
TUGboat, Volume 8 (1987), No. 3 291

requires some changes in origin placement but is

generally fairly simple.

Future printing systems

Although high-speed, high-volume printing systems

do not yet offer color printing capabilities, future

systems likely will. Through 'QjX macros and

\ spec ia l commands, the user should be able to

control the color of the text and/or graphics on a

page.
Binding is another feature which may be offered

by newer printing systems. If a printer has options

for user-controlled binding, the DVI driver should

be able to support them.

Any standards or guidelines which are devel-

oped concerning \ spec ia l s and DVI drivers need to

be open-ended so that capabilities of future printing

systems can be incorporated into them.

Conclusion

Demand printing applications made possible by
high-speed, high-volume printing systems make ad-

ditional demands of the document preparation soft-

ware. 'QjX represents a sound system for handling

the typesetting aspect of the document preparation.

However, DVI drivers need to take on a more promi-

nent role in the document preparation cycle by

providing the non-typesetting capabilities needed

for support of these printing systems.

Since the significance of the responsibilities of

the DVI driver are raised to the level of those of

w, more attention to the DVI driver is needed.

While represents a standard for typesetting,

no such standard currently exists for DVI drivers -

each driver author is left to his or her own imagina-

tion. Efforts are presently underway to propose a

standard for \specials ; similar efforts are needed

to formulate standards and/or guidelines for DVI

drivers.

\ spec i a l issues

Glenn L. Vanderburg and Thomas J. Reid

Texas A&M University

ABSTRACT: As more and more DvI translation pro-
grams appear, it is important to have a standard set of
\special commands, and a standard format for those
commands, so that attention can be focused on the
documents being prepared rather than on the printer
being used. This article contains a discussion of the
various problems associated with specials and describes
a format and set of specials which could serve as the
foundation for a standard.

One of the most farsighted and useful features of

the 'QjX language is the \ spec ia l command. In

acknowledging the incompleteness of 7$$ and of the

DVI format, Professor Knuth gave us the mechanism

by which we could do much to extend the language

and adapt it to changing needs and capabilities.

In The W b o o k ([16] page 229), Knuth has

this to say:

Whenever you use \special, you are taking
a chance that your output file will not be
printable on all output devices, because all
\special functions are extensions to TEX.
However, the author anticipates that certain
standards for common graphic operations will
emerge in the TkX user community, after care-
ful experiments have been made by different
groups of people; then there will be a chance
for some uniformity in the use of \special

extensions.

The time has come to define the standards which

Knuth proposed. The 'J&X community is maturing

rapidly. DVI drivers exist for many printers,

but most such programs are still being developed.

Powerful page-description languages now exist, and

QX users are eager to exploit their capabilities.

Many drivers have implemented some specials, and

some lessons have been learned. Questions and

articles in TUGboat and W h a x have demonstrated

the kind of functionality which is required. A
standard for the format (and function) of special

commands is important, and it will be most useful

now, while so many drivers are being developed.

The authors have been considering this problem

for more than a year, in connection with the

development of a DVI driver for the Xerox 9700

family of printers, and would like to present their

ideas and suggestions. Many of the ideas in this

article are due (at least in part) to Dr. Bart Childs,

who has spent a great deal of time considering these

issues and sharing his ideas. This is not meant

to imply that he endorses the recommendations

TUGboat, Volume 8 (1987), No. 3

here, as his original ideas have been modified

considerably. His input was important. however.

We also were influenced by Robert McGaffey

[18]. Don Hosek [12]. and others too numerous to

name; we've seen many drivers and talked to many

users about their needs. TUGboat and T)iJihax have

been invaluable aids, with articles and discussion

about specials and the problems that users

face.

We hope that the m community, and specif-

ically the Users Group (TUG), can adopt a

standard which will detail the recommended behav-

ior for all DVI translation programs. It will not be

necessary for every driver to implement each special

command in the standard. but each driver should

support a minimal subset of the standard specials.

so that users will know what to expect with regard

to certain very basic operations.

The remainder of this article considers prob-

lems of function, form, and use of specials. along

with the problem of device-dependence.

Guidelines and Goals

There are certain guidelines (or design principles)

which should govern the standard, and certain goals

to drive it.

Any DVI file should work with any driver as

well as possible. Unrecognized specials should

not cause problems, and a given special should

produce equivalent effects (where possible) on

all printers. In particular, this means that

specials should not be tagged with driver or

printer names.

No device-specific information should be in-

cluded in special commands. except where

absolutely necessary.

Keep specials general. When there are fre-

quently used special cases, implement them as

aliases for a more general special (although

ideally those special cases should be accessed

by a macro to generate the special).

e Text should be handled by the same specials

that are used for other graphical objects. This

will make the generation of special effects with

specials much easier. Postscript is a good

example of how successful this approach can be

[4l.
The DVI philosophy of compactness should be

followed ([15], section 584).

Keep the format of specials simple and easy to

parse. Don't make the driver do extra work

that could be done more easily by m. This is

not to say that "if it can be done in ?)EX, you

don't need a special for it." However, the work

should be done where it's easiest.

e It is desirable for users to be able to pro-

duce output in its final form (camera-ready, for

instance) directly from the DVI driver. Where

this is not possible, it should be because of in-

herent printer limitations or because the stan-

dard has not been fully implemented, rather

than because of limitations in the standard

itself.

