scale
length). Given a presorted list, however, it might
be possible. The solution seems simple for a pair of
close entries; if there are three or more close entries,
though, T don’t see an immediate solution (besides
increasing the scale length).

TUGboat, Volume 9 (1988), No. 1

What attracted me to this query was the
challenge of coercing TEX into doing logarithms.
In solving this puzzle, I discovered (and if this is
documented in The TgXbook, 1, at least, couldn’t
find it) that, while TEX will add, subtract, and
divide in the range £2147483647, it will multiply

only in the range +1073741823.
Thus, my approximation algorithm was limited
by max{(log(n + 1) ~ logn) x max(\ddecimal) =

1073741823.

\newcount\clogi \clogi=-32767
\newcount\clogii \clogii=0
\newcount\clogiii \clogiii=19167
\newcount\clogiv \clogiv=32767
\newcount\clogv \clogv=43316
\newcount\clogvi \clogvi=51934
\newcount\clogvii \clogvii=59222
\newcount\clogviii \clogviii=65534
\newcount\clogix \clogix=71102
\newcount\clogx \clogx=76083
\newdimen\alog \newcount\integer
\newdimen\decimal \newcount\ddecimal
\newcount\exponent \newcount\base
\newcount\basea \newcount\tare
\tare=32768

\def\entry#1.#2E#3#4{\integer=#1
\decimal=.#2pt\exponent=#3
\findlog
\vskip\alog
\vbox toOpt{\vss\line{\vrule height
3.59267pt depth-3.35177pt width.3in
\quad#4\hfil}\vss}
\vskip-\alog\vskip-\baselineskip}
\def\findlog{%
\ifnum\integer=0
\base=0\basea=\clogi
\else
\base=\csname clog\romannumerallinteger
\endcsname{\advance\integer byl
\global\basea=\csname clogi
\romannumeral\integer\endcsnamel}’
\fi
\advance\basea by-\base
\advance\decimal by-.5pt
\ddecimal=\decimal
\multiply\ddecimal by\basea
\multiply\basea by\tare
\advance\ddecimal by\basea
\divide\ddecimal by108850
\advance\base by32767
\multiply\base by10337
\divide\base by17169
\multiply\exponent by65536

85

\alog=\ddecimal sp
\advance\alog by\base sp
\advance\alog by\exponent sp
\multiply\alog by50}

This is only a rough-and-ready version; I
wanted to get the basic ideas down for others to use
and improve (especially since poor Prof. Alexander
has been waiting for this for some months!). I
suspect that a mathematician (or a more skilled
TEXpert, or both) could squeeze some more accu-
rate logarithms out of TEX; at a scaling factor of
50, this is only accurate to within four dots, or
.9636 pts, on my laser printer.

Frederick H. Bartlett
The Bartlett Press, Inc.

86

TUGDboat, Volume 9 (1988), No. 1

Calendar

1988

Vanderbilt University, Nashville, Tennessee
Mar 7-11 Beginning TEX
Mar 7-11 Intensive Beginning/Intermed. TEX

Northeastern University,
Boston, Massachusetts

Mar 21-25 Beginning TEX
Mar 21-25 Intensive Beginning/Intermed. TEX

University of Illinois, Chicago, Illinois
Mar 21-25 Beginning TEX

Mar 21-25 Intermediate TEX

Mar 21-25 Advanced TEX/Macro Writing

Apr 4 TUG: Paper selection for
1988 Annual Meeting;

notification sent to speakers.

Apr 20-22 International Conference on
Electronic Publishing, Document
Manipulation and Typography, Nice,
France (see announcement, TUGboat
Vol. 8, No. 1, page 78)

GUTenberg (Groupe des Utilisateurs
TEX), Paris, France (for

information, contact B. Gaulle,
UCIRQO1%FRORS31.BITNET)

Apr 26

Carleton University, Ottawa, Ont., Canada
Apr 25-29 Beginning TEX

Apr 25-29 Intensive Beginning/Intermed. TEX
Apr 25-29 Intensive Course in IATFX

May 2-6 Advanced TEX/Macro Writing
May 2-6 IATEX Style Files

May 9-12 TgX Wizard Course, TV Guide
Office, Radnor, Pennsylvania

TUGDboat Volume 9, No. 2:
Deadline for receipt of manuscripts

May 16

University of New Mexico, Albuquerque
May 16-20 Advanced TEX/Macro Writing
May 23-27 Beginning TEX

May 23-27 Intensive Beginning/Intermed. TEX

Jun 6-8 Expert Communication 88: Artificial
Intelligence in Electronic Publishing;
San Jose, Calif. For information,
contact Marion Elledge, Graphic
Communications Association,
Arlington, Va., (703) 841-8160

TUG: Deadline for camera copy of
papers to appear in Proceedings of
1988 Annual Meeting

Jul 18-20 TEX88 Conference, University of
Exeter, England. To be placed on
the mailing list, contact Cathy Booth
(Janet: booth.cm@uk.ac.exeter)
or Malcolm Clark (Janet:
texlineQuk.ac.ic.cc.vaxa)

ACM SIGGRAPH; Atlanta, Ga.
For information, call (312) 644-6610

Jun 20

Aug 1-5

TEX Users Group 1988 Conference
McGill University, Montréal, Québec

Aug 15-19 Intensive Beginning/Intermed. TEX
Aug 16-19 Short Course in METAFONT

Aug 22-24 TUG Annual Meeting
See announcement, page 87.

Aug 25-26 Short Course (topic to be
announced)

Sep 12 TUGboat Volume 9, No. 3:
Deadline for receipt of manuscripts

(tentative).

For additional information on the events listed
above, contact the TUG office (401-272-9500, ext. 232)
unless otherwise noted.

Status as of 25 February 1988

TUGboat, Volume 9 (1988), No. 1

TEX Users Group 1988 Annual Meeting

Program Coordinator
Dean Guenther
Washington State University

The 1988 TEX Users Group meeting will be held
at McGill University in Montréal, Québec, Canada,
from August 22nd to the 24th. There will be courses
before and after the meeting (to be announced).
Expect a separate announcement and registration
forms later this Spring. The focus of this year’s
meeting will be on TEX in a production environ-
ment. Judging by the amount of interest so far, it
looks like we will have the largest number of papers
ever presented at an annual meeting. A preliminary
list of topics includes:

s TEX previewers
= Book production with TEX

s Implementing TEX in a production
environment

s Producing families of manuals from the same
sources

s TEX and the Macintosh: A clash of cultures

s SGML and TgX

» The art of teaching TEX for production

s Mathematics textbook publishing with
Japanese TEX

s TEX extension for Semitic languages

87

Videotapes of Knuth’s
Software Design Course
Based on TgX: The Program

During Stanford’s Spring Quarter, 1987, Donald
Knuth presented a special course, TEX: The Pro-
gram: A case study in software design. This
course consisted of nineteen 60-75-minute lectures,
which were transmitted to remote locations and
videotaped by the Stanford Instructional Television
Network (SITN).

The implementation of TEX was discussed as
an example of the design and documentation of a
medium-size software system. Also discussed was
the WEB system of structured documentation. With
knowledge of the TEX and Pascal languages as a
prerequisite, enough information about the innards
of TEX was presented for students to learn to make
extensions to the system. The text for the course
was TEX: The Program.

Videotapes available for rent

TUG now has these lectures available on videotape
and has permission to rent them to TUG members,
although SITN has stipulated that TUG may not
rent them to profit-making organizations. (Com-
mercial organizations should contact SITN directly
at Stanford University, Stanford, CA 94305.)

The videotapes are available in VHS format;
it may be possible to make them available also in
Beta format if there is sufficient demand. Due
to anticipated scheduling requirements, the normal
rental period will be six weeks. The rental fee
for the 19 videotapes for that duration will be
$800. (A longer rental period may be arranged and
the rental fee will be prorated.) This includes all
costs except shipping/handling/insurance charges
for their return to TUG. 1988 TUG Institutional
Members are entitled to a 20% discount. Professor
Knuth’s book, TEX: The Program, the text for the
course, may also be ordered from TUG.

If you feel this course might be useful to your
organization, please contact Alan Wittbecker at the
TUG office: 401-272-9500, ext. 232.

88

Institutional
Members

Addison -Wesley Publishing
Company, Reading, Massachusetts

The Aerospace Corporation,
El Segundo, California

American Mathematical Society,
Providence, Rhode Island

ArborText, Inc., Ann Arbor,
Michigan
ASCII Corporation, Tokyo, Japan

Aston University, Birmingham,
England

Brookhaven National Laboratory,
Upton, New York

California Institute of Technology,
Pasadena, California

Calvin College, Grand Rapids,
Michigan

Centre Inter-Régional de Calcul
Electronique, CNRS, Orsay, France

City University of New York,
New York, New York

College of St. Thomas, Computing
Center, St. Paul, Minnesota

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

Columbia University, Center for
Computing Activities, New York,
New York

COS Information, Montreal, P. Q.,
Canada

Data General Corporation,
Westboro, Massachusetts

DECUS, L&T Special Interest
Group, Marlboro, Massachusetts

Department of National Defence,
Ottawa, Ontario, Canada

Digital Equipment Corporation,
Nashua, New Hampshire

dit Company, Ltd., Tokyo, Japan

Edinboro University of
Pennsylvania, Edinboro,
Pennsylvania

Electricité de France, Clamart,
France)

Environmental Research Institute
of Michigan, Ann Arbor, Michigan

European Southern Observatory,
Garching bei Miinchen, Federal
Republic of Germany

Ford Aerospace & Communications
Corporation, Palo Alto, California

Forsvarets Materielverk,
Stockholm, Sweden

General Motors Research
Laboratories, Warren, Michigan

Geophysical Company of Norway
A/S, Stavanger, Norway

Grinnell College, Computer
Services, Grinnell, Towa

Grumman Corporation, Bethpage,
New York

GTE Laboratories, Waltham,
Massachusetts

Hart Information Systems, Austin,
Tezas

Hartford Graduate Center,
Hartford, Connecticut

Harvard University, Computer
Services, Cambridge, Massachusetts

Hewlett-Packard Co., Boise, Idaho

Hobart & William Smith Colleges,
Geneva, New York

Humboldt State University, Arcata,
California

Hutchinson Community College,
Hutchinson, Kansas

IBM Corporation, Scientific
Center, Palo Alto, California

Illinois Institute of Technology,
Chicago, Illinots
Imagen, Santa Clara, California

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Communications Research
Division, Princeton, New Jersey

TUGboat, Volume 9 (1988), No. 1

Intergraph Corporation, Huntsuille,
Algbama

Intevep S. A., Caracas, Venezuela
Towa State University, Ames, Towa

Istituto di Cibernetica, Universita
degli Studi, Milan, Italy

Kuwait Institute for Scientific
Research, Safat, Kuwait

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mezxico

Louisiana State University, Baton
Rouge, Louisiana

Marquette University, Department
of Mathematics, Statistics, and
Computer Science, Milwaukee,
Wisconsin

Massachusetts Institute
of Technology, Artificial
Intelligence Laboratory,
Cambridge, Massachusetts

Mathematical Reviews, American
Mathematical Society, Ann Arbor,
Michigan

Max Planck Institute Stuttgart,
Stuttgart, Federal Republic of
Germany

McGill University, Montreal,
Quebec, Canada

National Center for Atmospheric
Research, Boulder, Colorado

National Institutes of Health,
Bethesda, Maryland

National Research Council
Canada, Computation Centre,
Ottawa, Ontario, Canada

New Jersey Institute of
Technology, Newark, New Jersey

New York University, Academic
Computing Facility, New York,
New York

Northeastern University, Academic
Computing Services, Boston,
Massachusetts

Online Computer Library Center,
Inc. (OCLC), Dublin, Ohio

Pennsylvania State University,
Computation Center, University
Park, Pennsylvania

TUGboat, Volume 9 (1988), No. 1

Personal TEX, Incorporated,
Mill Valley, California

Purdue University, West Lafayette,
Indiana

QMS, Inc, Mobile, Alabama

Queens College, Flushing,
New York

Research Triangle Institute,
Research Triangle Park,
North Carolina

RE/SPEC, Inc., Rapid City,
South Dakota

Ruhr Universitat Bochum,
Bochum, Federal Republic of
Germany

Rutgers University, Hill Center,
Piscataway, New Jersey

St. Albans School, Mount
St. Alban, Washington, D.C.

Sandia National Laboratories,
Albuquerque, New Mezico

SAS Institute, Cary,
North Carolina

Schlumberger Well Services,
Houston, Tezas

Science Applications International
Corp., Oak Ridge, Tennessee

1. P. Sharp Associates, Palo Alto,
California

Smithsonian Astrophysical
Observatory, Computation Facility,
Cambridge, Massachusetts

Software Research Associates,
Tokyo, Japan

Sony Corporation, Atsugi, Japan

Space Telescope Science Institute,
Baltimore, Maryland

Springer-Verlag, Heidelberg, Federal
Republic of Germany

Stanford Linear Accelerator Center
(SLAC), Stanford, California

Stanford University, Computer
Science Department, Stanford,
California

Stanford University, ITS Graphics
& Computer Systems, Stanford,
California

State University of New York,
Department of Computer Science,
Stony Brook, New Yotk

Stratus Computer, Inc., Marlboro,
Massachusetts

Syracuse University, Syracuse,
New York

Talaris Systems, Inc., San Diego,
California

Texas A & M University,
Computing Services Center,
College Station, Tezas

Texas A & M University,
Department of Computer Science,
College Station, Tezas

TRW, Inc., Redondo Beach,
California

Tufts University, Medford,
Massachusetts

TV Guide, Radnor, Pennsylvania

TYX Corporation, Reston,
Virginia

UNI.C, Danmarks EDB-Center,
Aarhus, Denmark

University College, Cork, Ireland

University of Alabama, Tuscaloosa,
Alabama

University of British Columbia,
Computing Centre, Vancouver,
British Columbia, Canada

University of British Columbia,
Mathematics Department,
Vancouver, British Columbia,
Canada

University of Calgary, Calgary,
Alberta, Canada

University of California, Berkeley,
Academic Computing Services,
Berkeley, California

University of California, Berkeley,
Computer Science Division,
Berkeley, California

University of California, Irvine,
Department of Mathematics,
Irvine, California

University of California, Irvine,
Information & Computer Science,
Irvine, California

89

University of California, San
Diego, La Jolla, California

University of California, San
Francisco, San Francisco,
California

University of Chicago,
Computation Center, Chicago,
Nllinois

University of Chicago, Computer
Science Department, Chicago,
Illinois

University of Chicago, Graduate
School of Business, Chicago,
Illinois

University of Crete, Institute
of Computer Science, Research
Center, Heraklio, Crete, Greece

University of Delaware, Newark,
Delaware

University of Glasgow, Glasgow,
Scotland

University of Groningen,
Groningen, The Netherlands

University of Illinois at Chicago,
Computer Center, Chicago, Illinois

University of Kansas, Academic
Computing Services, Lawrence,
Kansas

University of Maryland, College
Park, Maryland

University of Massachusetts,
Ambherst, Massachusetts

University of North Carolina,
School of Public Health,
Chapel Hill, North Carolina

University of Oslo, Institute
of Informatics, Blindern, Oslo,
Norway

University of Ottawa, Ottawa,
Ontario, Canada

University of Southern California,
Information Sciences Institute,
Marina del Rey, California

University of Tennessee at
Knoxville, Department of
Electrical Engineering, Knozville,
Tennessee

University of Texas at Austin,
Physics Department, Austin, Tezas

90

University of Texas at Dallas,
Center for Space Science, Dallas,
Tezas

University of Vermont, Burlington,
Vermont

University of Washington,
Department of Computer Science,
Seattle, Washington

Vanderbilt University, Nashuville,
Tennessee

Vereinigte Aluminium-Werke AG,
Bonn, Federal Republic of Germany

Villanova University, Villanova,
Pennsylvania

Vrije Universiteit, Amsterdam, The

TUGboat, Volume 9 (1988), No. 1

John Wiley & Sons, Incorporated,
New York, New York

Worcester Polytechnic Institute,
Worcester, Massachusetts

Yale University, Department of
Computer Science, New Haven,
Connecticut

Netherlands
University of Western Australia,
Regional Computing Centre,
Nedlands, Australia

Washington State University,
Pullman, Washington

Widener University, Computing

University of Wisconsin, Academic . .
Y ’ Services, Chester, Pennsylvania

Computing Center, Madison,
Wisconsin

IF THIS ISN’T THE WAY YOU WRITE EQUATIONS...

= cm m&@e—a

open/cicee paletts
cu

capy

paste

Z. o |k| + 1
Z dalimiters atop .
m-—n relations

ovariine

Qu(t) =
r =
jkj=n+1 functions

Greek lgttars
symbols
punctuation
formatting
done \/ root

quit (no save)

under]ine

overbrace
underbrace

II product

U coprod

X times

= div

+ plus/minus
matrices -

misc »
" ———————

...maybe you should call and ask about The Publisher.

& ARBORIEXT INC. 535 W. William St. Suite 300 Ann Arbor, MI 48103 (313) 996-3566 FAX (313) 996-3573
This advertisement was written and formatted on a Sun Workstation using The Publisher. Sun is a trademark of Sun Microsystems, Incorporated.

TEX Users Group

1988 Membership Form

Request for Information

The TEX Users Group maintains a database and
publishes a membership list containing information
about the equipment on which members’ organiza-
tions plan to or have installed TEX, and about the
applications for which TEX would be used. This list
is updated periodically and distributed to members
with TUGboat, to permit them to identify others
with similar interests. Thus, it is important that
the information be complete and up-to-date.

Please answer the questions below, in particu-
lar those regarding the status of TEX and the hard-
ware on which it runs or is being installed. (Oper-
ating system information is particularly important
in the case of IBM mainframes and VAX.) This
hardware information is used to group members in
the listings by computer and output device.

If accurate information has already been pro-
vided by another TUG member at your site, you
may indicate that member’s name, and the infor-
mation will be repeated.

If your current listing is correct, you need not

answer these questions again. Your cooperation is
appreciated.

o Send completed form with remittance
(checks, money orders, UNESCO coupons) to:
TEX Users Group
P. 0. Box 594
Providence, Rhode Island 02901, U.S.A.

® For foreign bank transfers
direct payment to the TEX Users Group,
account #002-031375, at:
Rhode Island Hospital Trust National Bank
One Hospital Trust Plaza
Providence, Rhode Island 02903-2449, U.S.A.

® General correspondence
about TUG should be addressed to:
TeX Users Group
P. 0. Box 9506
Providence, Rhode Island 02940-9506, U.S. A.

Name:
Home |
Bus. |

% Address:

QTY ITEM

AMOUNT

New (first-time): |]8$30.00 each
Renewal: []$40.00; |

1988 TUGboat Subscription/TUG Membership (Jan.-Dec.) - North America

]1$30.00 - reduced rate if renewed before February 1,1988

New (first-time): []$40.00 each

1988 TUGboat Subscription/TUG Membership (Jan.-Dec.) — Outside North America

Renewal: []$45.00; []$40.00 - reduced rate if renewed before February 1,1988
TUGboat back issues, 1980 1981 1982 1983 1984 1985 1986 1987
$15.00 per issue (19), v.1) (v.2) (v.3) (v.4) (v.5) (v.6) (v.7) (v.8)
circle issue(s) desired: #1 #1223 #1,2 #12 #12 #1,2,3 #1,23 #1,2.3

Air mail postage is included in the rates for all subscriptions

and memberships outside North America.
Quantity discounts available on request.

