
102 TUGboat, Volume 8 (1987), No. 2

higher rates. To explore this possibility, I analyzed

data on the 15 investigators who submitted five

or more abstracts each and who used both typing

methods. In this subgroup, 19 of 55 regularly typed

abstracts were accepted (34.5 percent), whereas 31

of 53 of the "typeset" abstracts were accepted (58.5

percent) (P = 0.015).
These results demonstrate that the new "type-

set" appearance of data increases the chance of

acceptance. It may mean that "typeset" print-

ing may cause the data to look more impressive.

Alternatively, it may mean that the new printing

makes it easier for reviewers to read the data and

to appreciate its meaning.

Most important, it means that this technologi-

cal innovation reduces the chance of success of those
not currently using it.

GIDEON KOREN, M.D.
Hospital for Sick Children

Toronto, ON M5G 1x8, Canada

Portuguese Hyphenation Table for 'l&X

Pedro J. de Rezende

Northeastern University

I have compiled a Portuguese hyphenation table for

m. It turns out to be a rather short table (com-
pared to the one for English) because Portuguese

has very concise rules for hyphenation. I'd like to

make this table public and freely distributed. Even
included in the distribution tapes. I have exten-

sively tested it (with patgen) and haven't found any

erroneous hyphenation. It does miss some hyphens

but they are very, very few. It certainly does not

hyphenate a word beyond an accent or a cedilla, but

that's the way TEX handles hyphenation of words

with intervening macros (see Appendix H of The

W b o o k) .

Editor's note: Arrangements are being made to

include the Portuguese hyphenation table in the

standard distribution. Hyphenation tables for lan-

guages other than English are frequently requested
on m h a x ; anyone who knows of the existence of

such tables is asked to send the relevant information

to Barbara Beeton, so that a list can be compiled

for the next issue of TUGboat.

Software

Tlb: a Reference Setting Package, Update

J. C. Alexander

University of Maryland
A (Hopefully) Final Extension

of Multilingual

There have been a number of minor bug fixes and Michael J. Ferguson

some refining of features of the bibliography INRS-T616communications

setter %b (see TUGboat vol. 7, no. 3, for an article Montrkal, Canada

about %b). Its version number has been incre-
mented. Those people who asked to be put on my

mailing list have been sent all the changes. How-
ever, I know from mail that there are a number of

other users, presumably people who picked it up via

anonymous ftp. Those people might want to check

the file CHANGES and/or READ. ME via anonymous ftp

from eneevax : pub/t ib . Incidentally, I appreciate
the kind comments and suggestions people have

made. It seems Tlb is proving to be a useful adjunct
to m.

This note reports the, hopefully, final extension

to m that allows for multilingual hyphenation

reported in July 1985 (Vol. 6, No. 2, pp. 57-58)
and March 1986 (Vol. 7, No. 1, page 16) of

TUGboat. The key feature of the extension is that

it accommodates standard 'l&X fonts, including
words with accented letters. For details of the

features the reader should refer to the July 1985

TUGboat. This note reports some recent extensions

to accommodate certain typographical and input

conventions in non-English text. These extensions

are as follows:

TUGboat, Volume 8 (1987), No. 2 103

0 will now hyphenate words that have an

explicit \discret ionary. Each part of the

word including the discretionary is treated

as a separate word for hyphenation purposes.

This allows for the hyphenation of words such
as "Wechselstromwecker" where the "ck" is

represented by \discretionary(k-3Ik)Cck).
The hyphens then given by \showhyphens are

"Wech-sel-stromwek-kern .
The discretionary hyphen approach also allows
for the suppression of an unwanted ligature.

This can be done by inserting a discretionary

hyphen in the appropriate place. Thus the

unwanted ligature in "auffrischen" is defeated

with the insertion of \- after the first "f" to
give "auffrischen". Note that the solution to

exercise 5.1 in early editions of the TfjXbook is
incorrect as it will not survive a second pass of

a paragraph. The second hyphen after the "i"
remains with the extension.

The extension is invoked by making the in-

teger parameter \dischyph non-zero. Thus

\dischyph=l will allow, on a paragraph-by-

paragraph basis, hyphenation of words that

have an embedded \discret ionary. Note that
by using an empty discretionary, a break is

allowed without inserting a hyphen character.

Two new integer parameters, \s tar thyph and

\stophyph, have been defined. These allow
the number of characters at the beginning and

end of words that suppress hyphenation to be

modified. The defaults are 2 and 3 respectively
as in standard m. The minimum length of
a word to be hyphenated is the sum of these

two values. If necessary, a third independent

integer parameter that specifies the minimum

length of a hyphenated word could be added.