Design for a very capable printer and driver.

This will encourage the development of such

printers and drivers, by accenting the deficiency

of those which cannot (or do not) support the

whole standard.

All applicable command-line options must be

accessible via specials. Frequently, Tm users

must print new copies of a document which was

written years ago. If that document required

special command-line options to print correctly

(landscape, for instance), it might take some

experimentation to rediscover those options. It

would be extremely convenient to have those

options encoded in the DVI file. Options to

specify printing of multiple copies or to select

pages from the document would not be good

candidates for such specials, however.

There should be a convention for global spe-

cials.

e A conforming driver should not be tied to any

one format (or set of formats) for graphics files.

The DVI driver should be a good DVI driver

and little else; it should not attempt to be a

graphics interpreter or translator.

Don't underestimate the number, variety, or

complexity of users' requirements. Make provi-

sions for extension of the standard.

It may seem that some of these goals are

contradictory. It is likely that in some cases it will

prove impossible to satisfy all of them completely.

They are all desirable goals, however, and it should

be possible to meet them with a little work, and

the standard will be a better one for the effort.

Types of specials and their functions

I t seems appropriate to begin by discussing the

functions that will be required, since that will have

a significant effect on other aspects of the standard.

Global specials. Much has been said and writ-

ten about the implicit restriction on specials affect-

ing pages other than the one on which they occur.

While the random ordering of pages in the DVI file

does imply that this cannot occur, the authors see

TUGboat, Volume 8 (1987), No. 3 293

no need for it to be a hard and fast rule. Some con-

vention for global specials should be developed, and

then they should be used with care. The DVI format

permits specials to occur before the beginning of the

first page and between pages ([15] section 588). Un-

fortunately, m 8 2 does not put any specials there.

There are some reasonable possibilities, however.

Specials which occur at the beginning of the first

page in the DVI file and which have a g loba l prefix

could have global effects. Certain other specials

could have effects on pages which succeed them in

the final sort order; they would merely have to be

used with care. A policy such as that adopted by

Adobe Systems, Inc., toward Postscript is advisable

[3]: they advocate keeping pages self-contained, but

they do not enforce this. The ability to make

something on one page affect other pages is there,

but Adobe advises caution when using it. If the

sort order is changed drastically or if a single page

is extracted from the file, chaos will ensue. These

are unusual cases, however, and the usefulness of

global specials makes the danger worthwhile, in the

opinion of the authors. An alternative approach is

to have an optional companion file for the DVI file

which would contain specials which could have a

global effect.

First, the driver needs to know what to rotate.

We could limit the special to rotating a single box

(an hbox or a vbox), and use a single special which

would rotate the next box in the DVI file (box

structure can be inferred from the levels of the push

and pop commands in the file [15][17]). This has two

disadvantages, however. It makes extra work for

the driver, keeping track of pushes and pops, and it

also limits the scope of the command. A rotation

special defined in this way would not be able to

reliably rotate an entire page. In Plain TEX, a page

is placed in a box by the output routine. and then

shipped out. The special would go inside that box,

and could not be placed outside of it. Of course, we

could define the special as rotating the immediately

enclosing box, but this is hard to control and it

runs contrary to a user's intuitive understanding

of the special. So we choose to have a delimited

special. begun by, say, r o t a t e and delimited by, say,

e t a t o r . In this way, we can specify an arbitrary

region to be rotated in a very general way. Whole

pages can be rotated easily, and we can handle

this in a global fashion by modifying the output

routine to use \everybop and \everyeop token-

list registers. containing commands which would be

placed at the beginning and ending of every page.

In such a case, the e t a t o r would not be strictly
Text and graphics manipulation. These spe- necessary; the region of a delimited special would
cials affect a region of text or graphic objects, be bounded by the end of a page (except possibly if

which may be produced specials. it had been declared global-see Global specr&,
Note that "region" refers to a region of the DVI above).
file. rather than any particular area of the physical Next, the driver needs to know the pivot point
page. We will use "area" to specify a portion of the (the point about which to rotate). I t is easy to just
physica1 page. We should also take this o ~ ~ o r t u n i t ~ have all text rotated around the current coiirdinates,

point Out other important points: the order but that is needlessly restrictive. Such a restriction
in which transformations are applied is important, would result in a lot of clumsy hackery to
and some decision meds be made On whether achieve other effects. Therefore a user should be
delimited specials should be allowed to nest. To able to specify an offset. using any of the standard
permit special effects, the standard should provide TEX dimensions (note that "true" dimensions must
for all of the common two-dimensional transforma- be supported also). M~~~~~ can be constructed to
tions. especially since they are easily accessible in expand to the offset of the upper-right-hand corner
modern page-description languages. of a box, or the center, etc., so that this scheme

Rotation: A special for rotation should be

capable of rotating graphics or text, up to a whole

page. Of course, when graphics or text are stored
in bitmap form, it is only feasible to rotate in

90" increments (and sometimes that isn't possible

either, depending on the output device). But where

it is possible to rotate. the portion of the page to

be rotated could range from a single character to

the entire page. As an example of how complex

the design of a special can be, we will attempt to

specify a general rotation special in its entirety.

would not be too difficult to use. One should also

be allowed to specify exact coordinates, or to use a

predefined point (see Plotting, below).