ES

TOTAL ENCLOSED:
(Prepayment in U.S. dollars required)

k%

Membership List Information

Institution (if not part of address):

Title:

Phone:

Network address: [] Arpanet | | BlTnet
[] CSnet [] uucp

Specific applications or reason for interest in TEX:

My installation can offer the following software or
technical support to TUG:

Please list high-level TEX users at your site who would not

Date:

Status of TEX: [] Under consideration
[] Being installed
[] Up and running since
Approximate number of users:

Version of TEX: [] SAIL

Pascal: [| TEX82 |
[] Other (describe)

] TEX80

From whom obtained:

Hardware on which TEX is to be used:
Operating Qutput

Computer(s) system(s) device(s)

mind being contacted for information; give name, address, and

telephone.

Revised 12/87

TEX Users Group

1988 Membership Form

Page 2

Please answer the following questions regarding output devices used with TEX
if this form has never been filled out for your site, or if you have new information.
Use a separate form for each output device.

Name
A. Output device information
Device name
Model
1. Knowledgeable contact at your site
Name
Telephone
2. Device resolution (dots/inch)
3. DPrint speed (average feet/minute in graphics
mode)
4. Physical size of device (height, width, depth)
5. Purchase price
6. Device type
[] photographic [] electrostatic
[] impact [] other (describe)
7. Paper feed [| tractor feed
[] friction, continuous form
[] friction, sheet feed [] other (describe)
8. Paper characteristics

9.

10.

11.

12.

13.

B.

Lol ol ol

a. Paper type required by device
[] plain [] electrostatic
[] photographic [] other (describe)

b. Special forms that can be used [] none
[] preprinted one-part [| multi-part
|] card stock [] other (describe)
c. Paper dimensions (width, length)
maximum
usable
Print mode

[] Character: () Ascii () Other

[] Graphics [| Both char/graphics
Reliability of device

{ 1 Good [| Fair [| Poor
Maintenance required

[] Heavy [] Medium [] Light
Recommended usage level

[] Heavy [] Medium |] Light

Manufacturer information
a. Manufacturer name
Contact person
Address

Telephone
b. Delivery time
c. Service [| Reliable [] Unreliable

Computer to which this device is interfaced
Computer name
Model
Type of architecture *
Operating system

*If your computer is “software compatible” with another type

(e.g. Amdahl with IBM 370), indicate the type here.

Institution

C. Output device driver software

[] Obtained from Stanford
[] Written in-house
[] Other (explain)

D. Separate interface hardware (if any) between host

computer and output device (e.g. Z80)
1. Separate interface hardware not needed because:
[] Output device is run off-line
[] O/D contains user-programmable micro
[] Decided to drive O/D direct from host
2. Name of interface device (if more than one,
specify for each)

3. Manufacturer information
a. Manufacturer name
Contact person
Address

Telephone
Delivery time
¢. Purchase price
4. Modifications
[] Specified by Stanford
[] Designed/built in-house
[] Other (explain)

5. Software for interface device
[] Obtained from Stanford
[] Written in-house
[] Other (explain)

E. Fonts being used

[] Computer Modern
[] Fonts supplied by manufacturer
[] Other (explain)

1. From whom were fonts obtained?
2. Are you using Metafont? |

] Yes [] No

F. What are the strong points of your output device?

G. What are its drawbacks and how have you dealt

with them?

H. Comments — overview of output device

Revised 12/87

TEX Users Group 1988

Institutional Membership Form

Each Institutional Member is entitled to:

— designate up to 7, 12 or 30 individuals to receive TUG-
boat subscriptions, depending on category of member-
ship chosen; named individuals will be accorded full
status as individual TUG members;

— reduced rates for TUG meetings/courses for all staff
members, and for rental/purchase of videotapes;

- be acknowledged in every issue of TUGboat published
during the membership year.

Instructions: Attach a list of the names and addresses
of individuals to whom you would like TUGboat sub-
scriptions mailed, to include answers to the questions on
both side of this form—as approrpiate, in particular those
regarding the status of TEX and the computer(s)/operat-
ing system(s) on which it runs or is being installed. (For
IBM and VAX, especially, the operating system is more
relevant than model.) It would be particularly useful if
you could provide this information as it relates to each in-
dividual or group using the same hardware. Please make
as many copies of this form as needed or contact the TUG
office for additional copies.

e Send completed form with remittance
(checks, money orders, UNESCO coupons) to:
TEX Users Group
P.O. Box 594
Providence, Rhode Island 02901, U.S.A.

e For foreign bank transfers
direct payment to the TEX Users Group,
account #002-031373, at:
Rhode Island Hospital Trust National Bank
One Hospital Trust Plaza
Providence, Rhode Island 02903-2449, U.S.A.

o General correspondence
about TUG should be addressed to:
TeX Users Group
P.O. Box 9506
Providence, Rhode Island 02940-9506, U.S.A.

Institution/Organization:

Principal contact:

Phone:
QTY 1988 INSTITUTIONAL MEMBERSHIP (JAN.-DEC.) AMOUNT
Category A (incl. 7 subs.): educational $295; non-ed. $395; add’l subs. $30/ea.
Category B (incl. 12 subs.): educational $425; non-ed. $525; add’l subs. $25/ea.
Category C (incl. 30 subs.): educational $795; non-ed. $895; add’l subs. $20/ea.
TUGDboat back issues, 1980 1981 1982 1983 1984 1985 1986 1987
$15.00 per issue (19), (v.1) (v.2) (v.3) (v.4) (v.5) (v.6) (v.7) (v.8)
circle issue(s) desired: #1 #1,2,3 #1,2 #1,2 #1,2 #1,2,3 #1,2,3 #1,2,3

Air mail postage is included in the rates for all memberships
outside North America.

TOTAL ENCLOSED:
(Prepayment in U.S. dollars required)

Membership List Information

Institution:

Principal contact:
Phone:
Specific applications or reason for interest in TEX:

This installation can offer the following software or
technical support to TUG:

Please list high-level TEX users at your site who would not
mind being contacted for information; give name, address, and
telephone.

Date:

Status of TEX: |] Under consideration
[] Being installed
[] Up and running since
Approximate number of users:

Version of TgX: | | SAIL

Pascal: | | TEX82 [] TEX80
[] Other (describe)

From whom obtained:
Hardware on which TEX is to be used:
Operating Output

Computer(s) system(s) device(s)

Revised 12/87

TEX Order Form

The current versions of the public domain TEX software, as produced by Stanford
University, are available from Maria Code by special arrangement with the Computer
Science Department.

Several versions of the distribution tape are available. The generic ASCII and
EBCDIC tapes will require a Pascal compiler at your installation. Each tape con-
tains the source of TEX, and WEB (a precompiler language in which TEX is written),
and METAFONT. It also contains font descriptions for Computer Modern, macros for
AMS-TEX, IATEX, SliTEX and HP TgX, some sample “change files”, and many other
odds and ends.

Ready-to-run versions of TEX are available for DEC VAX/VMS, IBM VM/CMS,
IBM MVS and DEC 20/TOPS-20 formats. They contain everything on the generic
tape as well as the compiled programs. This means that you will not need a Pascal
compiler unless you want to make source changes. Order these tapes if and only you
have one of these systems.

The font tapes contain GF files for the Computer Modern fonts. While it is possible
to generate these files yourself, it will save you a lot of CPU time to get them on
tape.

The price of the tapes includes the cost of the tape reels. Either 1200’ or 2400’ reels
will be used depending on the needed capacity. If you order a distribution tape and
a font tape, they may be put on a single 2400’ foot reel but you will be charged for
2 tapes. All tapes are 1600 bpi.

Please take care to fill in the order form carefully. Note that postage (other than
domestic book rate, which is free) is based on the total weight and postal class which
you select. Sales tax is added for orders with a shipping address in California.

The order form contains a place to record the name and telephone number of the
person who will actually use TEX . This should not be someone in the purchasing
department.

Make checks payable to Maria Code. Export orders must send checks which are
drawn on a US bank. International money orders are fine. Purchase orders are
accepted if your company has a policy of prompt payment (30 days maximum).

Your order will be filled with the current versions of software and manuals at the
time it is received. Since some versions are “pre-announced”, please indicate if you
want to wait for a specific version. Telephone calls are discouraged, but if you must
call, please do so between 9:30 am and 2:30 pm West Coast time. The number for
Maria Code is (408)735-8006. Do not call for advice or technical assistance since no
one is there who can help you. You may try Stanford or some other of the helpful
people whose names appear in TUGboat.

TEX Distribution tapes

ASCII generic

I

EBCDIC generic format _
VAX/VMS Backup format ——— 200/240 dpi generic format additional tape
DEC 20/TOPS 20 Dumper format —
IBM VM/CMS format -

TEX Order Form

Font Library Tapes (GF files)

format 300 dpi VAX/VMS format Tape prices: $92.00 for first

300 dpi generic format

IBM 3800 CMS format
IBM 4250 CMS format

tape, $72.00 for each

Total number of tapes
(for postage allow 2 lbs

IBM MVS format IBM 3820/3812 CMS format for each tape)
Documents: Price § Weight Quantity
TEXbook (vol. A) softcover 25.00 2

TEX: The Program (vol. B) hardcover 37.00 4 -
METAFONT book (vol. C) softcover 22.00 2 -
METAFONT the Program (vol. D) hardcover ... 37.00 4 -_—
Computer Modern Typefaces (vol. E) hardcover 37.00 4 _
IATEX document preparation system 25.00 2 -
WEB language *t 12.00 1 —_
TEXware ® ... 10.00 1 S
BIBTEX * «ovveeiee i 10.00 1 -
Torture Test for TEX * ..., 8.00 1 -
Torture Test for METRFONT * 8.00 1 -
* published by Stanford University
Payment calculation:
Number of tapes ordered —_— Total price for tapes

Number of documents ordered

Total price for documents

Add the 2 lines above
Orders from within California: Add sales tax for your location.

Shipping charges: (for domestic book rate, which is free, skip this section)
Total weight of tapes and books Ibs.
Check type of shipping and note rate:

1]

Multiply total weight by shipping rate. Enter shipping charges:

domestic priority mail

air mail to Canada and Mexico:
export surface mail (all countries):
air mail to Europe, South America:
air mail to Far East, Africa, Israel:

Total charges: (add charges for materials, tax and shipping)

rate $1.00/1b.
rate $1.50/1b.
rate $1.00/1b.
rate $4.00/1b.
rate $6.00/1b

Methods of payment: Check drawn on a US bank. Make payable to Maria Code.

Send order to:

Name and address
for shipment:

Contact person:

International money order.

Purchase order (maximum 30 days allowed for payment).

Maria Code, Data Processing Services,
1371 Sydney Drive, Sunnyvale, CA 94087

Telephone:

TUGhboat, Volume 9 (1988), No. 1

97

The TgXniques Series

Through this series of publications on TEX and the TEX environment, the TEX Users Group
hopes to provide useful documentation to the TEX community. The first four volumes of the
series are:

1. VAX Language-Sensitive Editor (LSEDIT) Quick Reference Guide for use with
the I4TEX Environment and I#TEX Style Templates, by Kent McPherson.

2. Table-Making with INRSTEX, by Michael J. Ferguson.
3. User’s Guide to the IdxTEX Program, by R. L. Aurbach.
4. User’s Guide to the GloTEX Program, by R. L. Aurbach.

The Proceedings of the Eighth TgX Users Group Annual Meeting (University of Washington,
Seattle, August 24-26, 1987), has been published as Number 5 of the TgXniques Series, with
Dean Guenther as Editor. The principal theme of this meeting was “TEX in the Humanities”.
These papers are included in the volume.

= Bart Childs
We’ve come a long way, and ?
@ Christina Thiele
TeX, linguistics and journal production
m Silvio Levy
Typesetting Greek
m Walter Andrews and Pierre MacKay
The Ottoman texts project
m Nobuo Saito and Kazuhiro Kitagawa
What should we do for Japanese TEX
= Yasuki Saito
Japanese TEX: [fTEX]
= Robert McGaffey
Developing TEX DVI driver standards
m Nelson Beebe
A TgX DVI driver family
s David Ness
The use of TEX in a commercial environment
m Silvio Levy
Literate programming in C
= Rick Simpson
Porting TEX to the IBM RT
= Allen Dyer
Text formatting and the Maryland lawyer
s Leslie Carr
Of METRFONT and PostScript

For more information on acquiring the volumes in this series and other publications available
from the TEX Users Group contact the TUG office.

||

C OMPLETE
1TYPESET TING
S = R OV O C B S

Math and Technical Book Publishers. . .

If you are creating your book files with TgX,
Computer Composition Corporation can now offer
the following services:

— Converting TeX DVI or source files to the fully paginated
typeset page in either Computer Modern (from DVI files)
or true Times Roman typefaces (from source files).

— Providing 300 dpi laser-printed page proofs (when source
files are submitted) which simulate the typeset page
exactly.

— Keyboarding services, from traditionally-prepared
manuscripts via the TeX processing system.

— Camera work services, including half-tone, line-art,
screens, and full page negatives.

Call or write us for sample pages in both
Computer Modern and Times Roman.

COMPUTER COMPOSITION CORPORATION
1401 WEST GIRARD MADISON HEIGHTS, MICHIGAN 48071 = (313)545-4330

IDEAS TRANSLATE

LIKE YOU IMAGINE

TYPESET&

in the

same

BIG

Great ideas should look great on paper.

And the translation is easy with PCTEX®:

the best-selling full implementation of
Prof. D. Knuth’s revolutionary TEX
formatting/typesetting program. It offers
PC users the capabilites & advantages—
and looks—of professional typesetting.

In a word, PCTEX gives you
‘control’. Control—of design format,
type & symbols, quality—for complex
mathematical & engineering material,
statistical tables or straight matter. You
get camera/publisher-ready manuscripts
to be proud of, quick & simple.

So whether you’re writing the next
starshot manual, a thesis on relativity
or the great American novel, for a
professional presentation that doesn’t
lose your ideas in the translation,
depend on PCTEX.

From Personal TEX, Inc.,
starting at $249; VISA/MC welcome.
Satisfaction guaranteed.

sesvess e

TR EEREEK]

rormar || dIfFerEnl o=

WIDE:
» OR » NARROW
L1 GHT

BOLD.

WITH

PERSONAL

INC

To order or for information, call:

415/388-8853

or write: Personal TEX, Inc.
12 Madrona Avenue
Mill Valley, CA 94941 USA

Distributed in 14 countries;
distributor inquiries welcome.
PCTEX is a registered TM of Personal TEX, Inc.

TeX is an American Mathematical Society TM.
Manufacturers’ product names are their TMa

MANUALS

ONES

IT’S NICE TO KNOW

PCTEX FORMATTING/TYPESETTING SYSTEM:

FINE TYPESET QUALITY from dot matrix or laser printers,
of phototypesetters.

A COMPLETE PRODUCT. Includes e our specially writ-
ten PCTEX Manual that lets you use TeX immediately e custom
‘macro package' formats for letters, manuals, technical doc-
uments, etc. ® the LaTEX document preparation system (with
user's manual) macro package for article, book, report prepara-
tion @ AMS-TeX, developed by the American Mathematical So-
ciety for professional mathematical typesetting.

OUTPUT DEVICE DRIVERS for e Epson FX, LQ
e Toshiba e Cordata LP-300 Series ® HP LaserJet Series
e Apple LaserWriter @ APS-5 phototypesetter e Linotronic
Compugraphic e Screen preview, with EGA or Hercules card.

REQUIRES: IBM PC/XT, AT or compatible, DOS 2.0 or higher
& 512K RAM; hard disk for printer drivers & tonts.

(Also available: Printer drivers; interfaces to Bitstream Fontware;
Metafont, to design-your-own-type, PC Paintbrush, PC Palette,
FancyFont & Fontrix. Complete packages, including faser printer,
printer driver, PCTEX, and screen previewer from $2850. Site
licenses and volume discounts available.)

This ad is typeset & composed using: PCTEX, Bitstream fonts & faser printer. Logotype & black backgrounds done photographically.

THE AMS TgX LIBRARY

Your single source for TEX products
OAMS-TgX

The AMS macro software that simplifies the typesetting of complex mathematics. AMS-TEX
supports the use of AMS font sets (below). Available for IBM microcomputers and for Macintosh
Plus, SE and II.

0O AMS Font Package

AMSFonts (Euler Fraktur, AMS Extra Symbols including Blackboard Bold, Cyrillic Lightface
and Bold) are designed for use with AMS-TEX. Available Resolutions: 118, 180, 240, and 300 dpi.
For use with screen previewers and with drivers for dot matrix and laser printers. When ordering
the AMS Font Package, please specify resolution or type of printer. This information is necessary
to process your order. (IBM distribution in standard PK format, Macintosh in TgXtures format)

OMathSciTgX

This macro package is designed to format online search output from the bibliographic database
MathSci on DIALOG. MathSciTEX is included at no charge with orders for AMS-TEX and
AMSFonts.

0O The Joy of TEX

The Joy of TEX is the user-friendly guide to the AMS-TEX macro package and details many
features of this extremely useful text processing package.
1986, 290 pages, ISBN 0-8218-2999-8, Softcover

Prices:

AMS-TEX: List $25, AMS Member Price $23

AMS-TEX with Joy of TEX: List $50, AMS Member Price $45
*AMS-TEX with AMS Font Package and MathSciTEX: List $55, AMS Member Price $50

AMS Font Package and MathSciTEX: List $35, AMS Member Price $32

AMS-TEX with AMS Font Package, MathSciTEX and Joy of TgX: List $80, AMS Member Price $72
*Joy of TEX: List $33, AMS Inst Member Price $30, AMS Indiv Member Price $26

*Included at no charge upon request if your order totals $250 or more.

Also available from the AMS Library of TgX Products

The following commercial software may be ordered from the AMS Library - your single source
for TEX materials. Call or write for prices.

TgX for IBM PC and Compatibles Printer Drivers for PCTgX and
O MicroTEX (Addison-Wesley) with The TEXbook by D. Knuth MicroTgX
O PCTEX (Personal TgX, Inc.) with the PCTEX Manual Epson MX, FX, RX, LQ; Okidata, IBM Graphics,
by M. D. Spivak, IATEX macros and IATEX User's Guide Proprinter; Toshiba; HP LaserJet Plus and II;
[J IATEX macros and IATEX User’s Guide QMS Lasergrafix and Talaris; PostScript, Apple
OPC METAFONT and User Guide Laser Writer; Imagen; Cordata.
TgX for Macintosh Plus, SE and II Screen Previewers for IBM and

O TEXtures (Addison-Wesley) with built-in screen previewer, Compatibles
ImageWriter /LaserWriter driver and picture embedding .
capability, and The TgXbook by D. Knuth ggj‘g&i}‘l’e‘(xﬁf{fﬁ Inc.)

HOW TO ORDER: Call the TgX Library at (401) 272-9500, or (800) 556-7774 in the continental U.S. to
order with VISA or MasterCard. Or write to: TEX Library, American Mathematical Society, P. O. Box 6248,
Providence, RI 02940. Please add shipping and handling (see below).

