
TUGboat, Volume 9 (1988), No. 1 11

Software

Still another aspect of multiple change files:

The PATCH processor

Peter Breitenlohner

Recently there have been quite a few TUGboat

articles about extensions of the W E B system, either

extensions to other languages like C or Modula-2.

or extensions which allow multiple change files

(W. Appelt and K. Horn in TUGboat 7(1986)20,

K. Guntermann and W. Riilling in 7(1986)134,

E.W. Sewell in 8(1987)117). Surprisingly enough

(at least for me) another extension which allows

one to include or insert a WEB file together with

its change file(s) into another one has never been

discussed. I would therefore like to present a

program which does exactly this.

Before describing this program let me recall

my motivation to write it. My experience with

the WEB system dates back to the time when I had

just installed METAFONT, had proudly produced

the first GF file and was then told by GFtype

that all kinds of backpointers were wrong. This

was repaired easily enough - the two programs had

different opinions about the record length of GF

files-but it has brought the following fact to my

attention. The WEB source files for ?&X, METR-

FONT and their friends contain large sections of

code which occur in many files in more or less

identical form and the changes applied to them had

better be consistent. The chapters 'The character

set' or 'Packed file format' are typical examples

and the updates to GFtoPK, PKtoPX, PKtype and

PXtoPK published in TUGboat 7(1986)140 are a

characteristic symptom.

If one could make such sections of code com-

pletely (not just almost) identical one could keep

one copy of this code in a separate file and include it

whenever needed. This would clearly save a rather

large amount of disk space. Much more important

this would guarantee that the same changes are

applied whenever this section of code is used and

would greatly facilitate the task of creating a new

set of change files for a new computer, compiler or

operating system.

These considerations motivated me to write

a program which I have named PATCH because it

takes various patches and combines them into one

program file. Each patch consists of one WEB file and

n _> 0 change files change-j (0 < j I n) which are

applied one after the other. Here PATCH operates

exactly like TIE as described by Guntermann and

Rulling: first change-1 is applied to the WEB file as

usual, then change-2 is applied to the result, and so

on. In addition there is one short 'patch file' which

specifies the names of the WEB and change files. An

important milestone is reached when the result of

this merging of files yields a record starting with

'Qi', a control code which is normally undefined.

Such a record must contain the file name of a new

patch file and the resulting new patch is inserted

instead of this record. This new (secondary) patch

may, of course, again yield records starting with

'Qi' and thus invoke further secondary patches and

SO on.

The PATCH processor has actually three modes

of operation: In merge-mode PATCH produces a WEB

file and one change file. and can thus serve as

preprocessor for TANGLE and WEAVE. In this mode

all change files change3 are combined into one

change file and all secondary patches are inserted in

a suitable way. In insert-mode PATCH produces just

a WEB file containing all the changes and insertions.

This WEB file can also serve as input to TANGLE

or WEAVE but in this case the information about

changed modules would not be available to WEAVE.

Finally, in update-mode, all changes are applied

to the primary patch. Requests for secondary

patches are, however, not honored but copied to

the resulting WEB file. This mode of operation is

intended to incorporate modifications into a WEB file

once they have been fully tested and are frozen.

A next step was to combine PATCH with TANGLE

and WEAVE to new programs TPATCH and WPATCH

in order to avoid the necessity of a separate pre-

processing step. Using PATCH. this turned out to

be surprisingly easy due to the clear structure of

TANGLE and WEAVE. All the code for the actual

processing (modules 37-178 of TANGLE and modules

36-257 of WEAVE) required practically no changes

except that the parts which merge the WEB and

change file (modules 124-138 resp. the almost iden-

tical modules 71-85) had to be replaced by the

corresponding code from PATCH. All three proces-

sors PATCH, TPATCH and WPATCH have now been used

for several months and are thoroughly tested.

Coming back to the original motivation for

PATCH one can now try to create patches for

things like 'Reading GF files', 'Reading PK files' and

'Reading PXL files', or maybe two versions of them

for sequential and random access to the files. At

the moment I am in fact doing just this. Such

patches should be tools which can be inserted into a

program whenever needed. They can be extremely

useful for all kinds of D V I drivers which could use

any one of them or even two of them alternatively.