Finally. the driver needs to know the angle to

rotate through. In the simplest case, it could be a

number which would represent degrees. Ordinarily,

it is not important to know from what direction

an angle is measured; the default case is 0". and

angles are measured counterclockwise from that. I t

would help. however, to settle on a 9ex t direction''

concept to simplify things for users and for the

authors of drivers. Angles should be measured

294 TCGboat. Volunle 8 (1987): No. 3

counterclockwise from a horizontal line. This is

intuitive. and it also makes the transformation

easier for the driver. because it simplifies the

mathematics; the transformation matrix to be used

becomes
cos0 sin0 0

[Sy c0;O ; I
for the angle 0. If the angle is in units of degrees,

it may be necessary for the driver to convert it to

radians before computing the sine and cosine.

When the angle is given in its component parts

(i.e.. two numbers). the two numbers should be

assumed to be related to the sine and cosine of the

angle. Thus, the angle 0 can be determined from

the components x and y by one of the following

relations:

0 +- arctan ylx: for x > 0

0 +- arctanylx + 180: for x < 0

8 +- 90: for x = 0 and y > 0

0 + -90; for x = 0 and y < 0

error: for x = 0 and y = 0.

This gives the angle 0 in the range 1-90.270). If it

is desired to have the angles in the range [0, 360).

one can say:

0 + 0: for 0 > 0

0 + 8 + 360: for 0 < 0.

In working with rotations, the angle itaself is

not generally useful; the sine and cosine are the

important values, as shown in the transformation

matrix above. If an angle is given in component

form: it is possible to calculate the sine and cosine

more efficiently using the following relations:

d + J2-q
if d = 0 then error

cos 0 + x/d

sin0 + yld.

So in order to include all of the necessary

information. the r o t a t e special must have the

following form (or something similar):

r o t a t e hoffset voffset angle (stuff) e t a t o r .

It should be obvious that a well-designed special is

the result of a lot of work. Many factors need to

be considered: desired capabilities, the user. QX.
the DVI format, implementation details. and printer

capabilities.

There is one further note about the direction

of text. Here. we have decided that angles should

be measured counterclockwise from the positive

h axis. Readers of right-to-left languages [17]

might not choose that, however; they might choose

clockwise from the negative h axis. At least

some consideration should be given to making the

"direction of text" equal to the direction in which

the current point is displaced when printing it. This

would complicate the implementation, but it might

make the mechanism more versatile.

Scalzng: If the printer supports it, there should

be a special for scaling of text and other graphical

objects (whenever they are not stored as bitmaps.

of course). Possibly an offset would be needed

here, also; do we want all of the expansion to be

away from the current rrference point? The scaling

special should also be delimited, and it should

support scaling by factors and also to a certain

explicit size. Independent horizontal and vertical

scaling should be possible. This would distort

pictures in an undesirable fashion. but it would

leave the data content of many graphs intact. while

fitting them into a space of arbitrary size.

Translatzon: Translation would be helpful in

placing graphic objects on the page. For example,

suppose one wanted to use graphics inclusion to

print a form which would overlay the entire page.

Horizontal and vertical offsets should be the argu-

ments here. Ll'hether or not it should be delimited

is a matter for debate: it can be strongly argued

that any objects actually created by 7&X (i.e.. not

by the driver itself) should be positioned on the

page using Tm.

Reflectton: Reflection requires knowledge of a

region and an axis. The axis could be specified by

two points or by one point and an angle. Note that

this special is not strictly necessary. as reflection

can be accomplished by a combination of other

specials.

Clzppzng: The driver should be able to do

simple clipping. This would be very useful when

including graphics such as the METAFONT proofs

produced by GFtoDVI. That program puts a title on

the top of the page. and there is no option to sup-

press the title. Therefore it would be nice to be able

to tell the driver to print a crrtain area of the page.

and print it here. The standard could only permit

rectangular clipping paths. although a more general

mechanism of path specification might be necessary

for a f 111 special (see Plottzng. below). Note that

the user should never assume that characters will be

partially clipped. even though page-description lan-

guages such as PostScript permit it. The stzndzrd

should specify the handling of characters which fall

partially within the clipping area. and it should

also permit specification of whether to clip inside

TUGboat, Volume 8 (1987), No. 3 295

or outside of the clipping area. A generalization of

an "off-the-page" check would make this relatively

easy to implement.

Color: Printers are beginning to incorporate

color. The Postscript and Interpress [21] page-

description languages have facilities for controlling

color, and Adobe's Illustrator program [2] (which

generates Postscript) can generate color documents

automatically. The standard for specials needs to

provide a way to access color facilities.