Prepayment required; purchase orders accepted from nonindividual customers. Software/Books are sent via UPS to U.S.
addresses, first class mail to Canada, and air delivery elsewhere. Add shipping and handling for Software/Books: $6 per
order in the U.S. and Canada; $25 per order for air delivery outside the U.S. and Canada. Prices subject to change.

New From MPS...

— TEXWRITE

...a full featured editor/shell designed especially
for use with TEX on the PC.

Here are some of the things you can do:

access TgX, your previewer and device drivers without exiting your file
edit large files in RAM

edit multiple files (including a split screen function for your .LOG file)
define and insert fonts through a font management utility

enter, save and edit command strings through a command management
utility

save editing functions as macros including calls to other macros

TEXWRITE uses pull down menus or function key equivalents for easy ac-
cess to editor and TgX functions. It's designed to let you be as productive
as possible, cutting short the time and keysfrokes involved in the edit,
TEX, preview and print cycle.

TEXWRITE Ver. 1.0 is priced at $149 U.S., with discounts and site licens-
ing available for educational and non-profit institutions.

Other New Products:

A new implementation of TgX for micros! This implementation offers the
latest version of TEX for MS—-DOS and UNIX System V/XENIX.

Device drivers for the HP Series Il and PostScript laser printers.

For more information or to place an order, please contact:

Micro Publishing Systems, Inc.,
Suite 300-1120 Hamilton St., Vancouver, B.C., V6B 2S2, Canada
(604) 687-0354

TeX is a trademark of the American Mathematical Society. Product names are trademarks of their respective
manufacturers.

section headers

table of contents

list of tables

list of figures
cross-referencing

index generation and formatting
bibliography

alphabetized glossary

table making made easy

tables that continue over many pages
page formatting utilities
listing environments

book format

software documentation format
letter format

report format

verbatim environments

MacrOTEX screen simulation
° endnotes
VerSlon 1.0 margin notes

figure macros

NOW slide makinge;
Available! T

Written in Plain TgX *

Source Code Included *

Complete Documentation *

Used on PC, Macintosh, or Mainframe *

MaCl‘OTEX, the TgX macro toolkit, is used at hundreds of sites
world-wide, soon to be translated to Japanese and Norwegian. Call or
write for descriptive brochure. Single copy $200, site licenses available.

TEXnology Inc offers both TeX and LaTEX consulting.

Macro packages including parts of MacroTiEX are now in use
for many books published by MIT Press and Addison-Wesley.

TEXnology Inc Amy Hendrickson, 57 Longwood Avenue, Brookline MA 02146
(617) 738-8029

)

meedens TurboTpX

N
A New Implementation

O
‘ Of TgX Typesetting
In the C Language
7 For Unix and MS-DOS

i \\“\\h \\S

e W

\ [Executables $100

& Il =
@ %////// T T T 45// O With source $200

TurboTEX, the new cousin to the TEX lion, is racing into town with a new implemen-
tation of TEX for high-performance typesetting. He's driving a speedy vehicle loaded
with all the options:

o TRIP-certified INITEX, VIRTEX, and preloadable TEX

e The Computer Modern fonts—both bitmaps and metrics

¢ Printer drivers for HP Laserjet, Postscript, and dot-matrix printers
e IXTEX macros and styles

If you'd like to open the hood and do your own tune-ups, order the TurboTEX source
code in portable C. You will receive some 50,000 lines of TEX and TurboTEX source
code, including our WEB system in C, and PASCHAL, our Pascal-to-C translator. Tur-

boTEX fits C portability standards like POSIX, SVID, and Kernighan & Ritchie.

Availability: Executables are available now for IBM PC’s and compatibles, and
AT&T 3B1 and 3B2 Unix. Unix and MS-DOS source provided on 360K 5-1/4”
PC floppy disks. Source compiles with Microsoft C 5.0 on the PC or the Unix cc.
TurboTEX is forthcoming for Berkeley Unix, VAX/VMS, Macintosh, and 0S/2. Tur-
boTEX requires 640K (PC) or 576K (Unix) memory and hard disk.

No-risk trial offer: Examine the documentation and run TurboTEX for 10 days. If
you are not satisfied, return the software to us for a 100% refund or credit. (Offer
applies to executables only.)

To order: Telephone and written orders accepted. Terms: Check with order, VISA,
Mastercard (free shipping and media); Net 30 to well-rated firms and public agencies
(shipping and media extra). Quantity, educational, and resale discounts available.

The Kinch Computer Company
Publishers of TurboTgX

501 South Meadow Street
Ithaca, New York 14850

Telephone (607) 273-0222

Mathlype

Equations for Word Processing
and TgX on the Macintosh

S e ol Tuooret View indows » MathType is a mathematical equation editing

"""'“'"ywﬂ" e desk accessory for the Macintosh

o= DEVE “toc » MathType can be used both with WYSIWYG word

TR R EE AR TR A processors and TEX
sa R EICICIE RO A S B 8 * TEX translation is 2-way so that equations can be

$9% = (1-D \pm \sart (02 -sac)) \over (o198 edited at any time by pasting back into MathType

e Guedratie fypeiet (] » MathType has the easiest, most intuitive user interface

oo —bEVE —dac of any equation editor available
2a » Mathematics can be entered easily by both

non-mathematicians and non-TEXnicians

What People are Saying About MathType

.. we recommend MathType because it is the easiest to use, ...
— David Sachs, MacWEEK, January 5, 1988.

... MathType is easier to use and produces better-looking results, ...
— Andy Oeftering, Publish!, December 1987.

Very intuitive, even a dummy can use it. Prints beautifully.
— Technology Manager, DuPont.

It looks so good that it makes us want to include more math in our documents.
— Advanced Research Analyst, McDonnell Douglas.

MathType is far easier to use than MacXqn.
~ Ken Milburn, Computers in Science, September 1987.

1 » MathType is available now
m]S)e.81gn for only $149
Clence * Call or write for a free

. . . demonstration disk and a
6475-B East Pacific Coast Highway, Suite 392 .
Long Beach, CA 90803 = (213) 433-0685 brochure with sample output.

MathType is a trademark of Design Science, Inc. Macintosh is a trademark of Apple Computer Inc. TEX is a trademark
of the American Mathematical Society. :

TEXT1

Have you ever needed to create a new style sheet for IEIgX, AMS-TEX or Plain
TeX, and been frustrated with the work involved in modifying or recoding macros?
There is an alternative. TeXT1, like AMS-TEX and I€IEX adds to the basic Plain TEX
macros such as table of contents, indices, parts, chapters, subtitles, running head
and foot text, lists, and auto numbered footnotes and endnotes.

What makes TEXT1 unique is its global formatting macros which give you the
ability to easily modify the style sheet (formatting) of each of the local macros,
without the need of an experienced TgXnician. For example, if you wanted your
chapters to be lettered instead of numbered, or if you wanted to alternate the
author’s name and chapter title between even and odd pages, you would simply
use one global command and change the format. Global format commands let you
letter footnotes, or have them print in front of a word instead of following a word.
Another global format command allows you to change the list hierarchy from “1.,
a., i., 1), a), i)” as defined by Turabian to an outline style, “I., A., 1.”.

TEX T1 has been used by thousands of students, staff and faculty since
1986 to meet their text processing needs.

TEX T1 can be run on any computer that runs TgX.
TEX T1 comes with a complete Refrence Manual and Users Guide.

TEX T1 optionally has available an International Phonetic Alphabet font in
GF, PK or PXL format. Also available is a Compugraphics 8600

driver.
To order TEXT1, write to

TeXT1 Distribution
Computing Service Center

Washington State University
\ Pullman, WA 99164-1220

or call

/ 1EXT1 Distribution

(509) 335-0411

Publishing Companion 1.03

Desktop Publishing Has
Never Been Simpler
and
Will Never Be the Same

Mathematics

What you

see on the

a4 B - con (e Y . Word-
Lo : Perfect

screen

Is fully translated to TgX as shown below

B Bt 4 ¢y D;
~ sin?(A2 4 B?) — cos?(C; + D)2

- 3920 Olentangy River Road
Columbus, Ohio 43214 U.S.A.
(614) 459-9711

——-COMMUNICATIONS—

European dealers:
Bruce Wolman of KAOS A/S, Boks 3169 Elisenberg, 0208 Oslo 2 NORWAY -- Telephone +47 02-59-02-94
Knud Lgnsted of Interbase, Dantes Plads 1, DK-1556 Kgbenhavn V Denmark -- Telephone +45 01-93-28-29
Ewart North of UniTEX Systems, 12 Dale View Road, Beauchief, Sheffield S8 0EJ. -- Telephone (0742) 351 489

Publishing Companion priced at $179.00. Screen capture program used for above screen available for $79.00. Add shipping and handling of $4.00 for US &
Canada or $35.00 for Europe. Prepayment or purchase order required. A remittance from outside the United States must be payable in U.S. dollars and can be
an international money order or a check drawn on a U.S., Canadian or European bank.

Printed in U1.S.A. 8802-2

Publishing Companion 1.03

Desktop Publishing Has Never Been Simpier
and Will Never Be the Same

Foreign Language Support

Foreign language users can now create documents in
WordPerfect and translate directly into \TeX retaining
foreign characters. WordPerfect is ideal for foreign
languages, Map ALT and CONTROL characters easily to foreign
characters, You see the foreign characters on the screen as
you type them.

Buenos dias at you
Geht es dem Friulein Schmidt gut? see on the
Trés bien merci
Word-
Perfect
screen

Is fully translated to TgX as shown below

Foreign language users can now create documents in WordPerfect and translate directly into TgX
retaining foreign characters. WordPerfect is ideal for foreign languages. Map ALT and CONTROL
characters easily to foreign characters. You see the foreign characters on the screen as you type them.

Buenos dias
Geht es dem Friulein Schmidt gut?
Trés bien merci

n 3920 Olentangy River Road
® Columbus, Ohio 43214 U.S.A.

COMMUNICATIONS == (614) 459-9711

European dealers:
Bruce Wolman of KAOS A/S, Boks 3169 Elisenberg, 0208 Oslo 2 NORWAY -- Telephone +47 02-59-02-94
Knud Lgnsted of Interbase, Dantes Plads 1, DK-1556 Kobenhavn V Denmark -- Telephone +45 01-93-28-29
Ewart North of UniTgX Systems, 12 Dale View Road, Beauchief, Sheffield S8 OEJ. -- Telephone (0742) 351 489

Pubiishing Companion priced at $179.00. Screen capture program used for above screen available for $79.00. Add shipping and handling of $4.00 for US &
Canada or $35.00 for Europe. Prepayment or purchase order required. A remittance from outside the United States must be payable in U.S. dollars and can be
an international money order or a check drawn on a U.S,, Canadian or European bank.

Printed in U.S.A. 8802-1

K-Talk would like to introduce Publishing Companion version 1.03.

Publishing Companion Translates

WordPerfect

To

TEX

Our Goal: To publish documents using TEX with a limited amount of TiX knowledge; without

giving up TgX quality.
Publishing Companion translates the following from WordPerfect:

Advance Half-Line (new)
Automatic Boxes
Automatic Indexes

Block Protect

Centering

Conditional End of Page
Endnotes

Flush Right

Footnotes

Foreign Characters (new)
Full Fonts

Horizontal Lines

Indents

Justification

Mail Merge

Math Formulas (new)
Newspaper-Style Columns
Non-Break Hyphens

Non-Break Spaces
Outline (new)
Page Numbering
Paragraphs
Parallel Columns
Pitch/Point Size
Redlining (new)
Running Footers
Running Headers

Soft Hyphens

Strikeout (new)

Superscripts (new)
Subscripts (new)

Table of Contents

Type Styles (bold, underline)
Widow/Orphan ON/OFF

Publishing Companion is the missing link between wordprocessing and desktop publishing. Other word
processors are supported. For more information call or write:

KTALK

®
OMMUNICATIONS ==

3920 Olentangy River Rd.
Columbus, Ohio 43214
(614) 459-9711

DESKTOP PUBLISHING HAS NEVER BEEN SIMPLER
AND WILL NEVER BE THE SAME

MAKE THE

Feature Preview 4.6 MAXview 2.n
Select DVI file on-the-fly at start-up
Select page size at start-up at start-up
Select page offsets at start-up at start-up
Multiple page mode X
Two-up page mode X
Display current page number X
Display font, size, position, and scaling of character at cursor X
Select magnification level on-the-fly at start-up
Magnification levels 15,000 4
Search for words b
Reposition page X X
Pica ruler at cursor at edge of screen

Physical page outline

X

User-specified font directories

X

Support PXL and PK font format

X

X

Substitution for missing fonts

any number, specified in

single font, specified at

config or sub file start-up
Font substitution for existing fonts any number
Can use printer driver fonts X X
Additional fonts provided X
PostScript screen fonts provided X
PC/AT startup time (simple document with one font) 8 seconds 8 seconds
PC/AT time to draw 20 pages for simple document 84 seconds 127 seconds
PC/AT startup time (complex document with 14 fonts) 9 seconds 19 seconds
PC/AT minimum time to draw 10 pages for complex document 34 seconds 60 seconds
Price $175 $125

535 W. William St. Suite 300

Ann Arbor, MI 48103

(313) 996-3566

FAX (313) 996-3573

COMPARISON.

ArborText has released a new Preview
for the PC which is 30% faster than our
previous version. As you can see from our
benchmarks on the opposite page®, there
iS no comparison.

We've also added landscape to DVI-
LASER/HP, our Hewlett-Packard LaserJet
Plus and LaserJet Il driver, and a soft font
conversion utility that allows you to create
fonts .pk and .pl formats for use in Pre-
view or on other printers. Both programs
are available as upgrades from Personal

TEX

REQUIREMENTS FOR Preview
4.6 ARE:

O IBM PS/2 or PC (or true compati-
ble) equipped with one of IBM EGA
(mono or color), MCGA, VGA, Her-
cules Graphics Card, Olivetti Mono-
chrome Graphics Card, Tecmar Graph-
ics Master card, Genius VHR Full

* The benchmarks on the opposite page are based on
ArborText trials.

535 W. William St. Suite 300

Ann Arbor, MI 48103

Page Display Monitor, ETAP Neftis
monitor, Toshiba 3100, or AT&T 6300.

O PC TgX or DVI files

So if you're looking for a full-featured
page previewer that won’t slow you
down, remember...

make the comparison.

ARBORIEXT INC.

For more information, call our distribu-
tor Personal TgX at (415) 388-8853 or
ARBORIEXT INC. at (313) 996-3566.

This advertisement was created using The Publisher.

TeX is a trademark of the American Mathematical Society.
Laserdet Plus and LaserJet |l are trademarks of Hewlett-
Packard, Co. PS/2 and PC are trademarks of 1BM, Corp.

(313) 996-3566 FAX (313) 996-3573

TEX Typesetting Services

The American Mathematical Society can produce typeset pages from your DVI or source

files. Features of our services include:

e QUALITY - We use an Autologic APS
Micro-5 typesetter.

e FONTS - We offer AM, CM and Times
Roman. Several more Autologic typefaces
will be added in the near future.

e LOW-COST - We charge only $5 per
page for the first 100 pages: $2.50 per page
for additional pages.

e SPEED - Turnaround time is no more
than one week for up to a 500 page job.

o EXPERIENCE - If you have a problem
with a DVI or source file, we can usually
solve it with our staff who are trained in
TeX.

o FULL-SERVICE - We also offer keyboard-
ing, camera work, printing and binding ser-
vices.

PO Box 6248
Providence. Rl 02940

American Mathematical Society

000
O000Q
00000
00000
00000

Metafont Design and Consulting

NEENIE BILLAWALA (408)253-4833
841 Stendhal Lane, Cupertino, CA 95014

{ihnp4, seismo, decwrl, ... }!sun!metamarksinb

For more information, or to schedule a job. please contact Regina Girouard

(401) 272-9500
800-556-7774

_

Index of Advertisers

100, 102, 112 American Mathematical Society
90, 110, 111 ArborText
98 Computer Composition
105 Design Science
107, 108, 109 K-Talk Communications
cover 3 Kellerman & Smith
104 Kinch Computer Company
101 Micro Publishing Systems, Inc.
112 Neenie Billawala
99 Personal TEX Inc.
103 TgpXnology, Inc.
97 TgX Users Group publications
106 Washington State University

COMPUTERS & TYPESETTING:
Errata and Changes

As of 15 February 1988

This document contains all known errata and changes to Computers & Type-
setting, Volumes A-E, as compiled by the TgX Project at Stanford, as of the
date shown above. An up-to-date log of these changes is available on-line
to users with Internet access. Changes through 15 June 1987 are in the file
<tex.doc>ERRATA.THR, and later changes, in <tex.doc>ERRATA.TeX; both files
are on the Score system at Stanford (@SCORE.Stanford.Edu).

Beginning with this edition, updated versions of the full errata list will be
published only once a year, for distribution with the first issue of TUGboat.
Supplements will appear as necessary in subsequent TUGboat issues. The date
of the last entry in each section of this document is now listed in the contents,
below, so that it is no longer necessary to check the detail to see whether anything
has been added.

CONTENTS
Colophon for Computers & Typesetting 2
Bugs in Computers & Typesetting
Volume A: The TgXbook (January 1986) 3
Volume B: TgX: The Program (May 1986) 9
Volume C: The METAFONTbook (March 1986) 18

Volume D: METAFONT: The Program (May 1986) 22
Volume E: Computer Modern Typefaces (May 1986) 26

Changes to the programs and fonts

TEX (ver. 2.9, 23 December 1987) 28
METAFONT (ver. 1.3, 5 May 1987) 34
Computer Modern fonts (15 August 1987) 37
Corrections to earlier editions 39

Distributed with TUGboat Volume 9 (1988), No. 1. Published by

TeX Users Group
P. 0. Box 9506
Providence, R.1. 02940-9506, U.S.A.

e

— o — —

Colophon for Computers & Typesetting

The five volumes of Computers & Typesetting were composed by TgX (TEX82)
using the Computer Modern (CMB85) fonts as produced by METRFONT (META-
FONT84). Thus, the books themselves describe exactly how they were prepared
for printing. Camera-ready copy was set on an Autologic APS Micro-5 typeset-
ter at Stanford University from font images resident on the host computer and
shipped to the typesetter a character at a time, as needed.

The proof-style illustrations in Volume E were-also set on the Micro-5, each
figure comprising two images that were combined photographically with the text
material after the images of the character shapes had been screened. The “color
separation” to produce those proofs was done by a program written for that
purpose.

All the copy on the cover, spine, and book jackets was also typeset by the
APS, using Computer Modern fonts, except for the ISBN number.

The books were printed on Finch Opaque, basis 50 1b. acid-free paper, which
has a life expectancy of several hundred years. The hardcover edition was printed
and bound by Halliday Lithograph Corp., Hanover, Massachusetts, as were the
spiral-bound editions of The TEXbook and The METAFONTbook.

Colophon for these errata

The errata and changes were composed by TgX running on a VAX 8600 (VMS)
at the American Mathematical Society. Camera-ready copy was prepared on an
Autologic APS Micro-5, using a preliminary version of disk-resident CM fonts
(these fonts will be available from Autologic as soon as a few remaining bugs
have been exterminated).

This document was printed in the printing department of the AMS, on
Weyerhauser Cougar 50 1b. acid-free paper.