12 TUGboat, Volume 9 (1988), No. 1

Another application is related to the fact that

the files tex.web and mf .web are extremely large;

they are in fact too large to be even inspected

by our text editor. In order to circumvent this

problem one can split the file t ex . web- D.E. Knuth

might forgive this - into smaller files containing

the limbo material (texOO.web) or the code for

one chapter of The Program' (texO1 .web

through tex55.web) and split the change files for

l)Ql and INITEX accordingly. The primary patch

for TEX will then consist of a short WEB file

(say texske l .web, the skeleton) containing 56 'Qi'

commands to invoke these patches. This primary

patch requires no change file as all changes are

applied to the secondary patches. The skeleton file

for INITEX will be almost identical. Only one or two

secondary patches will be different, their patch files

will have to specify an additional change file in order

t o create INITEX instead of TEX. but there is no

necessity to maintain, for each kind of installation,

two almost identical change files, one for TEX and

one for INITEX. Furthermore one could create a

L-R 'I'EX (TEX-XET) and/or a multilingual TEX by

just adding one additional change file to a few of

the secondary patches. These additional change

files could probably be installation-independent.

Turkish Hyphenations for TEX

Pierre A. MacKay

Turkish belongs to the class of agglutinative lan-

guages, which means that it expresses syntactic

relations between words through discrete suffixes,

each of which conveys a single idea such as plurality

or case in nouns, and plurality, person, tense, voice

or any of the other possibilities in verbs. Since each

suffix is a distinct syllable (occasionally more than

one syllable), Turkish sentences are likely to contain

a high proportion of long multi-syllable words, and

t o need an efficient system of hyphenation for type-

setting. Owing to the long association of almost

every Turkic-language region with Islam, certain

conventions of the language have been deeply in-

fluenced by Arabic orthographic habits, and among

these is the syllabification scheme on which a system

of hyphenation is built.

According to the syllabification pattern of Ara-

bic, a syllable is assumed always to consist of an

initial consonant (even when that consonant is no

longer written) and to terminate in a vowel -cv- or

in the next unvowelled consonant -cvc-. This pat-

tern is followed so absolutely that it is permitted to

break up native Turkish suffixes. The plural suffix

-1er- will be hyphenated as -1e-rine in an environ-

ment where the -cv-cv-cv pattern predominates.

A syllabic division of ~ektirilebilecek provides six

places for hyphenation ~ek-ti-ri-le-bi-le-cek, while a

morphological division of the word would produce

only five ~ek-tir-il-e-bil-ecek*

There are almost no exceptions to this pattern.

Words which appear to begin with a vowel, like

et-mek, can also be described as beginning with

the now suppressed half-consonant hamza. Widely

sanctioned orthographic irregularities like brak-mak

can be found in stricter orthography as bz-rak-mak.

The only universally practiced violation of the rule

is associated with the word Turk, in which the

-rk- combination is inseparable, and contributes

to several of the very few three-consonant clusters

regularly used in the language-Turk~e, Tirkler.

One other significant consonant cluster occurs in

the suffix [i]m-tralc.

The Ottoman Texts Project at the University of

Washington has undertaken the development of a set

of editing and typesetting tools for the production of

texts in modern Latin-letter Turkish, using the full

range of diacriticals needed for scholarly editions

of historic Arabic-script manuscripts. Because we

wish to work in cooperation with scholars in Turkey,

who are most likely to have access to unmodified

versions of 7$,X, we have chosen a font-based

adaptation of the TEX environment, which will

require no alterations in the program. The work

on fonts is largely complete, and one of the last

major efforts necessary is the creation of a Turkish

hyphenation table.

The obvious way to create such a table in

the environment, is to run a list of correctly

hyphenated words through Patgen, but it is not

always easy to find such a list. English and German

dictionaries quite commonly provide hyphenation

patterns, but the dictionaries of the Romance lan-

guages rarely do, and in Turkish, the hyphenation

pattern is so obvious that the production of such

a list is viewed as an unimaginable waste of time.

Rather than try to scan a Turkish word-list and

supply hyphens, we have taken advantage of the

strict formalism of the patterns and generated the

Turkish hyphenation file by program.

* The word is a future participle, and describes

something as being capable of being extracted at

some time in the future -like a tooth.