If color is to be accessed via a special. a

complete range of colors must be supported. Gray

scales should be available. Most importantly, a

common color model should be used. Color models

are difficult to understand; the user shouldn't have

to learn a new one. The common color models are

described in [9] on pages 611-623. From page 611:

Three hardware-oriented models are the RGB

(red, green, blue), used with color TV mon-
itors; YIQ, which is the broadcast TV color
system: and CMY (cyan, magenta, yellow) for
color printing devices. Unfortunately, none
of these models are particularly easy for a
programmer or application user to control,
because they do not directly relate to our
intuitive color notions of hue, saturation, and
brightness. Therefore, another class of models
has been developed with ease of use as a goal.
Several such models exist; we shall discuss
only two: the HSV (hue, saturation, value)
and HLS (hue, lightness, saturation) models.

RGB and YIQ were designed for luminous devices,

CMY for hardcopy devices, and H ~ V and HLS for

users. One of these models will almost certainly be

understood (in some form) by the output device,

and the driver will have to map whatever is specified

in the special to the printer's model. Fortunately,

there are standard mappings between all of these

models; in fact, Foley and Van Dam give the code in

their book. None of the algorithms are particularly

complex. It seems reasonable, therefore, for the

standard to support all five models. Individual

drivers may not support all of the models, but they

should at least support the printer's native model,

and it would not be difficult to support all of them.

Drivers for black-and-white printers could ren-

der color in grayscales by mapping to the YIQ model.

YIQ was designed for downward compatibility with

black-and-white TM; The Y component can be used

alone to represent grayscale.

I t is important to also permit specification of

background color. This would permit setting white

text on a black background. This special should

specify an area in the same manner as the clip and

fill specials.

Graphics inclusion. This is really one of the

stickiest areas of a special standard, because it

contains most of the device-dependent details. We

should resist the temptation to incorporate scaling,

translation, and clipping parameters into these

specials; it would be better to use the general

specials described above for such things.

DVI inclusion: This one keeps free of device

dependency, but it's certainly not easy to imple-

ment. Fonts in a DVI file are numbered [15]. so font

numbers and coordinates need to be kept separately

for different DVI files [20]. It would be really nice,

however, to be able to include pages from other

DVI files into a document, or even parts of pages.

It also gives access to the magnification feature

for scaling a p:ge to be included. This could be

very useful: T h e METRFONTbook could have been

produced with no manual pasteup of any kind. The

proofs from METRFONT could have been included

in this way. In our opinion. this is the only kind of

file inclusion for which the DVI driver should act as

an interpreter in any way.

Standard graphic formats: Other programs

should be used to translate the files to printer-

specific format. This keeps the driver from being too

complicated, and it allows easy extension to other

formats. In addition, the other programs could

create a companion file for the graphic with

commands detailing the size of the graphic,

etc. It could even place those commands at the

beginning of the graphic file itself; an \endinput

command would cause to exit from the file

before it hit the graphic information, and the driver

could strip those commands out when it read the

file. The preferred method, in the opinion of the

authors, is to have a companion file.

Printer-specific formats: This would seem to

be the easiest task. We should just include the

file and go, trusting that the file itself is error

free. If the file is properly encoded, this should

work on almost all printers. A special conversion

program to properly L'encapsulate" the file would

be a fairly simple task. There is, however, at least

one complication, which is the subject of the next

section.

Orientation-specific files: On some printers

(e.g., the Xerox 9700 family), graphics files are

orientation-dependent. A graphic created to be

printed in landscape will not work correctly in

inverse landscape. This can become a problem,

296 TUGboat. Volume 8 (1987), No. 3

especially when imposing pages. Suppose we are

imposing pages to produce a booklet which can be

folded and stapled straight from the printer. Pages

on the front of a sheet are in landscape. and pages

on the back of a sheet are in inverse landscape.

When the document is being formatted we do not

know which side of the sheet the graphic will finally

fall on: this may even be dynamic, and we may

print the document in simplex for proofing to speed

turnaround. Admittedly. this is a printer limitation.

but we should provide for it. It would probably be

wise to provide an i f else special. If so, it should

be generalized to test not only orientation. but

other conditions and user-defined values. as well.

Direct printing features. Some of these spe-

cials will also be device-dependent. and site-

dependent as well. Defining such site-dependencies

should be done in a configuration file. separate from

the other source files if possible.

Paper types: Many computer centers offer

multiple paper types. Usually they are referenced

by a special code. This special should take multiple

arguments, and the driver should map to a paper

type code for the particular site. At a center where

the users are familiar with the codes, the argument

would be the code itself. At other places. users

might specify green cardstock. and the driver

would substitute the proper code (if. that is. the

driver is told to go ahead and print the file). Yote

that there should be a way to specify which type

of paper should be put into which input tray, for

printers with multiple trays.

Tray selection: Many printers now have multi-

ple paper input trays. The Xerox 9700 has two. the

D E c Printserver 40 has three. and even the Apple

LaserVCTriter has two (if you count the manual feed).

I t is extremely convenient to be able to specify that.

for instance, the cover and chapter dividers should

be pulled from tray 2. so that no hand collating is

necessary. This is obviously printer-dependent.