Bugs in Computers & Typesetting, Page 3 15 February 1988

Bugs in Computers & Typesetting
15 February 1988

This is a list of all corrections made to Computers & Typesetting, Volumes A-E. It also includes
all corrections made to the softcover version of The TEXbook, beginning with the sixth printing
(January 1986); these are the same as corrections to Volume A. Corrections to the softcover ver-
sion of The METAFONTbook are the same as corrections to Volume C. Some of these corrections
have already been made in reprintings of the books.

Page A7, fourth line from the bottom (6/28/86)

since control sequences of the second kind always have exactly one symbol after

Page A35, second-last line (1/31/87)

He may run who reads.
— HABAKKUK 2:2 (c. 600 B.C.)

He that runs may read.

Page A43, lines 8-9 (8/23/86)

of Appendix B, which defines % to be a special kind of symbol so that you can
“use it for comments, defines the control sequence \% to mean a percent sign.

Page A45, lines 10-13 (8/23/86)

TEX adds 64. Hence code 127 can be typed ~~?, and the dangerous bend sign can
be obtained by saying {\manual~~?}. However, you must change the category code of
character 127 before using it, since this character ordinarily has category 15 (invalid);
say, e.g.,, \catcode‘\""?=12. The -~ notation is different from \char, because "~

Page A76, line 7 (8/23/86)
and extra space; for example, these quantities are 3.33333pt, 1.66666 pt, 1.11111pt,

Page A83, bottom line (5/19/87)
[This line should be flush right.]

Page A1l1, Tth-last line, right-hand column (2/15/87)
if b = 10000 and —10000 < p < 10000 and ¢ < 10000;

Page A117, second-last line (6/10/87)

marks; sometimes also $\1$ (||). You can say, e.g., ‘\footnote\dag{...}".

Page A124, lines 6-11 (2/26/87)

of insertion; an additional ‘\penalty-10000’ item is assumed to be present at the end of
the vertical list, to ensure that a legal breakpoint exists.) Let u be the natural height
plus depth of that least-cost box, and let r be the penalty associated with the optimum
breakpoint. Decrease g by uf, and increase ¢ by r. (If \tracingpages=1, the log file
should now get a cryptic message that says ‘% splitn to v,u p=r’. For example,

% split254 to 180.2,175.3 p=100

Bugs in Computers & Typesetting, Page 4 15 February 1988

Page A158, lines 6-8 (2/20/87)

the second atom, which has subscript ; the superscripts are empty except for the last
atom, whose superscript is n + 1. This superscript is itself a math list consisting of one
atom, whose nucleus is n + 1; and that nucleus is a math list consisting of three atoms.

Page A159, line 22 (2/15/88)

‘\nolimits’ if the normal \displaylimits convention has been overridden; a Rad

Page A171, line 20 (1/26/86)

will be surrounded by more space than there would be if that subformula were enclosed

Page A176, line 1 (8/23/86)

You can insert ‘\noalign{(vertical mode material)}’ just after any \cr within

Page A213, lines 34-35 v (12/23/87)

text will be a single control sequence token, defined to be like \relax if its meaning is
currently undefined.

Page A248, line 17 (6/17/86)

‘%’ or ‘\span’ or ‘\cr’, it needs some way to decide which alignment is involved.

Page A249, line 20 (6/17/36)

line (see Chapter 8). If you don’t want a \cr at the end of a certain line, just type

Page A276, line 19 (1/27/86)

| \font(control sequence)(equals)(file name)(at clause)
| (global assignment)

[The bottom line of p. 276 will now move to the top of p. 277.]

Page A277, lines 31-32 (1/27/86)

(font assignment) — \fontdimen(number){font)({equals)(dimen)

Page A286, sixth-last line (4/28/87)
\sfcode table as described in Chapter 12; characters numbered 128 to 255 set the

Page A287, line 19 (2/15/87)
s \-. This “discretionary hyphen” command is defined in Appendix H.

Page A292, lines 9-10 (2/15/87)

\-. This command is usually equivalent to ‘\discretionary{-}{}{}’; the ‘-’
is therefore interpreted as a hyphen, not as a minus sign. (See Appendix H.)

Page A308, lines 2526 (6/1/87)

\def\appendroman#1#2#3{\edef#1{\csname
\expandafter\gobble\string#2\romannumeral#3\endcsname}}

Bugs in Computers & Typesetting, Page 5 15 February 1988

Page A312, lines 10-14 (8/23/36)

12.11. The interline glue will be zero, and the natural height is 1 +1-3+2 = 1pt
(because the depth of \box2 isn’t included in the natural height); so the glue will
ultimately become \vskip-~1ipt when it’s set. Thus, \box3 is 3pt high, 2 pt deep, 4pt
wide. Its reference point coincides with that of \box2; to get to the reference point of
\box1 you go up 2 pt and right 3 pt.

Page A312, line 21 (8/23/86)
up 4pt to get to the upper left corner of \box4; then down —1.6 pt, i.e., up 1.6 pt, to

Page A319, line 20 (3/31/87)
make ordinary periods act like \cdot symbols: Just define \mathcode‘. to be “0201,

Page A326, line 12 (12/12/87)

its natural width. The \hbox version also invokes \everymath.

Page A328, lines 18-19 (5/14/87)

not performed while the expansion is taking place, and the control sequences following
\def are expanded; so the result is an infinite string

A\def A\def A\def A\def A\def A\def A\def A\def A...

Page A329, lines 14-15 (8/23/86)

20.5. The ## feature is indispensable when the replacement text of a definition
contains other definitions. For example, consider

Page A356, lines 6-7 (1/30/87)

\spaceskip=.3333em \xspaceskip=.5em\relax}
\def\ttraggedright{\tt\rightskip=0pt plus2em\relax}

Page A356, line 33 (6/1/87)
\vbox to.2ex{\hbox{\char’26}\vss}\hidewidth}}

Page A357, tenth-last line (10/13/86)

\let\sp=" \let\sb=_ {\catcode ‘_=\active \globall\let_=_}

Page A357, third-last and second-last lines (2/17/87)

\def\prém@s{\ifx’\next\let\nxt\pr@Q@ds \else\ifx~\next\let\nxt\procot
\else\let\nxt\egroup\fi\fi \nxt}

Page A364, fifth-last line (1/30/87)

\def\fmtname{plain}\def\fmtversion{2.3} % identifies the current format

Page A368, bottom line (2/26/86)

that includes the symbols «, {, #, <, and 2, and he finds that this makes it much more

Page A379, line 15 (10/12/87)
\def\deleterightmost#1{\edef#1{\expandafter\zyzzy#1\xyzzy}}

Bugs in Computers & Typesetting, Page 6 15 February 1988

Page A396, line 13 (8/23/86)
\hyphenpenalty=10000 \exhyphenpenalty=10000 '

Page A414, line 10 (3/4/86)

\font\titlefont=cmssdc10 at 40pt % titles in chapter openings

Page A427, line 7 (2/23/86)

the author’s book Computer Modern Typefaces.)

Page A428, lines 18-20 (6/15/87)

The first eight of these all have essentially the same layout; but cmr5 needs no
ligatures, and many of the symbols of cmti10 have different shapes. For example,
the ampersand becomes an ‘E.T.’, and the dollar changes to pound sterling:

Page A434, lines 25-28 (8/17/86)

from \nu (v). Similarly, \varsigma (¢) should not be confused with \zeta (). It
turns out that \varsigma and \upsilon are almost never used in math formulas;
they are included in plain TEX primarily because they are sometimes needed in
short Greek citations (cf. Appendix J).

Page A447, line 32 (6/1/87)

ters also affect mathematical typesetting: dimension parameters \delimitershortfall

Page A454, lines 23-29 (8/13/87)

@@ If a suitable starting letter is found, let it be in font f. Hyphenation is aban-

doned unless the \hyphenchar of f is between 0 and 255, and unless a charac-
ter of that number exists in the font. If this test is passed, TEX continues to scan for-
ward until coming to something that’s not one of the following three “admissi-
ble items”: (1) a character in font f whose \1lccode is nonzero; (2) a ligature formed en-
tirely from characters of type (1); (3) an implicit kern. The first inadmissible item ter-
minates this part of the process; the trial word consists of all the letters found in ad-
missible items. Notice that all of these letters are in font f.

Page A455, new paragraph to follow line 9 (2/15/87)

@ The control sequence \- is equivalent to \discretionary{\char h}{}{},
where h is the \hyphenchar of the current font, provided that h lies be-
tween 0 and 255. Otherwise \- is equivalent to \discretionary{}{}{}.

Page A457, left column, fifth-last line (2/17/87)
155, 201, 805, 324, 357, 394-395; *kern, @97, @316, +317.

Page A458, left column, line 6 (2/15/87)
*\- (discretionary hyphen), 95, 283, 287,
292, 455.
Page A458, left column, line 19 (2/15/88)

NI), 146-147, 171, 361, 435, 438.

Bugs in Computers & Typesetting, Page 7 15 February 1988

Page A458, left column, near the bottom (5/19/87)

\! (exclamation point), 51, 72, 73, 75, 169.

[This saves a line that otherwise would make the index too long on page 481!]

Page A458, right column, line 10 (11/27/86)
~ (tilde), 38, 51, 343, 353; see also ties.

Page A458, right column (6/14/87)

*\accent (general accent), 9, 54, 86, 283, 286.

Page A461, entry for boxes (3/16/87)
boxes, 63-67, 7T7-83, 221-229.

Page A461, entry for \centering (1/28/86)
\centering, 347, 348, 362.

Page A462, left column, line 7 (10/9/87)
152, 178, 360.
Page A462, entry for (code assignment) (1/27/86)

(code assignment), 277.

Page A464, left column, line 3 (2/15/87)
discretionary hyphens, 28, 95-96, 453, 455.

Page A465, entry for \everymath (12/12/87)

[Include also a reference to page 326.]

Page A465, right column, line 8 (5/3/87)
expansion of expandable tokens, 212-216, 238,
Page A466, entry for \font, second line (1/27/86)
271, 276.
Page A466, new entry (2/3/87)

(fontdef token), 271.

Page A467, entry for \hideskip (1/28/86)
\hideskip, 347, 348, 354.

Page A468, left column line 2 (2/15/87)
351, 395, 414, 454, 455.

Page A470, entry for manfnt (1/15/86)
manfnt, 44, 408, 414.

Bugs in Computers & Typesetting, Page 8 15 February 1988

Page A471, entry for \medbreak (10/13/86)
\medbreak, 111, 113, 353, 355, 419, 422.

Page A471, entry for \moveright (2/27/87)
*\moveright, 80-81, 221, 282.

Page A471, entry for Mozart, second line (3/19/86)
Gottlieb (= Theophilus = Amadeus), 409.

Page A472, the entry for \not (2/12/87)

[The overprinting here is intentional, since \not is a character of width zero. More than a
dozen people have reported this as an error, but it is not!]

Page A473, entry for ‘page builder’ (8/13/87)
when exercised, 122, 280-283, 286-287.

Page A477, entry for \span (5/3/87)
*\span, 215, 238, 243, 244, 245, 248, 249,
282, 330, 385.
Page A479, entry for ties, second line (11/27/86)
173, 353, 404.
Page A480, changes to various entries (6/14/87)

*\underline, 130-1381, 141, 291, 443.
*\unhbox, 120, 283, 285, 354, 356, 361, 399.
*\unhcopy, 120, 283, 285, 353.

*\unkern, 280.

*\unpenalty, 280.
*\unskip, 222-223, 280, 286, 313, 392, 418-419.
*\unvbox, 120, 254, 282, 286, 354, 361, 363, 364, 392, 399, 417.
*\unvcopy, 120, 282, 286, 361.
*\vadjust, 95, 105, 109, 110, 117, 259, 281, 393, 454.
*\valign, 249, 283, 285-286, 302, 335, 397.
*\vcenter, 150-151, 159, 170, 193, 222, 242,
*\vfil, 71, 72, 111, 256, 281, 286, 417.
*\v£ill, 24, 25, 71, 72, 256-257, 281, 286.
*\vfilneg, 72, 111, 281, 286.

\voidb@x, 347, 348.

Page A480, right column (2/15/88)

\vdots (©), 177, 359.

Page A481, left column (6/14/87)
*\vss, 71, 72, 255, 281, 286.

Page A481, right column (7/3/87)
\z@, 347, 348.

\z@skip, 347, 348.

Bugs in Computers & Typesetting, Page 9 15 February 1988

Volume B, in general (7/28/86)

[A number of entries were mistakenly omitted from the mini-indexes on the right-hand pages.
Here is a combined list of all the missing items; you can mount it inside the back cover, say, as

a secondary mini-index when the first one fails. ..]

active_base = 1, §222,
auz = macro, §213.
begin_name: procedure, §515.
big_switch = 60, §1030.
choice.node = 15, §689.
cur-boundary: 0 .. save_size, §271.
cur.c: quarterword, §724.
cur_group: group_code, §271.
cur_t: four_quarters, §724.
cur.level: quarterword, §271.
do_extension: procedure, §1348.
dvi_buf: array, §595.
dvi_gone: integer, §595.
dvi_limit: dviiindez, §595.
dvi_offset: integer, §595.
dvi_ptr: dvi_indez, §595.
end_graf: procedure, §1096.
error: procedure, §82.
error_stop_-mode = 3, §73.
font_base = 0, §12.
font_info: array, §549.
get_token: procedure, §365.
glue_base = 2626, §222.
half-buf: dvi_index, §595.
handle_right_brace: procedure,
§1068.
hash_base = 258, §222.
head = macro, §213.
hyf_distance: array, §921.
hyf-next: array, §921.

hyf-num: array, §921.

indezr = macro, §302.

inf: boolean, §448.

init_col: procedure, §788.
init_span: procedure, §787.
input_in: function, §31.
interaction: 0.. 3, §73.

limit = macro, §302.
line_width: scaled, §830.
macro_call: procedure, §389.

main_control: procedure, §1030.

mem: array, §116.

mem_bot = 0, §12.

mem_end: pointer, §118.
mem_top = macro, §12.
mlist_to.hlist: procedure, §726.
mode = macro, §213.

mode_line = macro, §213.
more_name: function, §516.
mu: boolean, §448.

name = macro, §302.

nest: array, §213.

off-save: procedure, §1064.
open_log_file: procedure, §534.
output_active: boolean, §989.
p: pointer, §498.

param_stack: array, §308.
pool_file: alpha_file, §50.
pool_ptr: pool_pointer, §39.

prefited_command: procedure,

- §1211.

prev_depth = macro, §213.

prev.graf = macro, §213.

prev_prev_r: pointer, §830.

print_err = macro, §73.

r: trie_pointer, §960.

reconstitute: function, §906.

resume_after.display: procedure,
§1200.

save_ptr: O .. save_size, §271.

save_stack: array, §271.

scan.dimen: procedure, §448.

scan.math: procedure, §1151.

short_display: procedure, §174.

show.node_list: procedure, §182.

start = macro, §302.

state = macro, §302.

str_pool: packed array, §39.

str_ptr: str_number, §39.

str_start: array, §39.

tail = macro, §213.

trap_zero_glue: procedure, §1229.

trie: array, §921.

trie_char = macro, §921.

trie_link = macro, §921.

trie_.op = macro, §921.

vlist_out: procedure, §629.

write_loc: pointer, §1345.

Volume B, in general

(4/6/87)

[The percent signs in all the comments (for example, on pages 7 and 50) are in the wrong font!

Change ‘%’ to ‘%’.]

Page Bvi, bottom line, and top line of next page

(10/12/86)

puter Science Report 1097 (Stanford, California, April 1986), 146 pp. The
WEB programs for four utility programs that are often used with TgX: POOLtype,

TFtoPL, PLtoTF, and DVItype.

Page B2, line 32

(12/23/87)

define banner = “This_is_TeX, Version 2.9~

{ printed when TgX starts }

Page B7, new line after line 25

(1/28/87)

if maz_in_open > 128 then bad — 6;

Page B13, first three lines

(4/7/87)

The ‘name’ parameter, which is of type ‘packed array [(any)] of char’, stands for the name
of the external file that is being opened for input or output. Blank spaces that might appear in
name are ignored.

Bugs in Computers & Typesetting, Page 10 15 February 1988

Page B14, line 30 (4/7/87)

31. The snputln function brings the next line of input from the specified file into available

Page B18, line 30 (5/22/86)

str_ptr: str_number; { number of the current string being created }

Page B21, first line of mini-index, right column (6/14/87)
pool_name

= "string", §11.
Page B34, lines 56 (6/14/87)

to delete a token, and/or if some fatal error occurs while TEX is trying to fix a non-fatal one.
But such recursion is never more than two levels deep.

Page B52, line 5 (8/13/87)

cannot be done, i.e., if hi_mem.min = lo.mem.maz + 1, we have to quit.

Page B55, lines 12-13 (4/21/87)

if r = p then if rlink(p) # p then ({ Allocate entire node p and goto found 129);

Page B57, lines 25-28 (6/14/87)

The first of these has font = font_base, and its link points to the second; the second identifies the
font and the character dimensions. The saving feature about oriental characters is that most of
them have the same box dimensions. The character field of the first char_node is a “charext” that
distinguishes between graphic symbols whose dimensions are identical for typesetting purposes.

(See the METAFONT manual.) Such an extension of TEX would not be difficult; further details
are left to the reader.

Page B58, second line of section 136 (7/23/86)

the values corresponding to ‘\hbox{}’. The subtype field is set to min_quarterword, since that’s

Page B66, lines 2-8 (4/21/87)

location is more efficient than dynamic allocation when we can get away with it. For exam-
ple, locations mem_bot to mem_bot + 3 are always used to store the specification for glue that
is ‘Opt plus Opt minus Opt’. The following macro definitions accomplish the static alloca-
tion by giving symbolic names to the fixed positions. Static variable-size nodes appear in lo-
cations mem_bot through lo_.mem_stat_maz, and static single-word nodes appear in locations
hi_mem_stat_min through mem_top, inclusive. It is harmless to let lig_trick and garbage share
the same location of mem.

Page B67, line 23 ‘ (4/13/87)

{ previous mem._end, lo_mem_-mag, and hi_mem_min }

Page B71, line 17 (4/15/87)

begin while p > mem_min do

[Now null can be removed from the mini-index.]

Bugs in Computers & Typesetting, Page 11 15 February 1988

Page B74, line 24 (4/15/87)

procedure show_node.list{p : integer); {prints a node list symbolically }

Page B74, line 33 (4/15/87)

while p > mem_min do

Page B84, line 12 (2/15/87)
define relaz =0 {do nothing (\relax)}

Page B86, third line of section 210 (8/23/86)

that their special nature is easily discernible. The “expandable” commands come first.

Page B88, line 23 (5/22/86)

procedure print.mode{m : integer); {prints the mode represented by m }

Page B93, lines 3-4 (8/17/86)

In the first region we have 128 equivalents for “active characters” that act as control sequences,
followed by 128 equivalents for single-character control sequences.

Page B130, ninth-last line (5/7/87)

This variable has six possible values:

Page B151, line 9 (4/22/87)

begin if {end_ line_char < 0) V (end_line_char > 127) then incr(limit);
if limit = stert then { previous line was empty }

Page B154, lines 25, 29, 34 respectively (9/20/87)

cvl_backup, radiz.backup, co_backup: small_number; {to save cur_vallevel, etc.}
co.backup — cur_order; backup_backup — link{backup_head);
cur-order «— co_backup; link(backup_head) « backup_backup;

Page B155, new entry for mini-index (9/20/87)
cur_order: glue_ord, §447.
Page B156, line 28 (12/23/87)
begin eg.define(cur-cs, relax, 256);
Page B157, mini-index (12/23/87)
Delete the entries for ‘eqib’ and ‘frozen.relex’; replace them by the following: eq-define: procedure,
§227.
relax = 0, §207.
Page B160, lines 17-20 (7/28/86)

389. After parameter scanning is complete, the parameters are moved to the param.stack.
Then the macro body is fed to the scanner; in other words, macro_cell places the defined text
of the control sequence at the top of TEX’s input stack, so that gef.next will proceed to read it
next.

Bugs in Computers & Typesetting, Page 12 15 February 1988

Page B200, top line (5/5/87)

495. When we begin to process a new \if, we set if_limit «— if-code; then if \or or \else or \fi

Page B217, lines 15-16 (6/14/87)
DVI format.
Page B224, lines 4-7 of section 560 (10/22/86)

name and area strings nom and aire, and the “at” size s. If s is negative, it’s the negative of a
scale factor to be applied to the design size; s = —1000 is the normal case. Otherwise s will be
substituted for the design size; in this case, s must be positive and less than 2048 pt (i.e., it must
be less than 227 when considered as an integer).

Page B224, second-last line (4/28/87)

done: if file_opened then b_close(tfm._file;
read_font_info «— g;

Page B229, lines 6-8 (11/17/87)

than 227, If z < 223, the individual multiplications b- z, ¢ - 2, d - z cannot overflow; otherwise we
will divide z by 2, 4, 8, or 16, to obtain a multiplier less than 223, and we can compensate for
this later. If z has thereby been replaced by 2’ = 2/2¢, let 3 = 247¢; we suall compute

Page B229, lines 11-12 (11/17/87)

if a = 0, or the same quantity minus a = 2%*°2’ if @ = 255. This calculation must be done
exactly, in order to guarantee portability of TEX between computers.

Page B230, lines 2-5 (11/17/87)
begin alpha « 16;
while z > 40000000 do
begin z « z div 2; alpha — alpha + alphae; end;
beta «— 256 div alpha; alpha — alpha * z;

Page B245, new entry for mini-index {8/7/87)

cur_s: integer, §616.

Page B254, line 29 {8/7/87)

cur-s: integer; {current depth of output box nesting, initially —1}

Page B254, line 31 (8/7/87)

[Remove the statement ‘cur.s «— —1;’ and put it on page B244 at the end of line 31.]

Page B255, mini-index at the bottom (4/15/87)

mag = macro, §236.

Page B257, lines 11-13 (6/14/87)

if ¢ > ¢i(128) then dvi_out(setl);
dvi_out (go(c));

Bugs in Computers & Typesetting, Page 13 15 February 1988

Page B259, line 13 (11/9/87)

begin rule.wd « rule.wd + 10; {compensate for floating-point rounding }
edge «— cur_h + rule_wd; Iz — 0; (Let cur_h be the position of the first box, and set

Page B259, line 17 (11/9/87)

cur-h «— edge — 10; goto nezt_p;

Page B260, lines 7-8 (4/15/87)

In the case of c_leaders (centered leaders), we want to increase cur_h by half of the excess
space not occupied by the leaders; and in the case of z_leaders (expanded leaders) we increase

Page B263, line 21 (11/9/87)

begin rule_ht — rule_ht +10; { compensate for floating-point rounding }
edge — cur_v + rule_ht; Ir — 0; (Let cur_v be the position of the first box, and set

Page B263, line 25 (11/9/87)

cur-v «— edge — 10; goto nezt_p;

Page B266, line 8 (8/7/87)

dvi_out (eop); incr(total_pages); cur.s — —1;

Page B266, new code between lines 31 and 32 (8/7/87)

while cur.s > -1 do
begin if cur_s > 0 then dvi_out(pop)
else begin dvi_out(eop); incr(total_pages)
end;
decr (cur_s);
end;

Page B267, mini-index at the bottom (8/7/87)
cur-s: integer, §616. mag = macro, §236. pop = 142, §586.

Page B271, line 10 (8/23/86)

which will be ignored in the calculations because it is a highly negative number.

Page B285, lines 23 and 24 (5/4/83)

the current string would be *.~._/" if p points to the ord_noad for z in the (ridiculous) formula
‘\sgrt{a“{\mathinner{b_{c\over x+y}}}}$".

Page B296, lines 3-5 (5/8/87)

box b and changes it so that the new box is centered in a box of width w. The centering is done
by putting \hss glue at the left and right of the list inside b, then packaging the new box; thus,
the actual box might not really be centered, if it already contains infinite glue.

Page B338, second-last line (8/19/87)
q ~ link (head); s — head;

Bugs in Computers & Typesetting, Page 14 15 February 1988

Page B339, line 4 (8/19/87)

5« q; q + link(q);

Page B339, new code to insert after line 10 (8/19/87)

if 0 # 0 then
begin r «— link(q); link(q) « null; ¢ — hpack({q, natural);
shift_amount(q) « o; link(q) « 7; link(s) « gq;
end;
[These new lines also imply changes to the index that aren’t shown in this errata list.]

Page B346, line 19 (5/19/87)

pass_number: halfword; {the number of passive nodes allocated on this pass}

Page B350, lines 36 and 37 (1/28/87)

v: pointer; {points to a glue specification or a node ahead of cur_p }
t: integer; {node count, if cur_p is a discretionary node }

Page B353, lines 8-22 (1/28/87)
§ «— cur_p;
if break_type > unhyphenated then if cur_p # null then

{ Compute the discretionary break_width values 840);
while s # null do

las before, but indented one less notch]
end;

Page B354, line 6 (1/28/87)

will be the background plus I3, so the length from cur_p to cur_p should be ~ + lp + {1 — [, minus
the length of nodes that will be discarded after the discretionary break.

Page B354, lines 12-18 (1/28/8T)

begin t « replace_count(cur_p); v «— cur-p; s < post_break (cur_p);
while ¢t > 0 do
begin decr(t); v « link(v); (Subtract the width of node v from break.width 841);
end;
while s # null do
begin (Add the width of node s to break_width and increase t, unless it’s discardable 842);

Page B354, new line after line 21 (1/28/87)

if t = 0 then s « link(v); {more nodes may also be discardable after the break }

Page B354, lines 26-34 (1/28/87)

[Change ‘s’ to ‘v’ throughout this section (8 times).]

Page B354, line 9 from the bottom (1/28/87)

842. (Add the width of node s to break_width and increase t, unless it's discardable 842) =

Bugs in Computers & Typesetting, Page 15 15 February 1988

Page B353, lines 1-3 (1/28/87)

hlist_node, vlist-node, rule_node: break_width(1] « break_width[1] + width(s);
kern_node: if (t = 0) A (subtype(s) # acc_kern) then t «— —1 {discardable}
else break_width(1] «— break_width|1] + width (s);
othercases confusion("disc2")
endcases;
incr(t)

Page B355, patches to mini-index at bottom (1/28/87)

acc-kern = 2, §153.
incr = macro, §16.
t: integer, §830.
v: pointer, §830.

Page B372, lines 12-14 (1/28/87)

(Change discretionary to compulsory and set disc_break «— true 882)
else if (type(q) = math_node) V (type(q) = kern_node) then width(q) — 0;

Page B380, fifth-last line (5/7/87)

b and c, the two patterns with and without hyphenation are ab-cdef and abcdef. Thus the

Page B386, lines 2-4 (5/21/87)

hyphenation, TgX first looks to see if it is in the user’s exception dictionary. If not, hyphens

are inserted based on patterns that appear within the given word, using an algorithm due to
Frank M. Liang.

Page B396, bottom line (12/12/87)

trie_link (0) «— 0; trie_char(0) « 0; trie_op(0) — min_quarterword;

Page B397, line 28 (5/21/87)

h = z —c¢. Tt follows that location trie_.maz will never be occupied in trie, and we will have

Page B415, the mini-index (4/6/87)

[Delete the spurious entry for ‘c’.]

Page B419, mini-index entry for ¢ (4/6/87)

c: integer, §994.

Page B422, line 24 (8/23/86)

prev_p: pointer; {predecessor of p}

Page B435, line 16 (10/12/86)

width(p) — font_infolk].sc; {that’s space(f)}
stretch (p) «— font_infolk + 1].sc; {and space.stretch(f)}
shrink(p) — font_infolk + 2].sc; {and space_shrink(f)}

[And the mini-index gets three new-entries: space = macro, §558. space.shrink = macro, §558. space_stretch =
macro, §558.]

Bugs in Computers & Typesetting, Page 16

15 February 1988

Page B495, lines 18 and 19 (2/15/87)
[delete these lines, since the cases cannot occur]
Page B510, line 8 (12/15/86)
("Pretenduthatuyou’ re_Hercule Poirot: Examine all clues,")
Page B527, new line to follow line 13 (6/17/86)
This program doesn’t bother to close the input files that may still be open.
Page B534, fourth-last line (5/4/87)
define write_stream (#) = info(# + 1) {stream number (0 to 17)}
Page B544, left column (1/28/87)
acc.kern: 155, 191, 837, 842, 879, 1125.
Page B546, entry for ¢ (4/6/87)
[Add a reference to section 994.]
Page B547, left column (4/7/87)
char: 19, 26-27, 520, 534.
Page B547, left column (6/14/87)
Chinese characters: 134, 585.
Page B547, right column (9/20/87)
co-backup: 366.
Page B548, right column (9/20/87)
cur_order: 366, 447, 448, 454, 462.
Page B548, right column (8/7/87)
cur_s: 593, 616, 619, 629, 640, 642.
Page B551, both columns (12/23/87)
{Remove ‘372’ from egth and put it into eq_define.]
Page B5353, entry for font_base (6/14/87)
[Insert a reference to section 134.]
Page B554, left column (12/23/87)
[Remove ‘372" from frozen_relaz.]
Page B555, right column, new entry (10/25/86)

Huge page..., 641.

Bugs in Computers & Typesetting, Page 17

15 February 1988

Page B556, entry for incr (1/28/87)

[Add a reference to section 842.]

Page B557, entry for is_char_node (1/28/87)

[Delete the reference to section 881.]

Page B557, right column (6/14/87)

Japanese characters: 134, 585.

Page B559, right column (8/13/87)

[Delete the entry for low_mem_maz.)

Page B560, right column (1/28/87)

maz-in_open: 11, 14, 304, 328.

Page B561, left column, line 10 (4/15/87)
169-172, 174, 178, 182, 1249, 1312, 1334.

Page B561, left column (5/1/87)

Missing font identifier: S577.

Page B563, left column, line 2 (4/15/87)
136, 145, 149-154, 164, 168-169, 175-176, 182,

Page B563, right column (6/14/87)

oriental characters: 134, 585.

Page B565, left column (8/7/87)

pop: 584-585, 586, 590, 601, 608, 642.

Page B567, left column (12/23/87)

(Insert ‘372’ into relaz.]

Page B569, right column, in appropriate places (10/12/86)

space: 547, 558, 752, 755, 1042.

space_shrink: 547, 558, 1042.

space_stretch: 547, 558, 1042.

Page B570, third-last line (1/28/87)
786, 795, 809, 819-820, 822, 837, 842-844, 866,

Page B571, right column (10/25/86)

The following...deleted, 641, 992, 1121.

Page B571, right column (4/7/87)

text_.char: 19, 20, 25, 47.

Bugs in Computers & Typesetting, Page 18 15 February 1988

Page B573, right column (5/1/87)

[Delete the entry for ‘Undefined font code’]

Page B576, line 2 (1/28/87)

{Add the width of node s to break-width and increase ¢, unless it’s discardable 842)
Used in section 840.

Page B591, line 6 from the bottom (1/28/87)

{ Subtract the width of node v from break.width 841) Used in section 840.

Page C14, top two lines (3/16/87)

@ The recursive midpoint rule for curve-drawing was discovered in 1959 by Paul
de Casteljau, who showed that the curve could be described algebraically by
the remarkably simple formula

Page C26, bottom line (7/18/87)
What angle corresponds to the direction North-Northwest?

Page C54, sixth-last to fourth-last lines (10/13/86)

Jonathan H. Quick (a student) used ‘a.plusl’ as the name of a variable at
the beginning of his program; later he said ‘let plus=+". How could he refer to the
variable ‘a.plusi’ after that?

Page C76, line 14 (10/13/86)
4 = w — .01lin Point 4 should be one-hundredth of an inch inside
Page C103, line 12 (10/12/36)

ht# = body_height#; .5[ht#, —dp#] = azris#;

Page C105, line 13 (10/13/86)
The vertical line just to the right of the italic left parenthesis shows the italic

Page C107, line 13 {10/7/87)

pickup penrazor xscaled heavyline rotated (angle(zss — z31) + 90);

Page C113, lines 20-27 (8/23/36)

@ The command ‘erase fill ¢’ is an abbreviation for ‘cullit; unfill ¢; cullit’;

this zeros out the pixel values inside the cyclic path ¢, and sets other pixel
values to 1 if they were positive before erasing took place. (It works because the initial
cullit makes all the values 0 or 1, then the unfill changes the values inside ¢ to 0 or
negative. The final cullit gets rid of the negative values, so that they won’t detract
from future filling and drawing.) You can also use ‘draw’, ‘filldraw’, or ‘drawdot’
with ‘erase’; for example, ‘erase draw p’ is an abbreviation for ‘cullit; undraw p;
cullit’, which uses the currently-picked-up pen as if it were an eraser applied to path p.

Bugs in Computers & Typesetting, Page 19 15 February 1988

Page C124, line 9 (6/17/86)
branchy = flez ((30,570), (10, 590), (~1, 616))

Page C130, 3rd-last line (9/25/86)
Geometry 1 (1986), 123-140]: Given a sequence

Page C144, sixth line of the program (8/23/86)

6 y2 = .lh; topys = .4h;

Page C148, the line before the illustration (11/27/86)

are polygons with 32 and 40 sides, respectively:

[New illustrations are needed here, since METAFONT version 1.3 improves the accuracy
of pen polygons.]

Page C149, 7th line after the illustration (10/24/86)

(200,y + 100 = &), where @ = v/5/4 = 0.559. If we digitize these outlines and fill the

Page C175, line 23 (1/11/88)

expand into a sequence of tokens. (The language SIMULA67 demonstrated that it is

Page C178, second-last line (8/23/86)

(If t3 = t; transum to, then z transformed t3 = z transformed t; + z transformed ta,

Page C198, fifth-last and fourth-last lines (10/13/86)

top y2 = round(top B3).

Such operations occur frequently in practice, so plain METAFONT provides convenient

Page C212, lines 9-11 from the bottom {8/23/86)

| point (numeric expression) of (path primary)
| precontrol (numeric expression) of (path primary)
| postcontrol (numeric expression) of (path primary)

Page C233, lines 13-14 (2/15/87)

one column of white pixels, if the character is 2a pixels wide, because the right edge of
black pixels is specified here to have the z coordinate 2a — 1.

Page C247, lines 23-25 (11/27/86)

16.2. ‘pencircle scaled 1.06060° is the diamond but ‘pencircle scaled 1.06061’
is the square. (This assumes that fillin = 0. If, for example, fillin = .1, the change
doesn’t occur until the diameter is 1.20204.) The next change is at diameter 1.5, which

Page C262, lines 1-4 (7/28/86)

When we come to macros whose use has not yet been explained—for example,
somehow softjoin and stop never made it into Chapters 1 through 27—we shall
consider them from a user’s viewpoint. But most of the comments that follow are
addressed to a potential base-file designer.

Bugs in Computers & Typesetting, Page 20 15 February 1988

Page C266, line 16 (8/17/86)

variables; they have the side effect of changing the variable’s value.

Page C276, line 26 (6/23/86)
if charic<>Q: r({w+charic*hppp,h.o_), (w+charicxhppp,.5h.o_)); fi

Page C286, lines 24-26 (10/13/86)

but METRFONT won’t let you. And even if this had worked, it wouldn’t have solved the
problem; it would simply have put ENDFOR into the replacement text of ast, because
expansion is inhibited when the replacement text is being read.

Page C290, line 1 (8/23/86)

2. Fortuitous loops. The ‘max’ and ‘min’ macros in Appendix B make use of the fact

Page C298, third-last line (8/23/86)
tlur, ..., un] = t[tfus, ... uno1], tlus, .. unl]
Page C304, 14th-last line (2/15/87)

[replace this ‘\smallskip’ by a \smallskip between lines!]

Page C307, fifth-last line (12/7/86)

adjust_fit((left sidebearing adjustment), (right sidebearing adjustment));

Page C312, line 34 (10/12/86)
params[2] = "sans_params"; fontname [2] = "cmssbx10";
Page C316, lines 19-21 (8/17/86)

example, ‘(some charht values had to be adjusted by as much as 0.12pt)’ means
that you had too many different nonzero heights, but METRFONT found a way to
reduce the number to at most 15 by changing some of them; none of them had to be

Page C319, line 3 (8/23/86)
specified by saying, e.g.,

Page C321, line 6 (7/28/86)

special "identifier " & font_identifier_;

Page C331, just below the illustration (7/18/87)

Such a pattern is, of course, rather unlikely to occur in a gf file, but GFtoDVI would

Page C334, line 2 (6/23/86)
currentpicture := currentpicture shifted-(1,1); pix := currentpicture;
Page C339, tenth-last line (2/4/87)

Jackie K\=aren {\L}au\.ra Mar{\’\i}a N\H{a}ta{\1}{\ulil}e {\D}ctave

Bugs in Computers & Typesetting, Page 21 15 February 1988

Page C343, second-last line (8/23/86)

the precise needs of a precise but limited intellectual goal.

Page C346, 2nd line of entry for *;’ (1/12/87)
217, 223-224, 263, 312.

Page C348, line 6 (6/17/86)
concatenation, of paths, 70-71, 123, 127,

Page C348, just before ‘debugging’ (3/16/87)
de Casteljau, Paul de Faget, 14.

Page C348, right column (3/16/87)

[The entry for ‘define_whole_vertical_blacker_pixels’ should be moved up before the entry
for ‘define_whole_vertical_pixels’.]

Page C352, left column (6/1/87)
*kern, 97, 316, 317.

Page C352, right column (3/8/87)

[The entry for ‘lowres’ belongs before the entry for ‘lowres_fix’]

Page C353, left column (3/8/87)

[The entries for ‘mode’ and ‘(mode command})’ belong before the entry for ‘mode_def’.]

Page C353, entry for mode_def (8/17/86)
mode_def, 94, 189, 270, 278-279.

Page €355, right column (4/15/86)

[The entry for ‘rulepen’ belongs before the entry for ‘rules’.]

Page C355, right column (8/5/86)

screenstrokes, 191, 277.

Page C355, 2nd line of entry for ‘semicolons’ (1/12/87)
217, 223-224, 263, 312.

Page €356, left column (1/11/88)
SIMULASGT language, 175.

Page €356, full names for the Stanfords (4/10/86)

Stanford, Amasa Leland, 340.
Stanford, Jane Elizabeth Lathrop, 340.

Page C358, right column (2/15/88)
*yoffset, 212, 220, 315, 324.