Other optzons: The direct printing features

demonstrate the need for extensibility. Some print-

ing centers may offer binding. Should there be

a special to control binding? Xerox' Interpress

page-description language [21] has facilities to spec-

ify binding. cutting. etc. The Adobe S y s t e m s

D o c u m e n t Structurzng Conventzons [l] also define

notations which control such things. It should be

clear that a t this time it is extremely unlikely that

all possibilities can be anticipated.

Page selection and ordering. This will be a

very difficult set of specials to design. Even simple

sorting is a sticky problem. Is page zero odd or

even? Positive or negative? Should there be a

special to control that? When more sophisticated

capabilities are desired, there are even more issues

to consider. These options would be most useful on

the command line, but they would also be useful as

specials.

Sort keys: At the beginning of every page, the

values of \count0 through \count9 are included in

the DVI file. It would be very convenient to be able

to specify which of these values would be used as

the primary sort key. which would be the secondary

sort key, etc. In this way, page order could be

controlled explicitly.

Sorting of pages should be allowed using all

ten of the \count registers as well as at least one

special register. One special register is defined as

the pages are being scanned in the DVI file. Its

value is the sequential number of the page in the DVI

file. the first being 1, the second being 2. etc. The

backpointers in the DVI file could still be used to skip

around in the file if this register was not going to

be used for sorting. Some mechanism for handling

duplicate page numbers would be necessary; ideally

a document would not have any duplicates.

As an example of how different sort fields might

be used. consider a document with the page number

made up a5 follows:

\count0 is the current chapter number:

\count1 is the current section number within

the chapter;

\count2 is the page number within the current

section and chapter:

\count3 is used for any inserted pages.

The pages for this document need to be sorted

by all four of those registers, with \count0 as the

most significant sort key. It is important to note,

however. that the significance of the registers should

be variable. Also. we might not always want to

sort groups of pages with negative sort keys by the

absolute value of the key. It might even be desirable

to sort in descending order. especially for printers

that stack their output face-up.

Page parzty: Page parity controls whether or

not a page should be placed on the front or back of

a sheet when printing on both sides of a page. (We

will refer to such printing as "duplex" printing. and

to printing on one side of the page as "simplex"

printing.) In the simplest case. odd page numbers

will go on the front. and even page numbers will go

TUGboat, Volume 8 (1987), No. 3

on the back. Readers of Japanese or Hebrew may

feel differently, however.

Determining the "parity" of a page is fairly

easy if only one \count register is used to give the

page number: the parity is simply the parity of the

\count register (with provisions for the value zero

and right-to-left languages). However, when more

than one \count register is used, the problem is

more complex.

Again, consider the sample document in the

previous section. Four \count registers are used

to contain the page number. Chapter and section

numbers have little to do with which side of the

sheet a page should print on. Therefore, \count0

and \count1 should be ignored in determining page

parity. But this still leaves \count2 and \count%

The actual parity of the page should be based on

the sum of these two registers. This is because page

1.2.2 should fall on the back of a sheet (with page

1.2.1 on the front) while page 1.2.2.1 falls on the

front of the next sheet. Similarly, page 1.2.3 goes on

the front and page 1.2.3.1 should be printed on the

back of the same sheet. A special to control parity

should be able to make use of the same registers

used for sorting.

Page pairing: Another aspect of page parity

is choosing which two pages should be placed on

opposite sides of the same sheet. This determination

is made by selecting pages from the sorted page list.

The algorithm takes one or two pages from the page

list and defines the page or pages to be placed on a

single sheet. As long as the page numbers remain

consecutive, this is not a big problem, but it can

get sticky. Should page six fall on the back of page

one if it occurs next in the final sort order?

Version numbers: Imagine a user documenta-

tion division of a computer corporation. They

might have files called usermanualV1. tex and

usermanualV1--1. tex. They contain version 1

and version 1-1 of the usermanual, respectively.

The first should take care of itself, but the second

might pose some problems. The group uses macros

to mark changes that are inserted. Those macros

use some plotting specials to insert changebars into

the text, but that is not our concern right now. Two

different kinds of behavior will be desired from that

file. The entire version 1-1 manual will need to be

printed for distribution to new customers, but only

the changed pages will be needed for distribution to

old customers as updates. Those pages should be

marked somehow by a special. One possibility is to

allocate a count register (say, \count9) as a change

flag, and have a global special and command-line

option which instructs the driver to print the page

only if that register has a certain value. The

register to use should not be hard-coded into the

special. Perhaps a dontprint special could be used

in conjunction with the aforementioned i f else

pair. Note that for duplex printing the driver will

have to also print the page on the other side of

the sheet, even if that page was not changed. The

nature of this special makes it easier if it occurs

immediately after the beginning of the document.

Page manipulation. These specials are for de-

scribing the page to the driver, moving it around,

etc. These are good candidates for global treat-

ment.

Page size: This special would be used to define

the size of the sheet of paper to the driver. Many

printers are equipped to handle multiple sizes of

paper, so that should be settable via a special. A

default setting should be defined in a configuration

file, so that users in Europe can use A4 settings, for

example.