Bugs in Computers & Typesetting, Page 22

15 February 1988

Volume D, in general

(7/28/%6)

[A number of entries were mistakenly omitted from the mini-indexes on the right-hand pages.
Here is a combined list of all the missing items; you can mount it inside the back cover, say, as
a secondary mini-index when the first one fails. ..]

add_or_subtract: procedure, §930.

after: array, §427.

arg.list: pointer, §720.

b: pizel_color, §580.

bad_ezp: procedure, §824.

before: array, §427.

begin_name: procedure, §770.

bilinl: procedure, §968.

binary_mac: procedure, §863.

blank_rectangle: procedure, §567.

boc_c: integer, §1162.

boc_p: integer, §1162.

cf: fraction, §298.

clockwise: boolean, §453.

ct: fraction, §298.

cubic_intersection: procedure,
§556.

cur_pen: pointer, §403.

cur_rounding.ptr: 0 .. maz-wiggle,
8427,

cur-spec: pointer, §403.

cur-z: scaled, §389.

cur-y: scaled, §389.

dely: integer, §557.

dep_finish: procedure, §935.

dep_list = macro, §587.

dimen_head: array, §1125.

dz: integer, §495.

dy: integer, §495.

d1:0..1, §464.

end_name: procedure, §772.

egth: array, §201.

error_stop-mode = 3, §68.

firm_up_the_line: procedure, §682.

get_nect: procedure, §667.
gf-buf: array, §1152.
gf-offset: integer, §1152.
gf-ptr: gf-index, §1152.

halfword = min_halfword ..
maz_halfword, §156.

hash: array, §201.

inder = macro, §629.

inputln: function, §30.

interaction: 0 .. 3, §68.

j: 0 .. move_size, §357.

known_pair: procedure, §872.

limit = macro, §629.

m.spread: integer, §357.

materialize_pen: procedure, §865.

maz-ollowed: scaled, §403.
maz-c: array, §813.
maz-link: array, §813.
maz-tfrm_dimen: scaled, §1130.
mem_top = macro, §12.

mem: array, §159.
memory.word = record, §156.
more.name: function, §771.
ml: integer, §464.

n: screen_col, §580.

n_sin_cos: procedure, §145.
name = macro, §629.
negate_dep.list: procedure, §904.
new-knot: function, §871.
node_to_round: array, §427.
nl: integer, §464.

octant_dir: array, §395.

ol: small_number, §453.

02: small_number, §453.
patnt.row: procedure, §568.
param: array, §1096.
param_stack: array, §633.
path_length: function, §916.
perturbation: scaled, §1119.
phi: angle, §542.

pool_ptr: pool_pointer, §38.
post_head: pointer, §843.

pre_head: pointer, §843.

print_err = macro, §68.

print_macro_name: procedure,
§722.

quarterword =0 .. 255, §156.

recycle_value: procedure, §809.

row_transition: trans_spec, §579.

scan_tert_arg: procedure, §730.

scroll_mode = 2, §68.

set_controls: procedure, §299.

sf: fraction, §298.

show_contezt: procedure, §635.

sorted = macro, §325.

st: fraction, §298.

start = macro, §629.

start_sym: halfword, §1077.

str_pool: packed array, §38.

str_ptr: str_number, §38.

str_start: array, §38.

take_part: procedure, §910.

tfm_changed: integer, §1130.

tol: integer, §557.

tt: small.number, §843.

tz: scaled, §954.

tzz: scaled, §954.

tzy: scaled, §954.

ty: scaled, §954.

tyz: scaled, §954.

tyy: scaled, §954.

unsorted = macro, §325.

uwv: 0 .. bistack.size, §557.

zy: 0 .. bistack.size, §557.

z1: scaled, §542.

z2: scaled, §542.

z8: scaled, §542.

yl: scaled, §542.

y2: scaled, §542.

y3: scaled, §542.

Volume D, in general

(4/6/87)

[The percent signs in all the comments (for example, on pages 7 and 42) are in the wrong font!

Change ‘%’ to ‘%’.]

Page Dvii, line 9 (9/25/86)
Discrete and Computational Geometry 1 (1986), 123-140. Develops the theory
Page D2, line 27 (6/17/86)

define banner = “This_is METAFONT, Version, 1.3~

{ printed when METAFONT starts }

Page D18, line 30

(5/22/86)

str_ptr: str_number;

{number of the current string being created }

Bugs in Computers & Typesetting, Page 23 15 February 1988

Page D23, second line of mini-index, right column (6/14/87)
pool_name

= "string", §11.
Page D30, lines 33-34 (6/14/87)

to delete a token, and/or if some fatal error occurs while METAFONT is trying to fix a non-fatal
one. But such recursion is never more than two levels deep.

Page D63, lines 13-14 (5/5/87)

[These two lines can be eliminated, since the variable temp_ptr is no longer used! If you delete them,
also remove §158 from the list of sections where global variables are declared (pages D7 and D552), and
remove temp_ptr from the index on page D540.]

Page D66, line 6 (5/22/86)

function get_node(s : integer): pointer; { variable-size node allocation }

Page D66, lines 31-32 (3/16/86)

controlled growth helps to keep the mem usage consecutive when METAFONT is implemented on
“vyirtual memory” systems.

Page D67, lines 7-8 (4/21/87)

if r = p then if rlink(p) # p then (Allocate entire node p and goto found 171);

Page D86, second line of section 128 (2/27/87)

Individual class numbers have no semantic or syntactic significance, except in a few instances

Page D101, line 2 (3/16/86)

like ‘x’, or they can combine the structural properties of arrays and records, like ‘x20a.p’. A

Page D102, line 24 (3/16/86)

In other words, variables have a hierarchical structure that includes enough threads running

Page D127, line 10 (5/5/87)

[Variable r can be eliminated, since it is not used in this procedure! If you delete it, also remove 280
from the corresponding index entry on page D536]

Page D129, line 15 (5/5/87)

[This line can be eliminated, since sine and cosine are not used in this procedure! If you delete them,
also remove 284 from the corresponding index entries on pages D538 and D521)]

Page D142, line 23 (4/24/87)

(7 — v/28)/12; the worst case occurs for polynomials like B(0, 28 — 41/28,14 — 5v/28,42;1).)

Page D178, third-last line (7/30/86)

The following code maintains the invariant relations 0 < 20 < max(z1,zl + 22), |z1]| < 2%,

Bugs in Computers & Typesetting, Page 24 15 February 1988

Page D228, line 13 (7/30/86)

while maz_coef < fraction_half do
The mini-index at the bottom of the next page should also receive the following new entry:
fraction_half = macro, §105.

Page D228, 10th-last line (5/5/87)
begin right_type(p) — k;

[Also eliminate ‘q,’ seven lines above this, and delete 497 from the index entry for ¢ on page D536.]

Page D248, lines 16-21 (11/27/36)

alpha «— abs(u); beta — abs(v);
if alpha < beta then
begin alpha « abs(v); beta «— abs(u); end; {now a = max(|ul,|v]), 8 = min(jul,|v]|)}
if internal{fillin] # 0 then
d — d — take_fraction (internal [fillin], make_fraction(beta + beta, delta));
d — take_fraction((d + 4) div 8, delta); alpha «— alpha div half-unit;

Page D263, line 20 (3/16/86)
instead of false, the other routines will simply log the fact that they have been called; they won’t

Page D268, line 2 (4/28/87)

Given the number & of an open window, the pixels of positive weight in cur_edges will be shown

Page D301, line 6 of section 652 (5/5/87)

[This line can be eliminated, since variable s is not used in this procedure! If you delete it, also remove
652 from the corresponding index entry on page D537; remove 652 from the index entries for param_size
and param_start on page D534; and remove param_size from the mini-index on page D301.]

Page D376, lines 17 and 18 (11/14/86)

[these two mysterious lines should be deleted]

Page D380, line 11 (5/5/87)

[Variables ¢ and 7 can be eliminated, since they are not used in this procedure! If you delete them, also
remove 862 from the corresponding index entries on page D536.]

Page D429, line 14 (5/5/87)

begin p «— cur_ezp;

[Also eliminate line 12, and delete 985 from the index entry for vv on page D543.]

Page D455, line 5 (5/5/87)

[This line can be eliminated, since variable ¢ is not used in this procedure! If you delete it, also remove 1059
from the corresponding index entry on page D540; remove 1059 from the index entries for small_number
and with-option on pages D539 and D544; and remove with-option from the mini-index on page D455.]

Page D463, line 10 (12/15/86)

("Pretenduthat._.you ’re Miss Marple: Examine_all clues, ")

Bugs in Computers & Typesetting, Page 25 15 February 1988

Page D465, lines 17-18 (6/14/87)

[Delete these two lines.]

Page D474, 5th-last line (3/16/86)

depths, or italic corrections) are sorted; then the list of sorted values is perturbed, if necessary.

Page D481, line 12 (6/17/86)
print.nl("Font_metrics written,on,"); print(metric_file.name); print_-char(".");
b.close(tfm_file)
The mini-index at the bottom of this page should also receive the following new entry:
print.char: procedure, §38.

Page D510, new line to follow line 5 (6/17/86)

This program doesn’t bother to close the input files that may still be open.

Page D510, just before the fifth-last line (8/5/86)

internal[fontmaking] — 0; { avoid loop in case of fatal error }

Page D520, right column (6/14/87)

Chinese characters: 1147.

Page D526, left column, lines 1-2 (7/30/86)

fraction_half: 105, 111, 152, 288, 408, 496, 543,
1098, 1128, 1141.

Page D526, left column, lines 6-7 (7/30/86)

478, 497, 499, 503, 530, 540, 547, 549, 599, 603,
612, 615, 815-816, 917, 1169-1170.

Page D528, right column (6/14/87)

Japanese characters: 1147.

Page D530, right column, line 45 (7/30/86)
maz: 539, 543.

Page D533, right column (6/14/87)

oriental characters: 1147.

Page D535, right column, line 27 (6/17/86)
1134, 1163-1165, 1182, 1194, 1200, 1205, 1213.

Page D545, left column (10/31/87)

zscaled primitive: 893.
Zabala Salelles, Ignacio Andres: 812.

Page D547, bottom two lines (11/27/86)

[These lines, and the top two on the next page, should move down so that they appear in alphabetical
order just before ‘Compute test coefficients’.]

Bugs in Computers & Typesetting, Page 26 15 February 1988

Page Exiii, lines 1-2 (7/28/86)

February 11-13, 1984), 49. An example meta-character of the Devanagari al-
phabet, worked out “online” with the help of Matthew Carter.

Page Exiii, line 6 (7/28/86)

and western alphabets work also for Devanagari and Tamal.

Page E12, lines 15 and 19 (7/23/86)
[change ‘17.32’ to ‘17.28’ in both places]

Page E12, third-last line (12/18/86)
[change ‘41’ to ‘40’)

Page E13, lines 3, 4, and 20 (12/18/86)
[change ‘40’ to ‘41’, ‘48’ to ‘47", ‘17 to ‘T’

Page E18, line 20 (7/23/86)
[change ‘17.32" to ‘17.28"]

Page E18, line 29 (12/9/86)

[change ‘236’ to ‘212" in the cmss9 column]

Page E32, second-last line (9/20/87)

after which comes ‘math_azis#; generate mathsy’ (which we won’t bother to

Page E170, top illustration (11/2/86)

[There should be no “dish” or depression in the vicinity of point 3r; the top
edge of the character should be straight. This error appears also in the other
uses of ‘no_dish_serif throughout the book, since the illustrations were made
before ‘no_dish_serif’ was added to the program. See page E180 (twice at the
top), E370 (twice), E374 (twice), E376 (twice), E378 (top), E390 (bottom),
E398 (top), E402 (top), E406 (top), E453 (twice).]

Page E179, new line to be inserted after line 6 (10/13/86)

if shaved_stem < crisp.breadth: shaved_stem := crisp.breadth; fi

Page E219, line 29 (6/2/87)
top y1 = h; x1 = xo; filldraw stroke zi. -- 2a/¢; % stem
Page F279, seventh line from the bottom (7/20/86)

that delicious but restrained humor which her readers found so irresistible.

Page E285, bottom line (12/1/87)

Due to Technical Developments (1968)

Bugs in Computers & Typesetting, Page 27 15 February 1988

Page E301, new line to be inserted after line 28 (5/15/87)

if lower_side > 1.2upper_side: upper_side := lower_side; fi

Page E353, lines 38-39 (8/12/87)
else: fill diag_end (67,57,1,1,5,6l) -- .9(zs51, 261

{25 — 26} .1[25r, 267 - - cycle; % middle stem

Page E387, line 13 (8/12/87)

pickup tiny.nib; bulb(3,4,5); % bulb

Page E413, lines 37-38 (8/12/8T7)
else: fill diag.end (67, 57,1,1,5!,61) -- .9[25:, z61]

.. A{zs — 26} .1]zsr, 26r] - - Cycle; % middle stem

Page E459, line 24 (8/7/87)

[Delete the ‘=" sign between ‘Ift’ and ‘zs’.]

Page E485, line 4 (8/7/87)
[Delete the ‘=’ sign between ‘Ift’ and ‘zs’.]

Page E550, new line after line 23 (8/15/87)

forsuffixes $ = notch_cut, cap_notch_cut: if § < 3: § .= 3; fi endfor
[To make room for this, combine lines 38 and 39 into a single line.]

Page E554, bottom half of page (12/18/86)

[The letters will change slightly because of the corrections to cmr17 noted on pages 12
and 13.]

Page E561, line 3 (12/9/86)

[The numerals should be ¢ 0123456789’ (i.e., 2/3 point less tall) because of the correction
made to page 18.]

Page E562, line 9 (12/9/86)

[The numerals should be ‘ 0123456789 (i.e., 2/3 point less tall) because of the correc-
tion made to page 18.]

Page E572, entry for breadth (10/13/86)
breadth, 59, 75, 79, 91, 93, 179, 225, 233,

Page E573, entry for cmecsc10 (8/17/86)
cmesc10, 30-31, 567.

Page E576, tenth-last line (5/15/87)

lowres_fix, 550.

Changes to the Programs and Fonts, Page 28 15 February 1988

Changes to the Programs and Fonts
15 February 1988

* TEX
Changes subsequent to ‘Version 2.0’ as published in C&T, Volume B, incorporating changes
through 23 December 1987:

322. Trivial change to a help message.

@x module 1283

("Pretend that you’re Hercule Poirot, examine all clues,")@/
oy

("Pretend that you’re Hercule Poirot: Examine all clues,")@/
ez

323. Precaution since |index| can be as high as |max_in_open|. (DRF)
@x module 14

if hash_prime>hash_size then bad:
Oy

if hash_prime>hash_size then bad:=5;
if max_in_open>=128 then bad:=6;

Qz

5;

324. \kern clobbered at end of pre-break list in discretionary break.
®x module 881

jdisc_break:=true|@>;

if not is_char_node(q) then

if (type(q)=math_node)or(type(q)=kern_node) then width(q):=0;
oy

|disc_break:=true|@>

else if (type(q)=math_node)or(type(q)=kern_node) then width(q):
Qz

0;

325. width after discretionary didn’t take account of discarded nodes.
@x module 830 (slight redefinition)
@!t:quarterword; {replacement count, if |cur_p| is a discretionary node}
oy
Q!t:integer; {node count, if |jcur_p! is a discretionary node}
0z
@x module 837 (slight rearrangement)
if (break_type=unhyphenated)or(cur_p=null) then
begin s:=cur_p;
while s<>null do
begin if is_char_node(s) then goto done;
case type(s) of
. glue_node:Q@<Subtract glue from |break_widthl@>;
penalty_node: do_nothing;
math_node,kern_node: if subtype(s)=acc_kern then goto done
else break width[1]:=break_width[1]-width(s);
othercases goto done
endcases;Q/
s:=link(s);
end;
end
else Q0<Compute the discretionary |break_width| values@>;

Changes to the Programs and Fonts, Page 29 15 February 1988

ey

8:=cur_p;

if break_type>unhyphenated then if cur_p<>null then
Q<Compute the discretionary |break_width| values@>;
while s<>null do

begin if is_char_node(s) then goto done;

case type(s) of

glue_node:@<Subtract glue from |break_width|@>;
penalty_node: do_nothing;

math_node,kern_node: if subtype(s)=acc_kern then goto done
else break_width[1]:=break_width[1]-width(s);
othercases goto done

endcases;Q/

s:=link(s);

end;

Qz

@x module 840 (this is the main change to fix the bug)
begin t:=replace_count{cur_p); s:=cur_p;

while t>0 do

begin decr(t); s:=link(s);

Q@<Subtract the width of node |si from |break_width|@>;
end;

s:=post_break(cur_p);

while s<>null do

begin Q@<Add the width of node |s| to [break_width|®>;
ey

begin t:=replace_count(cur_p); v:=cur_p; s:=post_break(cur_p);
while t>0 do

begin decr(t); v:=link(v);

Q@<Subtract the width of node |v| from |break_width|{@>;
end;

while s<>null do

begin @<Add the width of node |s| to |break_width| and increase |tl,
unless it’s discardable@>;

Qz

@x module 840, continued

break_width[1] :=break_width[1]+disc_width;

oy

break_width[1]:=break_width[1])+disc_width;

if t=0 then s:=1ink(v); {more nodes may also be discardable after the break}
@z

Changes to the Programs and Fonts, Page 30 15 February 1988

@x module 841 (here we just change is| to |v])
@<Subtract the width of node |sl...@>=

if is_char_node(s) then

begin f:=font(s);

break_width[1] :=break_width[i]-char_width(f) (char_info(f){(character(s)));
end

else case type(s) of

ligature_node: begin f:=font(lig_char(s));@/
break_width[1] :=@|break_width[1]-

char_width(f) (char_info(f) (character(lig_char(s))));
end;

hlist_node,vlist_node,rule_node,kern_node:
break_width[1]:=break _width[1]-width(s);

ey

@<Subtract the width of node |v]...@>=

if is_char_node(v) then

begin f:=font(v);

break_width[1] :=break_width[1]-char_width(f) (char_info(f) (character(v)));
end

else case type(v) of

ligature_node: begin f:=font(lig_char(v));@/
break_width[1]:=Q|break_width[1]-

char_width(f) (char_info(£f) (character(lig_char(v))));
end;

hlist_node,vlist_node,rule_node,kern_node:
break_width[1] :=break_width[1]~-width(v);

Qz

Qx module 842
hlist_node,vlist_node,rule_node,kern_node:

break _width[1] :=break_width[1]+width(s);

othercases confusion("disc2")

Q@:this can’t happen disc2}{\quad disc2@>

endcases

Qy
hlist_node,vlist_node,rule_node:break_width[1]:=break_width[i]+width(s);
kern_node: if (t=0)and(subtype(s)<>acc_kern) then t:=-1 {discardable}
else break_width[1]:=break_width[1]+width(s);
othercases confusion("disc2")

@:this can’t happen disc2}{\quad disc2@>

endcases;

incr(t)

Qz

x Version 2.1 was released on January 26, 1987.