Imposition options: This is used to place

multiple pages on a single sheet which can later

be folded or cut to make a booklet. This special

needs to be very general; for example, in magazine

production, eight pages are placed on each plate, so

that each sheet coming off the press contains sixteen

pages (eight on each side). This large sheet is then

folded in a weird way, stapled with zero or more

similar assemblies, and trimmed to make the final

magazine [13]. The imposition special should allow

specification of the number of pages per sheet, their

placements on the sheet, and their orientations.

Note that scaling should not be the responsibility

of the driver; it is the user's responsibility to make

the pages the correct size and to set the margins.

Note also that the sort order might be different

depending on whether the sheets are to be folded

together or cut, punched, and put into a binder.

Overprinting: It might be very useful to provide

for superimposing two pages, one on top of the

other. This would be an easy way to produce a

portrait page (with portrait headline and footline)

containing a landscape table. It should probably

not be a separate special, though. If a special to

include a page from another DVI file is implemented,

it should be general enough to permit including

another page from the same DVI file onto the

current page. The translation special could be used

for positioning.

Full-page orientation: Although the rotation

special we mentioned above is general enough to

298 TUGboat, Volume 8 (19871, No. 3

rotate an entire page, a special which is devoted to the spline-drawing facility. but there are some good

rotating the entire page might be worthwhile. It reasons not to. First, computation of the shapes

would be much easier to use as a global special. will be faster if there is a special facility devoted

The same applies for a full-page translation special. to them. Second, there are special techniques for

for margin adjustment. digitizing straight lines which do not work as well

Plotting. users really need some sort of

simple plotting interface. Using a separate graphics

package to create simple pictures or graphs and

then including them in the document is often

too difficult. A simple plotting interface would ease

this difficulty, and allow users to produce figures

like those produced so easily with the pzc. grap.
and c h e m preprocessors for troff [6][19]. Plot-

ting functions would also make more suitable

for special applications such as music typesetting

[10][ll]. (Incidentally. anyone not familiar with
grap [7][8] should take a little time to study it: it

is a fantastic example of a well-designed little pack-

age. It is elegant. very easy to use. has reasonable

default behavior. and can be persuaded to do some

fantastic things.)

Poznt definztzon: This idea came from drivers

produced by ArborText. We saw it in a driver for

the DEC LN03, written by Flavio Rose. The driver

maintains an array of point coordinates (initially

all zero). A special is used to define one of those

points at the current location. That point can later

be used as the location of a dot or the end of a

line. The great thing about this is that it allows

the position of a point on a page to be located

by m ' s formatting (which is very difficult to do

without some sort of special), and that location can

then be used on other pages. Admittedly, no great

application for this is immediately obvious, but it

does seem useful, and it is so difficult to do with just

and the other specials that this special seems

worthwhile. It also violates the implicit restriction

on specials affecting other pages. but it is a simple

fact that sometimes we will need just that (see

Global speczals. above).

Splznes: This special would be used to specify

an arbitrary curve between two points (which can

be explicit coordinates. offsets, or points defined

by the pomtdef special). One should be able to

specify a curve from the current point to another,

and also between two arbitrary points. The shape

of the curve should be determined by two control

points. Specials to define line thickness and cap

shape should also be available.

Geometr ic shapes: For ease of implementation,

it might be desirable to supply straight lines, circles,

and other common shapes just as special cases of

for curved lines. Offering a separate special for

straight lines will permit special handling.

Fzlling: This should be restricted t o filling with

a solid color. Any filling which requires a complex

pattern should be done as a separate graphic which

would be included. Some way of defining a closed

path will be necessary, as will a convention for

handling what METAFONT calls "strange paths"

[14l.

Miscellaneous specials. As one might expect.

there are some specials which do not fit easily into

categories.

Communzcatzon wzth the user: Just as m Y

has the \message command. it might be desirable

for the DVI driver to have a message special.

In addition. drivers should optionally warn users

of unrecognized specials instead of ignoring them.

There should be a special to invoke that option.

It would be reasonable to make that special the

only one which m u s t be supported by a conforming

driver.

Job loggzng: Several drivers keep logs in much

the same fashion as B X does. It might be advisable

to offer specials to control this. Logging could be

enabled or disabled via a special. In addition.

one could specify whether the driver would keep a

separate log or append to the log file.

Lzteral c o m m a n d s (\special{special)): For

many printers. passing literal commands straight

through makes no sense; the effect would be entirely

unpredictable. For some printers, it would be

possible, though. The wisdom of providing such a

special is debatable (especially if the other specials

offer a great deal of functionality). but it should

be considered. Kote that this is the most device-

dependent of all specials.

DVI format: There is already a t least one

extension to mY which makes use of some of the

unused commands in the DVI format: the TeX-XeT

processor described in [17]. Perhaps such extensions

should use a different DVI identification byte. but

it is also conceivable that those variations could

be identified by a special. Either way, a single

driver could support multiple extensions to m.
Incidentally. the authors prefer using the DVI id

byte for this.

TUGboat, Volume 8 (1987), No. 3

Accessing specials from TEX

Specials should be generated by macros whenever

possible. Users should not have to learn to use

another user interface; they should just have a few

new macros. \landscape could be a macro meaning

that the current page should be rotated about the

origin and then translated by pageheight - 2 inches

in the -h direction. This would simplify the user

interface greatly.