326. Removal of redundant code (found by Pat Monardo, 5 Feb 87)

@x module 1224 [this change need not be made, since it has no effect]
char_def_code: define(p,char_given,cur_val);

math_char_def_code: define(p,math_given,cur_val);

Qy the cases canmot occur, so we simply don’t list them

Qz

Changes to the Programs and Fonts, Page 31 15 February 1988

327. More robustness is needed when debugging (Ronaldo Am\’a, 14 Apr 87)

@x module 174

begin while p>null do

Qy maybe mem_min>null (but nodes shouldn’t be put in location mem_min exactly)
begin while p>mem_min do

Qz

@x module 182

@p procedure show_node_list(@!p:pointer); {prints a node list symbolically}
ey

@p procedure show_node_list(Q@!p:integer); {prints a node list symbolically}
Qz

@x module 182, continued

while p>null do

ey

while p>mem_min do

Qz

328. Storage allocation can be more elegant and efficient (4/21/87)
@x module 127

if r=p then if ((rlink(p)<>rover) or (1link(p)<>rover)) then

¢y

if r=p then if rlink(p)<>p then

Qz .

329. Miscalculation of empty-line condition (April 22, 1987)

€x module 360

begin if limit=start then {previous line was empty}

Qy

begin if (end_line_char<0)or(end_line_char>127) then incr(limit);
if limit=start then {previous line was empty}

ez

330. A case where we don’t have to assume system bookkeeping (April 28, 1987)
@x module 560

done: b_close(tfm_file); read_font_info:=g;

@y [suggested by Jim Sterken]

done: if file_opened then b_close(tfm_file);

read_font_info:=g;

@z [this was not a bug, according to the comment in module 28]

331. jump_out must fix unfinished output (Found by Klaus Gunterman, 3 Aug 87)
@x module 593

doing_leaders:=false; dead_cycles:=0;

Qy

doing_leaders:=false; dead_cycles:=0; cur_s:=-1;
Qz

@x module 617

cur_s:=-1; ensure_dvi_open;
ey

ensure_dvi_open;

ez

Changes to the Programs and Fonts, Page 32 15 February 1988

@x module 640
dvi_out(eop); incr(total_pages);
¢y
dvi_out(eop); incr(total_pages); cur_s:=-1;
Qz
@x module 642
if total_pages=0 then print_nl("No pages of output.")
ey
while cur_s>-1 do

begin if cur_s>0 then dvi_out(pop)

else begin dvi_out(eop); incr(total_pages);

end;

decr(cur_s);

end;
if total_pages=0 then print_nl("No pages of output.")
Qz

332. \hangindent=1pt$$\halign{...\cr\noalign{\hrule}}$$ problem (19 Aug 87)
¢x module 805
q:=link(head);

oy

q:=link(head); s:=head;

Qz

@x module 805, continued
q:=link(q);

oy
s:=q; q:=link{(q);

Qz

@x module 806

if is_running(depth(q)) then depth(q):=depth(p);

ay

if is_running(depth(q)) then depth(q):=depth(p);

if 0<>Q then
begin r:=link(q); link(q):=null; q:=hpack(q,natural);
shift_amount(q):=o; link(q):=r; link(s):=q;
end;

Qz

333. \hskip Opt plus 1fil\ifdim problem (found by Alan Guth, 20 Aug 87)
@x module 366
@!cvl_backup,@!radix_backup:small_number; {to save |cur_val_level| and [radix|}
oy
@!cvl_backup,@!radix_backup,@!co_backup:small_number;
{to save |cur_val_levell, etc.}
Qz
Q@x
backup_backup:=link(backup_head);
ey
co_backup:=cur_order; backup_backup:=link(backup_head);
9z
@x
link(backup_head) : =backup_backup;
oy
cur_order:=co_backup; link(backup_head):=backup_backup;
oz

Changes to the Programs and Fonts, Page 33 15 February 1988

334. leaders too sensitive near exact multiples (M. F. Bridgland, 9 Nov 87)
@x module 626
begin edge:=cur_h+rule_wd; 1x:=0;
oy
begin rule_wd:=rule_wd+10; {compensate for floating-point rounding}
edge:=cur_h+rule_wd; 1x:=0;

Qz
@x ibid
cur_h:=edge; goto next_p;
Qy
cur_h:=edge-10; goto next_p;
Qz

@x module 635
begin edge:=cur_v+rule_ht; 1x:=0;

Sy
begin rule_ht:=rule_ht+10; {compensate for floating-point rounding}
edge:=cur_v+rule_ht; 1x:=0;

Qz
@x ibid
cur_v:=edge; goto next_p;
ey
cur_v:=edge-10; goto next_p;
Qz

335. Glitch in fixed-point multiplication of negatives (W.G. Sullivan, 17Nov87)

©x module 572

begin alpha:=16*z; beta:=16;

while z>=@’40000000 do
begin z:=z div 2; beta:=beta div 2;
end;

oy

begin alpha:=16;

while z>=Q@’40000000 do
begin z:=z div 2; alpha:=alpha+alpha;
end;

beta:=256 div alpha; alpha:=alpha*z;

Qz

336. If there are no \patterns and some \lccode is 1 (Breitenlohmer, 12Dec87)
Q@x module 952

trie_l1ink(0):=0; trie_char(0):=0; trie_op(0):=0;

ey

trie_1ink(0):=0; trie_char(0):=0; trie_op(0):=min_quarterword;
Qz

337. \csname might encounter undefined_cs in a group (Chris Thompson, 23Dec87)
¢x module 372
begin eqtblcur_cs]:=eqtb[frozen_relax];
oy
begin eq_define(cur_cs,relax,256);
ez

338. (I sincerely hope that there won’t be any more)

Changes to the Programs and Fonts, Page 34 15 February 1988

s METRAFONT

Changes subsequent to ‘Version 1.0’ as published in C&T, Volume D, incorporating changes
through 5 May 1987

533. Inconsistent punctuation in user messages (found by Karl Berry, June 86)
Qx module 1134

print_nl("Font metrics written on "); print(metric_file_name);

ey

print_nl("Font metrics written on "); print(metric_file_name); print_char(".");
0@z (that was installed in version 1.1)

534. Possible arithmetic overflows (found by Klaus Guntermann, July 86)
@x module 496 :

while max_coef<fraction_one do

ey

while max_coef<fraction_half do

@z (that was installed in version 1.2)

535. Possible loop in nonstopmode (found by Chris Thompson, July 86)
@x module 1206
@<Finish the \.{TFM} file@>;
ey
internal [fontmaking] :=0; {avoid loop in case of fatal error}
Q<Finish the \.{TFM} file@>;
@z (that too was imstalled in versiom 1.2)

536. Double rounding error should be avoided in make_ellipse (JDH, 22 Nov 86)
@x module 533
d:=take_fraction(d,delta);
alpha:=abs(u); beta:=abs(v);
if alpha<beta then

begin delta:=alpha; alpha:=beta; beta:=delta;

end; {now $\alpha=\max(\vert ul\vert,\vert v\vert)$,

$\beta=\min(\vert u\vert,\vert vivert)$}

if internal([fillin]<>0 then d:=d-take_fraction(internal[fillin],beta+beta);
d:=(d+4) div 8; alpha:=alpha div half _unit;
ey
alpha:=abs(u); beta:=abs(v);
if alpha<beta then

begin alpha:=abs(v); beta:=abs(u);

end; {now $\alpha=\max(\vert u\vert,\vert v\vert)$,

$\beta=\min{\vert u\vert,\vert v\vert)$}

if internal[fillin]<>0 then

d:=d-take_fraction(internal[fillin] ,make_fraction(beta+beta,delta));
d:=take_fraction((d+4) div 8,delta); alpha:=alpha div half_unit;
@z (That was the reason for version 1.3)

Changes to the Programs and Fonts, Page 35 15 February 1988

537. Trivial change to a help message (version number is still 1.3).
@x module 1086
("Pretend that you’re Miss Marple, examine all clues,")@/
oy
("Pretend that you’re Miss Marple: Examipe all clues,")@/
Qz

538. Storage allocation can be more elegant and efficient (4/21/87)
@x module 169

if r=p then if ((rlink(p)<>rover) or (1llink(p)<>rover)) then

Qy

if r=p then if rlink(p)<>p then

Qz

539. Unused variables can be eliminated. (Found by John Sauter, 5/5/87)
Q@x module 158

@<Glob...0G>=

Q@!temp_ptr:pointer; {a pointer variable for occasional emergency use}

Qy (I used it only in my change file!)
Qz
@x module 280
@!r,Q!'s,Q@!t:pointer; {registers for list traversal}
ey
@!s,@!t:pointer; {registers for list traversal}
@z
@x module 284
@!sine,@!cosine:fraction; {trig functions of various angles}
@y (the declarations in module 281 are correct, but in 284 they’re superfluous)
Qz
@x module 497
var Q'q,Q@!ww:pointer; {for list manipulation}
Q@!du,@!'dv:scaled; {for slope calculation}
@!t0,@!t1,@!t2:integer; {test coefficients}
Q@!t:fraction; {place where the derivative passes a critical slope}
Q@!s:fraction; {slope or reciprocal slope}
Q@!v:integer; {intermediate value for updating [x0..y2[}
begin loop
begin q:=link(p); right_type(p) :=k;
ey
var Q!ww:pointer; {for list manipulation}
@!du,@!dv:scaled; {for slope calculation}
@!1t0,Q!'t1,Q!t2:integer; {test coefficients}
Q!t:fraction; {place where the derivative passes a critical slope}
Q@!s:fraction; {slope or reciprocal slope}
@!v:integer; {intermediate value for updating |x0..y2l}
begin loop
begin right_type(p):=k;
Qz

Changes to the Programs and Fonts, Page 36 15 February 1988

@x module 652

Q@!s:0..param_size; {value of |param_start| on the current level}
Qy who knows why that line was there?

Qz

@x module 862

var @!p,Q!q,@!r:pointer; {for list manipulation}
Qy

var Q!p:pointer; {for list manipulation}

Qz

@x module 985

Q@!vv:scaled; {initial value of |v|}
Q@!q:pointer; {successor of {pl}

begin vv:=v; p:=cur_exp;Q/

Qy

Q!q:pointer; {successor of |pl}

begin p:=cur_exp;Q/

Qz

@x module 1059

@!t:small_number; {variant of |with_optionl|}
Qy

Qz

540. (I sincerely hope that there won’t be any more)

Changes to the Programs and Fonts, Page 37 15 February 1988

e Computer Modern fonts

Changes subsequent to ‘Version 2’ as published in C&T, Volume E, incorporating changes through
15 August 1987:

Qx in GREEXU

numeric shaved_stem; shaved_stem=hround .9{vair,.85cap_stemn];
Qy

numeric shaved_stem; shaved_stem=hround .9[vair,.85cap_stem];
if shaved_stem<crisp.breadth: shaved_stem:=crisp.breadth; fi
Qz

Q@x in CMSS9 {this affects the TFM file to a small extent!]
fig_height#:=236/36pt#; % height of numerals

oy

fig_height#:=212/36pt#;), height of numerals

Qz

@x in CMSSI9 [this affects the TFM file in ten hts and eleven italcorrs]
fig_height#:=236/36pt#; height of numerals

Qy

fig_height#:=212/36pt#; ’, height of numerals

Qz

Q@x in CMR17 [no change to TFM file]

curve#:=41/36pt#;), lowercase curve breadth

ey

curve#:=40/36pt#;)% lowercase curve breadth

Qz

@x

cap_stem#:=40/36pt#;) uppercase stem breadth
cap_curve#:=48/36pt#; }, uppercase curve breadth

ey

cap_stem#:=41/36pt#;) uppercase stem breadth
cap_curve#:=47/36pt#; ' uppercase curve breadth

Qz

@x

serif _drop#:=17/36pt#; % vertical drop of sloped serifs
ey

serif_drop#:=7/36pt#;) vertical drop of sloped serifs
@z

@x in ROMAND [this fixes the ‘disappearing hairline’ in some lowres 8’s]
lower_side=hround(.5[hair,stem]+stem_corr);
ey

lower_side=hround(.5[hair,stem]+stem_corr);
if lower_side>1.2upper_side: upper_side:=lower_side; fi
@z) .
% Note: the SAME change should also be made in files ITALD and OLDDIG

@x in ITALL [this fixes italic ell especially at low resolutions]
top yl=h; x1=x2; filldraw stroke zle--z2e; }, stem

ey

top yl=h; x1=x2; filldraw stroke zle--z2’e; ¥ stem

Qz

Changes to the Programs and Fonts, Page 38

@x in SYM, the plus-or-minus character

x1=x2=.6w; 1ft x3=1ft=x5=hround u-eps; x4=x6=w-x3;

Qy

x1=x2=.5w; 1ft x3=1ft x5=hround u-eps; x4=x6=w-x3;

@z actually the code worked but it was "infelicitous"

@x in SYMBOL, the minus-or-plus character

x1=x2=.5w; 1ft x3=1ft=x5=hround u-eps; x4=x6=w-x3;

8y

x1=x2=.5w; 1ft x3=1ft x5=hround u-eps; x4=x6=w-x3;

@z actually the code worked but it was "infelicitous"

@x in ROMANU, letter J [fixes a bug if dish=0 and crisp<tiny and serifs]

bulb(3,4,5); % buldb

Qy

pickup tiny.nib; bulb(3,4,5); % bulb
Qz

@x in ROMANL, letter w [makes notch_cut more useful]
else: £ill diag_end(6r,5r,1,1,51,61)--.5[=51,281]
--.5[z5r,z6r]--cycle;’ middle stem
Qy
else: fill diag_end(6r,5r,1,1,51,61)~-.9{=z561,261]
..{25-26}.1(z5r,z6r]~~cycle; % middle stem
@z the same change applies also to letter W in ROMANU

@x in CMBASE, makes lowres types (especially TT) look better
define_blacker_pixels(notch_cut,cap_notch_cut);

ey

define_blacker_pixels(notch,cut,cap_notch~cut);

forsuffixes $=notch_cut,cap_notch_cut: if $<3: $:=3; fi endfor
Qz

(I sincerely hope there won’t be any more!)

15 February 1988

Corrections to earlier editions

Corrections and changes to the AMS/Digital Press edition of the TpX and META-
FONT manual (December 1979) and to the TEX78 and METRFONTT79 programs
are described in the booklet TEX and METAFONT: Errata and Changes dated
September 1983 (originally distributed with TUGboat Volume 4, No. 2). This
document also contains a comparison of TRX78 (formerly known as TEX80) with
TEX82.

Errata to editions of The TEXbook published prior to 1986 are described in
The TgXbook: Errata and Changes dated February 1986 (originally distributed
with TUGboat Volume 7, No. 1).

Both of these documents are available from TUG; for information on how
to obtain copies, write to TUG at the address on the front cover.

The TgX Tapes
Knuth's Course Available on Video

During Stanford’s Spring Quarter, 1987, Donald Knuth presented a special
course, TEX: The Program: A case study in software design. This course con-
sisted of nineteen 75-minute lectures, which were videotaped by the Stanford
Instructional Television Network (SITN) and transmitted to remote locations.

The implementation of TEX was discussed as an example of the design
and documentation of a medium-size software system. Also discussed was the
—WEB— system of structured documentation. With knowledge of the TgX and
Pascal languages as a prerequisite, enough information about the innards of TgX
was presented for students to learn to make extensions to the system.

TUG has permission to rent these tapes to TUG members, although SITN
has stipulated that TUG may not rent them to profit-making organizations (who
should contact SITN directly at Stanford University, Stanford, CA 94305).

The videotapes are available in VHS format (with sufficient demand, they
may be made available also in Beta format). Due to anticipated scheduling
requirements, the normal rental period will be six weeks. The rental fee for the
19 videotapes for that duration will be $800. (A longer rental period may be
arranged and the rental fee will be prorated.) This includes all costs except
shipping/handling/insurance charges for their return to TUG. Current TUG
Institutional Members are entitled to a 20% discount.

Professor Knuth’s book, TgX: The Program, the text for the course, may
also be ordered from TUG. Since that book was meant to serve primarily as a
reference, not as a text, Professor Knuth created a supplementary collection of
exercises and problems applicable to the course. A copy of this problem set will
accompany the tapes; it may be retained after the rental period. The problem
set will also be made available separately by TUG.

To reserve these videotapes for rental, or to obtain additional information,
please contact the TUG office.

TeX Users Group Membership List — 1987-88

As of 15 February 1988

This list includes the names of all persons who were members of TUG for 1987 or whose
1988 application forms were received by 15 February 1988. All institutional members are
listed. Total membership: 136 institutional members and 3,244 individuals affiliated with
more than 1,350 colleges and universities, commercial publishers, government agencies, and
other organizations throughout the world having need for an advanced composition system.
Additions to this list during 1988 will be published as supplements, included in the Summer
and Fall issues of TUGboat.

The following information is included for each listing of an individual member, where it
has been provided:

Name and mailing address
Telephone number
Network address

Title and organizational affiliation, when that is not obvious
from the mailing address

Computer and typesetting equipment available to the mem-
ber, or type of equipment on which his organization wishes
to (or has) installed TEX

Uses to which TEX may be put, or a general indication of
why the member is interested in TEX

CONTENTS

Site Coordinators, Steering Committee and
members of other TUG Committees

Institutional Members
Alphabetical listing of TUG members

Member names listed by institution 87
Member names listed by computer 103
Member names listed by output device 111
TEX consulting and production services for sale 119

Recipients of this list are encouraged to use it to identify others with similar interests, and, as
TUG members, to keep their own listings up-to-date in order for the list to remain as useful
as possible. New or changed information may be submitted on the membership renewal form
bound into the back of a recent issue of TUGboat. Comments on ways in which the content
and presentation of the membership list can be improved are welcome.

This list is intended for the private use of TUG members; it is not to be used as a source of
names to be included in mailing lists or for other purposes not approved by TUG. Additional
copies are available from TUG. Mailing lists of current TUG membership are available for
purchase. For more information, contact Ray Goucher, TUG Executive Director.

Distributed with TUGboat Volume 9 (1988), No. 1. Published by

TEX Users Group
P. O. Box 9506
Providence, R.I. 02940-9506, U.S. A.

2 Committee Addresses April 1938
o =g a3 ; - ., .
Addresses of TUG Steering Committee Members
A8 1 LW
and Members of Other TUG Commitiees
Site Officers ION, Patrick D. ® 1988 Scholarship Commmittee
Coordinaters Mathematical Reviews K
- CHILDS, §. Bart 416 Fourth Street HSIA, Doris T.
® CDC Cyber President; Finance Committee; P. 0. Box 8604 2630 Sierra Vista Ct
FOX, Jim DG MV Site Coordinator Ann Arbor, M1 48107 San J:fse. FA 95116
” 313-996-5273 415-723-8117
Academic Computing Center HG-45 THEDFORD, Rilla on@5esd AMS. com
University of Washington Intergraph Corporation ONEEECAMS. McPARTLAND-CONN, Marie
3737 Brooklyn Ave NE MS HQ1008 KNUTH, Donald E. 8 Burlington Rd
Seattle, WA 98105 One Madiscn Industrial Park Department of Computer Science Billerica, MA 01821
206-542-4320 Huntsville, AL 35807 Stanford University 617-466-4220
foxfsuwavm.acs. washington.adu 205-772-2440 Stanford, CA 94305
Bitnet: fox75328uwacdc Vice President: Finance Committee DEK@Sait Stanford.edu ?;{JTBEGCKER’ Alan
o o EX Users Group
2 DG MV HOENIG, Alan SALAI:,, R:c’\t;ar: S. P. 0. Box 9506
epartment of athematics Provid 1 02940
CHILDS, <. Bart 17 Be\ay Avenue . Brandeis University o ggcea iM{é 9
. B Huntington, NY 11743 . aewoeed. -Lcom
Dept of Computer Science 6 Waltham, MA 02154
Texas A & M University 516-365-0736 617-647-2667 ® TUGboat Editorial Committee

@

College Station, TX 77843-3112
409-845-5470
Bitnet: Bart@TAMLSR
President; Finance Committee

iBM MVS

PLATT, Craig R.
Dept of Math & Astronomy
Machray Hall
Univ of Manitoba
Winnipeg R3T 2N2, Manitoba Can
204-474-9832
Bitnet: plati@uofmcc
CSnet: platt@uofm.cc.cdn

IBM VM /CMS
GUENTHER, Dean

Computer Service Center

Secretary; Finance Committee

NESS, David

TV Guide

Radnor, PA 19088
215-293-8860

Treasurer; Finance Committee

Other Steering
Commities Members

BECK, Lawrence A.