Some extra macros would also simplify the

g loba l problem slightly. \everybop and \everyeop

token-list registers could be defined which would be

placed by the output routine at the beginning and

ending of every page. Also, a \g loba lspec ia l

register could be used. If this register was defined

before the first \ e j ec t , the output routine would

ensure that the contents occurred first on the very

first page, before any set or put commands. This

would require only trivial modification to the output

routines, and the benefits would be enormous.

Handling device-dependence

As much as we try to avoid it, some specials are

going to be device-dependent. This is a hazard

of using specials. The trauma could be reduced,

however. METAFONT has a nice little feature in

its ability to handle "modes" [14]; different modes

for different printers. Such a facility could be

implemented in TEX with macros. It would rarely

be used, but it would help with certain device-

dependent specials. Typing \modeCX9700) would

define certain special-generating macros to fit the

device. Modes would be defined in a l o c a l . t ex

file, just as METAFONT1s modes are usually defined

in a 1ocal.mf file. This would greatly simplify the

process of producing proof copy on one device and

then moving to another device for the final output.

Note that it may be advisable to name the modes

after the specific driver rather than the printer.

Miscellaneous recommendations for driver

behavior

Robert MCGaffey's article, "The Ideal TEX Driver"

[18], offers some excellent recommendations for the

behavior of DVI drivers. Some of his suggestions

(those regarding the handling of missing fonts) are

also good candidates for handling with specials. We

would like to offer some additional recommenda-

tions.

a The driver should be able to read a config-

uration file on startup, so that the user can

include certain default options there. MCGaffey

mentions this, but the idea is important enough

to merit discussion here as well. Possibly a

system-wide configuration file should be read

first, and then the user's. This might be one

soIution to the problem of global specials.

a The driver should also be able to look at

certain environment variables defined by the

user. Where the authors work, default paper

type and destination are set in this way.

Where there is complex logic (such as sorting

logic), it is inevitable that a situation will

surface where that logic is inappropriate. The

driver should provide an option to turn off that

complex logic and go back to the brute force

method.

0 In the configuration file or an environment

variable. the user should be able to specify a

"path" for the location of TFM and bitmap files,

so that personal METAFONT-generated fonts

can be used with ease. This mechanism should

be able to deal with the various complicated

and contradictory conventions for naming and

storing such files. The authors are working on a

mechanism for a driver driver which apparently

will permit such specification in a very general

way.

There is naturally some confusion about how

to handle the Postscript fonts and their ability

to be scaled. TFM files for those fonts should

probably be generated assuming a default size

of 10 points, to be consistent with standard

W assumptions.

When dealing with Postscript (and in particu-

lar Postscript fonts). one should remember that

the PostScript "point" (before any transforma-

tions have been applied to the user space) is

equivalent to the TEX "big point" [4][16]. This

distinction is important. When a user requests

Palatino-Roman at 10pt. the driver should pro-

duce Palatino-Roman at 10 m points. Some

fonts are special cases; Sonata was designed

with the convention that the point size would

be equal to the distance between the center-

lines of the top and bottom lines of the staff

character [5] . This convention should be main-

tained. The important thing is that the size of

a "point" within a file should always be

consistent.

TUGboat, Volume 8 (1987), No. 3

Accessing specials from

Specials should be generated by macros whenever

possible. Users should not have to learn to use

another user interface; they should just have a few

new macros. \ landscape could be a macro meaning

that the current page should be rotated about the

origin and then translated by pagehezght - 2 znches

in the -h direction. This would simplify the user

interface greatly.

Some extra macros would also simplify the

g loba l problem slightly. \everybop and \everyeop

token-list registers could be defined which would be

placed by the output routine at the beginning and

ending of every page. Also, a \g loba lspec ia l

register could be used. If this register was defined

before the first \ e j e c t , the output routine would

ensure that the contents occurred first on the very

first page, before any set or put comniands. This

would require only trivial modification to the output

routines. and the benefits would be enormous.

Handling device-dependence

As much as we try to avoid it. some specials are

going to be device-dependent. This is a hazard

of using specials. The trauma could be reduced.

however. METRFONT has a nice little feature in

its ability to handle "modes" [14]: different modes

for different printers. Such a facility could be

implemented in with macros. It would rarely

be used. but it would help with certain device-

dependent specials. Typing \rnodeCX97OO) would

define certain special-generating macros to fit the

device. Modes would be defined in a l o c a l . t e x

file. just as METAFONT's modes are usually defined

in a l oc a l . m f file. This would greatly simplify the

process of producing proof copy on one device and

then moving to another device for the final output.

Note that it may be advisable to name the modes

after the specific driver rather than the printer.

Miscellaneous recommendations for driver

behavior

Robert McGaffey 's article. ,&The Ideal mY Driver"

[18]. offers some excellent reconirriendations for the

behavior of D ~ I drivers. Some of his suggestions

(those regarding the handling of missing fonts) are

also good candidates for handling with specials. We

would like to offer some additional recornrnenda-

tions.

to merit discussion here as well. Possibly a

system-wide configuration file should be read

first, and then the user's. This might be one

solution to the problem of global specials.