Grumman Data Systems

R & D, MS D12-237

Woodbury, NY 11797
516-682-8478

X3V1.8 Coordinator

BEETON, Barbara

PIZER, Arnoid

Department of Mathematics

University of Rochester

Rochester, NY 14627
716-275-4428

WHIDDEN, Samuel 8.

American Mathematical Society

P.O. Box 6248

Providence, RI 02940
401-272-9500
sbw@seed.ams.com

Finance Committee

ZAPF, Hermann

Seitersweg 35

D-6100 Darmstadt

Fed Rep Germany

BEETON, Barbara
Editor

DAMRAU, Jackie
Dept of Math & Statistics
Univ of New Mexico
Albuquergue, NM 87131
505-277-4623
Bitnet: damrau@unmb
UUCP: damrau@unmvax
Associate Editor, LATEX

EPPSTEIN, Maureen

Administrative Pubiications

Stanford University

Encina Hall, Room 200

Stanford, CA 94305
415-725-1717

as.mve@Forsythe. Stanford.Edu
Associate Editor for Applications

HOENIG, Alan

Members of
Other Commitiees

@ Annual Meeting Program

Washington State University
Computer Science Building, Room 2144
Pullman WA 09164-1220

509-335-0411

American Mathematical Society

P.O. Box 6248

Providence, Ri 02640
401-272-9500 %299

Bitnet: Guenther @WSUVM1
Annual Meeting Program Coordinator

Prime 50 Series
CRAWFORD, lohn M.

Computing Services Center
College of Business
Ohio State University
1775 College Road
Columbus. OH 43210
614-292-1741
Crawford- J@Chio-State edu
Bitnet: TSO135Q0OHSTVMA
international Coordinator

“small” systems

CARNES, Lance

163 Linden Lane

Milt Valley, CA 94541
415-388-8853

UNIX

MacKAY, Pierre A.
Northwest Computer Support Group
University of Washington
Mail Stop DW-10
Seattle, WA 98195
206-543-6259
MacKayQ June.CS.Washington.Edu

YA (VMS)

SMITH, Barry

Kellerman & Smith

534 SW Third Avenue

Portland, OR 97204
503-222-4234; TLX 91024054397
Usenet: tertronixlresdibarry

BNBG@Seed. AMS.com
BNBOXX.LCSMIT edu
Editor, TUGboat

DYER, Allen R.

2922 Wyman Parkway

Baltimore, MDD 21211
301-243-0008 or 243-7283

FUCHS, David

1775 Newell

Palo Alto, CA 94303
415-323-9436

FURUTA, Richard
Department of Computer Science
University of Maryland
College Park, MD 20742
301-454-1461
furuta@mimsy.umd.edu
Laser-Lovers moderator;
Finance Committee

GOUCHER, Raymond

TeX Users Group

P.O. Box 9506

Providence, Ri 02940-9506
401-272-9500 %232
reg®Seed. AMS.com

Executive Director

HENDERSON, Doug
Division of Library Automation
Univ of California. Berkeley
186 University Hall
Berkeley, CA 84720
415-642-9485
Bitnet: diatex@ucbcmsa
Mezafont Coordinator

Committee

GUENTHER, Dean R.
Bitnet; GUENTHERQWSUVML

IBM VM/CMS Site
Coordinator; Annual Meeting
Program Coordinator

% Committee on Corporate

Reiationships
FERGUSON, Michael J.

INRS - Télécommunications

Univ du Québec

3 Place du Commerce

Verdun (H3E 1H6), Québec Canada
514-765-7834
CSnet: mike%telinrs.cdn@ubc.csnet

SMITH, Barry
WHIDDEN, Samuel B.
Nominating Committee

FERGUSON, Michaetl J.
ION, Patrick D.

JACKSON, Calvin W., Jr.

1749 Micheltorena St

Los Angeles, CA 90026
818-356-6245 or 213-660-3257

Output Device Standards
Committee

MCGAFFEY, Robert W.
Martin Marietta Energy Systems, Inc
Building 9104-2
P.O. BoxY
Osk Ridge, TN 37831

615-574-0618

McGaffey7ORN MFEnet@nmiecc.arpa

Associate Co-Editor, Typesetting on
Personal Computers

JURGENSEN, Heimut
Dept of Computer Science
Univ of Western Ontario
London N6A 5B7, Ontario, Canada
519-661-3560
Bitnst: AS058UWOCTL
UUCP: heimut@deepthot
Associate Editor for Sofrware

MANN, Laurie D.
Stratus Computer
55 Fairbanks Blvd
Maribore, MA 01752
617-460-2610
uucp: harvardlanvilles!Mann
Associate Editor for Training issues

PFEFFER, Mitch

Suite 90

148 Harbor View South

L.awrence, NY 11559
516-239-4110

Associate Co-Editor, Typesetting on
Personal Computers

TOBIN, Georgia K.M.

The Metafoundry

OCLC inc., MC 485

6565 Frantz Road

Dublin, OH 43017
614-764-6087

Associate Editor for Fonts

Addresses and telephone numbers of individuals serving in more than one capacity
are listed oniy once. Unless indicated otherwise, network address are for the Internet.

April 1988

Addison -Wesley Publishing
Company
Reading, Massachusetts

The Aerospace Corporation
El Segundo, California

American Mathematical Society
Providence, Rhode Island

ArborText, inc.
Ann Arbor, Michigan

ASCH Corporation
Tokyo, Japan

Aston University
Birmingham, England

Brockhaven National Laboratory
Upton, New York

California lnstitute of Technology
Pasadena, California

Calvin College
Grand Rapids, Michigan

Ce[\tre Inter-Régional de Calcul
Electronique, CNRS
Orsay, France

City University of New York
New York, New York

College of St. Thomas
Computing Center
St. Paul, Minnesota

College of William & Mary
Department of Computer Science
Williamsburg, Virginia

Columbia University
Center for Computing Activities
New York, New York

COS Information
Montreal, P. Q., Canada

Data General Corporation
Westboro, Massachusetts

DECUS, L&T Special Interest
Group
Marlboro, Massachusetts

Department of National Defence
Ottawa, Ontario, Canada

Digital Equipment Corperation
Nashua, New Hampshire

dit Company, Ltd.
Tokyo, Japan

Edinboro University of
Pennsylvania
Edinboro, Pennsylvania

Electricité de France
Clamart, France

Environmental Research Institute
of Michigan
Ann Arbor, Michigan

European Southern Observatory
Garching bei Miinchen, Federal
Republic of Germany

TUG Institutional Members

Ford Aerospace &
Communications Corporation
Palo Alte, California

Forsvarets Materielverk
Stockholm, Sweden

General Motors Research
Laboratories
Warren, Michigan

Geophysical Company of Norway
A/S
Stavanger, Norway

Grinnell College
Computer Services
Grinnell, lowa

Grumman Corporation
Bethpage. New York

GTE Laboratories
Waltham, Massachusetts

Hart informatien Systems
Austin, Texas

Hartford Graduate Center
Hartford, Connecticut

Harvard University
Computer Services
Cambridge, Massachusetts

Hewlett-Packard Co.
Boise, Idaho

Hobart & William Smith Coileges
Geneva, New York

Humboldt State University
Arcata, California

Hutchinson Community College
Hutchinson, Kansas

1BM Corporation
Scientific Center
Palo Alto, California

{llinois Institute of Technology
Chicago, Hlinois

Imagen
Santa Clara, California

Institute for Advanced Study
Princeton, New Jersey

Institute for Defense Analyses
Communications Research Division
Princeton, New Jersey

Intergraph Corporation
Huntsville, Alabama

Intevep S. A,
Caracas, Venezuela

lowa State University
Ames, lowa

Istituto di Cibernetica
Universita degli Studi
Milan, italy

Kuwait Institute for Scientific
Research
Safat, Kuwait

Los Alamos National Laboratory
University of California
Los Alamos, New Mexico

Louisiana State University
Baton Rouge, Louisiana

Marquette University

Department of Mathematics,
Statistics

and Computer Science

Milwaukee, Wisconsin

Massachusetts Institute of
Technology

Artificial Intelligence Laboratory

Cambridge, Massachusetts

Mathematical Reviews
American Mathematical Society
Ann Arbor, Michigan

Max Planck institute Stuttgart
Stuttgart, Federal Republic of
Germany

McGill University
Montreal, Quebec, Canada

National Center for Atmospheric
Research
Boulder, Colorado

National institutes of Heaith
Bethesda, Maryland

National Research Council
Canada

Computation Centre

Ottawa, Ontario, Canada

New Jersey Institute of
Technology
Newark, New Jersey

New York University
Academic Computing Facility
New York, New York

Northeastern University
Academic Computing Services
Boston, Massachusetts

Online Computer Library Center,
Inc. (OCLC)
Dubiin, Ohio

Pennsylvania State University
Computation Center
University Park, Pennsylvania

Personal TgX, Incorporated
Miil Valley, California

Purdue University
West Lafayette, Indiana

QMS, Inc
Mobile, Alabama

Queens College
Flushing, New York

Research Triangle institute
Research Triangle Park,
North Carolina

RE/SPEC, Inc.
Rapid City, South Dakota

Institutional Members 3

Ruhr Universitdt Bochum
Bochum, Federal Republic of
Germany

Rutgers University
Hill Center
Piscataway, New Jersey

St. Albans School
Mount St. Alban, Washington, D.C.

Sandia National Laboratories
Albuquerque, New Mexico

SAS Institute
Cary, North Carolina

Schlumberger Well Services
Houston, Texas

Science Applications
International Corp.
Qak Ridge, Tennessee

1. P. Sharp Associates
Pato Atto, California

Smithsonian Astrophysical
Observatory

Computation Facility

Cambridge, Massachusetts

Software Research Associates
Tokyo, Japan

Sony Corporation
Atsugi, Japan

Space Telescope Science Institute
Baltimore, Maryland

Springer-Verlag
Heidelberg, Federal Republic of
Germany

Stanford Linear Accelerator
Center (SLAC)
Stanford, California

Stanford University
Computer Science Department
Stanford, California

Stanford University
ITS Graphics & Computer Systems
Stanford, California

State University of New York
Department of Computer Science
Stony Brook, New York

Stratus Computer, Inc.
Martboro, Massachusetts

Syracuse University
Syracuse, New York

Talaris Systems, Inc.
San Diego, California

Texas A & M University
Computing Services Center
Coflege Station, Texas

Texas A & M University
Department of Comyp
College Station, Texas

TRW, tnc.
Redondo Beach, California

r Science

4 Institutional Members

Tufts University
Medford, Massachusetts

TV Guide
Radnor, Pennsylvania

TYX Corporation
Reston, Virginia

UNI.C
Danmarks EDB-Center
Aarhus, Denmark

University College
Cork, Ireland

University of Alabama
Tuscaloosa, Alabama

University of British Columbia

Computing Centre

Vancouver, British Columbia,
Canada

University of British Columbia

Mathematics Department

Vancouver, British Columbia,
Canada

University of Calgary
Calgary, Alberta, Canada

University of California, Berkeley
Academic Computing Services
Berkeley, California

University of California, Berkeley
Computer Science Division
Berkeley, California

University of California, Irvine
Department of Mathematics
irvine, California

University of California, Irvine
Information & Computer Science
Irvine, California

University of California, San
Diego
La Joila, California

University of California, San
Francisco
San Francisco, California

University of Chicago
Computation Center
Chicago, lllinois

University of Chicago
Computer Science Department
Chicago, Hlinois

University of Chicago
Graduate School of Business
Chicago, Hllinois

University of Crete
Institute of Computer Science
Research Center

Heraklio, Crete, Greece

University of Delaware
Newark, Delaware

University of Glasgow
Glasgow, Scotland

University of Groningen
Groningen, The Netherlands

University of Hlinois at Chicago
Computer Center
Chicago, lllinois

University of Kansas
Academic Computing Services
Lawrence, Kansas

University of Maryland
College Park, Maryland

University of Massachusetts
Ambherst, Massachusetts

University of North Carolina
School of Public Health
Chapel Hill, North Carolina

University of Oslo
institute of Informatics
Blindern, Oslo, Norway

University of Ottawa
Ottawa, Ontario, Canada

University of Southern California
Information Sciences Institute
Marina del Rey, California

University of Tennessee at
Knoxville

Department of Electrical Engineering

Knoxville, Tennessee

University of Texas at Austin
Physics Department
Austin, Texas

University of Texas at Dallas
Center for Space Science
Dallas, Tevas

University of Vermont
Burlington, Vermont

University of Washington
Department of Computer Science
Seattle, Washington

April 1088

University of Western Australia
Regional Computing Centre
Nedlands, Australia

University of Wisconsin
Academic Computing Center
Madison, Wisconsin

Vanderbilt University
Nashville, Tennessee

Vereinigte Aluminium-Werke AG
Bonn, Federal Republic of Germany

Villanova University
Viilanova, Pennsylvania

Vrije Universiteit
Amsterdam, The Netherlands

Washington State University
Puliman, Washington

Widener University
Computing Services
Chester, Pennsylvania

John Wiley & Sons, incorporated
New York, New York

Worcester Polytechnic Institute
Worcester, Massachusetts

Yale University
Department of Computer Science
New Haven, Connecticut

(138 institutional members
as of 28 Feb 1988)

April 1988

TEX Consulting and Production Services 119

TeX Consulting and Production Services

North America

ALDINE PRESS
12625 La Cresta Drive, Los Altos Hills, CA 94022;
(415) 948-2149
Composition services for mathematical and technical books.

AMERICAN MATHEMATICAL SOCIETY

P. 0. Box 6248, Providence, RI 02940;
(401) 272-9500, ext. 224

Typesetting from DVI files on an Autologic APS Micro-5.
Times Roman and Computer Modern fonts.
Composition services for mathematical and technical
books and journal production.

ARBORTEXT, Inc.

535 W. William, Suite 300, Ann Arbor, MI 48103; (313)

996-3566

Typesetting from DVI files on an Autologic APS-5.
Computer Modern and standard Autologic fonts.
TeX installation and applications support.
TeX-related software products.

ARCHETYPE PUBLISHING, Inc.,
Lori McWilliam Pickert

P. O. Box 6567, Champaign, IL 61821; (217) 359-8178

Experienced in producing and editing technical journals
with TEX; complete book production from manuscript
to camera-ready copy; TEX macro writing including
complete macro packages; consulting.

HOENIG, Alan

17 Bay Avenue, Huntington, NY 11743; (516) 385-0736

TEX typesetting services including complete book
production; macro writing; individual and group
TgX instruction.

KUMAR, Romesh

1028 Emerald, Naperville, IL 60540; (312) 972-4342

Beginners and intermediate group/individual instruction
in TEX. Development of TEX macros for specific
purposes. Using TEX with FORTRAN for
custom-tailored software. Flexible hours, including
evenings and weekends.

OGAWA, Arthur

920 Addison, Palo Alto, CA 94301; (4153) 323-9624

Experienced in book production, macro packages,
programming and consultation. Complete book
production from computer-readable copy to
camera-ready copy.

RICHERT, Norman

1614 Loch Lake Drive, El Lago, TX 77586;
(713) 326-2583

TEX macro consulting.

TEXNOLOGY, Inc., Amy Hendrickson

57 Longwood Ave., Brookline, MA 02146;
(617) 738-8029.

TEX macro writing (author of MacroTEX); custom macros
written to meet publisher’s or designer’s specifications;
instruction.

QOutside North America

BAZARGAN, Kaveh

Optics Section, Blackett Laboratory, Imperial College

of Science and Technology, London SW7 2BZ, U.K.;
(01) 589 5111 ext. 6841

Instruction in TEX, for beginner and intermediate levels.
Custom macros, including complex tables.

TEXPERT SYSTEMS Ltd., (Malcolm Clark and
Cathy Booth)

5, Northernhay Square, Exeter, EX4 3ES, Devon, U.K.;

(0392) 76091

The Complete TEX Service: consultation, all levels of
document production, printing, customised style sheets
(macros) to simplify text input, comprehensive training
courses (will travel).

VARDAS

88, North Rd., St. Andrews, Bristol, BS6 5AJ, U.K;
(0272) 428709

TEX consultation, instruction, macro writing, book
production, consulting.

Information about this service can be obtained from Ray Goucher, TEX Users Group,
P. O. Box 9506, Providence, RI 02940, (401) 272-9500, ext. 232.

MONTREAL

The Meeting.

The 1988 TEX Users Group Annual Meet-
ing will focus on TEX in a production envi-
ronment. Papers and sessions will address
a number of the aspects, approaches, prob-
lems, and solutions associated with using
and teaching TEX and TgX-related pro-
grams. Nontechnical subjects and human
factors will be considered, also (see the an-
nouncement on page 87 for a list of topics).
Courses to be offered in conjunction with
the meeting include Beginning TEX, Inten-
sive Beginning/Intermediate TEX, META-
FONT, Macro Writing, Output Routines,
and PostScript.

The Host.

The core of McGill University, with al-
most 30,000 students, is located in down-
town Montréal, but the University has
other facilities, research sites, and muse-
ums throughout the city and Canada. The
green central campus is a prime downtown
picnicking spot. Tours of the campus can
be arranged in French or English. The an-
nual meeting will be held in the Bronfman
Building on Sherbrooke Street; courses will
be held elsewhere on campus.

The City.

An island city of almost -2 million,
Montréal is the second largest French-
speaking city outside of France; English
is widely spoken, and Italian, Greek, and
Chinese are common. Expect the possi-
bility of hot weather, and remember one
possibility of escape: a wonderful Métro
connects an underground city. There are
stores, restaurants, bakeries, gardens, mu-
seums, and galleries for every taste.

The Feast.

TUG will host a cash-bar cocktail recep-
tion in the David M. Stewart Museum, a
great opportunity to make or renew pro-
fessional acquaintances or to visit the mar-
itime and military exhibits. The Québecois
dinner will be served in Le Festin du Gov-
erneur, a restaurant located in the old fort
on Ile Ste-Hélene. This 17th century feast,
which includes drinks, soup, quiche, beef
brochette, vegetables, wine, dessert, and
beverages, is accompanied by a revelry of
performers—an historical adventure in eat-
ing and entertainment.

The Memories.

(To be filled in by each of you—)

August 22-24, 1988

The TEX Users Group, P.O. Box 9506, Providence, Rhode Island 02940, USA
Call for reservations or information: (401) 272-9500, ext. 232