The driver should also be able to look at

certain environment variables defined by the

user. Where the authors work. default paper

type and destination are set in this way.

Where there is complex logic (such as sorting

logic). it is inevitable that a situation will

surface where that logic is inappropriate. The

driver should provide an option to turn off that

complex logic and go back to the brute force

method.

In the configuration file or an environment

variable, the user should be able to specify a

'.path" for the location of TFM and bitmap files,

so that personal METAFONT-generated fonts

can be used with ease. This mechanism should

be able to deal with the various complicated

and contradictory conventions for naming and

storing such files. The authors are working on a

mechanism for a driver driver which apparently

will permit such specification in a very general

way.

There is naturally some confusion about how

to handle the PostScript fonts and their ability

to be scaled. TFM files for those fonts should

probably be generated assuming a default size

of 10 points, to be consistent with standard

TEX assumptions.

0 When dealing with PostScript (and in particu-

lar PostScript fonts), one should remember that

the PostScript "point" (before any transforma-

tions have been applied to the user space) is

equivalent to the "big point" [4] [16]. This

distinction is important. When a user requests

Palatino-Roman at 10pt. the driver should pro-

duce Palatino-Roman at 10 TJ$ points. Some

fonts are special cases; Sonata was designed

with the convention that the point size would

be equal to the distance between the center-

lines of the top and bottom lines of the staff

character [5] . This convention should be main-

tained. The important thing is that the size of

a "point" within a file should always be

consistent.

The driver should be able to read a config-

uration file on startup, so that the user can

include certain default options there. McGaffey

mentions this, but the idea is important enough

TUGboat, Volume 8 (1987), No. 3

Conclusion

While the usefulness of special commands is beyond

doubt, the subject is extemely complex. If a driver

attempts to provide a versatile command set, there

are many difficult problems which must be resolved.

With careful thought and planning, however. it

seems certain that a powerful, useful standard set

of specials can be devised, and hopefully with TUG'S

sanction it will be used in most available DVI drivers.

Bibliography

Adobe Systems Incorporated. ..Adobe Systems

Document Structuring Conventions. Version

2.0." Palo Alto. California, January 31. 1987.

Manuscript.

Adobe Systems Incorporated. Colophon4. May

1987.

Adobe Systems Incorporated. "Encapsulated

Postscript File Format, Version 2.0." Palo

Alto. California. March 12, 1987. Manuscript.

Adobe Systems Incorporated. PostScrzpt Lan-
guage Reference Manual. Reading. Massachu-

setts: Addison-Wesley, 1985.

Adobe Systems Incorporated. "Sonata Techni-

cal Design Specification." Palo Alto, California.

January 30, 1987. Manuscript.

Batchelder, N., and T. Darrell. "Bringing troff

up to Speed." Unzx Reuzew 5 (July 1987):

45-51.

Bentley, Jon L. "Little Languages." Communz-
catzons of the A C M 2 9 (August 1986): 711-721.

Bentley, Jon L.. and Brian W. Kernighan

"GRAP-A Language for Typesetting Graphs.''

Communzcatzons of the ACM 29 (August

1986): 782-792.

Foley. J. D., and A. Van Dam. Fundamentals
of Interactwe Computer Graphzcs. Reading.

Massachusetts: Addison-Wesley, 1982.

Gourlay. John S. "A Language for Music Print-

ing." Communzcatzons of the ACM 29 (May

1986): 388-401.

Gourlay. John S.. Allen Parrish. Dean K.

Roush, F. Javier Sola. and Yiling Tien. Com-
puter Formattzng of Muszc. Technical Report

0%-CISRC-2187-TR3, Ohio State Univer-

sity. 1986.

Hosek, Don. "Proposed DVI \ spec la1 com-

mand standard." Harvey Mudd College: Clare-

mont. California. August 6. 1987. Manuscript.

Kim, Scott. L'The Three-Fold Way." Fublzsh 2
(June 1987): 124.

Knuth, Donald E. The METRFONT~OO~. Read-

ing. Massachusetts: Addison-Wesley, 1986.

1151 Knuth, Donald E. TJj$: The Program. Reading.

Massachusetts: Addison-Wesley, 1986.

[16] Knuth, Donald E. The W b o o k . Reading. Mas-

sachusetts: Addison-Wesley. 1984.

[17] Knuth. Donald E., and Pierre MacKay. "Mix-

ing right-to-left texts with left-to-right texts."

TUGboat 8 (April 1987): 14-25.

[18] MCGaffey, Robert W. "The Ideal Driver."

TUGboat 8 (July 1987): 161-163.

1191 MCGilton, Henry, and Bill Tuthill. "Progress

Through Accretion." Unzx Revzew 5 (July

1987): 36-41.

[20] Reid. Thomas J . "TEXROX Installation and

Theory of Operation." College Station. Texas.

In preparation.

[21] Sproull. Robert F., and Brian K. Reid. Intro-
ductzon to Interpress. El Segundo. California:

Xerox Corporation. 1984.