In order to handle special keyboards with ex-

tended characters encoded outside the standard

ASCII set, all characters with codes outside this
set have been declared permanently active.

This means that both the single character

and the single character command may be

separately defined. This would allow special

discretionary sequences for various languages
to be input easily.

This extensicn has been in use on the VT-
200 series of terminals by Digital and will

work equally well for IBM-PCs. Since this

modification takes effect at m ' s mouth, the

extended characters never make it "inside".

This means that they should not be used

in definitions. For example if ii is one of

these extended characters, then the definition

\Hiihn((text)) actually defines \H and not the

entire \Hiihn. Interestingly enough, TEX will

not complain. It just sticks the rest into the
parameter argument.

Hopefully these extensions will be suitable for

most other languages - either independently or to-

gether - assuming that the appropriate patterns

and exceptions exist.

Report on m: A Japanese

Yasuki Saito

NTT Electrical Communications Laboratories

Japan

This is a short report of the current status of
Japanese m, called m. I do not try to give

a detailed description of every nook and cranny.

Instead, I will concentrate on giving the overview

of what I have done to make T&$ typeset Japanese

text as well as English.

Example

First of all, look at the example input file and
the corresponding output generated by $QX in

Appendix 1. (The input file listing was generated

using the J U W verbatim mode.) It is an excerpt

from a famous textbook on analysis written by Teiji
Takagi. is an upward compatible extension of
?jEX and everything in is at your disposal. So

you will find familiar control sequences in the input

file. The only difference is of course that there are
lots of Japanese characters in it! Actually, from

the user's point of view, the fact that he can enter

Japanese characters into the input file is the main

difference although he must learn a few new control

sequences to select fonts and to control spacing.

Two major problems

Many people think that it is difficult to make
Japanese m, but it is not so. There were two

problems to be solved in making m. One was to

make m ' s input mouth a little bit wider so that it

can swallow Japanese characters. The second, and

more serious problem, was to prepare the fonts for

more than 6000 Japanese characters.

TUGboat, Volume 8 (1987). No. 2

Knuth suggests a way to extend w to oriental

languages in "'I&$: The Program". page 57. His

suggestion is to extend the data structure for a

character so that w can handle more fonts each

having more characters in it. I chose not to

extend the data structure nor the font file format

for various reasons. A GF file with information

for 6000 Japanese characters in it is just too

large to maintain. Another reason is that if you

stick to the original data structure you can make

modifications minimum. And with the ordinary
font file format you can use various utility programs

without modification.

Thus I divided Japanese characters into 33
subfonts each having at most 256 characters.

can handle maximum of 256 fonts at a time, and

reserving 33 fonts for a single Japanese font may

seem to be extravagant. However in actual use, one

rarely uses all 6000 characters. A statistic says that

the most frequent 2000 characters will cover 99% of

ordinary Japanese text, so the actual requirements
are much less than 33 subfonts.

Once decided on the font configuration, it is

straightforward t o modify w. w ' s input mouth

is extended to eat Japanese characters and send an

appropriate (subfont, character number) pair to its

stomach. After that, doesn't notice that it is
actually handling Japanese characters!

As for the preparation of Japanese fonts, I
didn't use METAFONT. Considering the amount

of effort Knuth has spent to generate Computer

Modern Typefaces, it would be a five- to ten-year

project to devise a good METAFONT definition for

all the Japanese characters. Although it will be

necessary in the future, I am just content with
available dot fonts for the time being and generated
necessary font files from them directly.

Japanese character set

Before explaining the division of the Japanese

character set into subfonts, it is necessary to

explain what we have first. JIS (Japanese In-

dustry Standard) C-6226 defines a "Code of the
Japanese Graphic Character Set for Information In-

terchange". Here in Japan, we usually use this code

(referred to as "JIS code" for short) to represent

Japanese characters. It contains 6877 characters
in total and uses two 7-bit bytes to represent a

single character. These two bytes are called "ku"
and "ten" in Japanese or simply "first byte" and

"second byte". These bytes are taken from the
non-control character part of the ASCII character

set. Thus you can use ASCII control characters
such as Tab, Carriage Return and Line Feed within

a sequence of two-byte codes. See the table in

Appendix 2 (This table is typeset by m). In

this 94 by 94 table, each Japanese character is

positioned at the intersection point of first byte row

and second byte column. Each byte is represented

by corresponding ASCII character in the outermost

column and row. Hexadecimal representation of

each byte and "ku", "ten" numbers are added for

convenience. All characters are grouped into natu-

ral categories

refer to a set

byte):

1-ku & 2-ku

3- ku
4-ku

5-ku

6-ku

7-ku

8-ku

16, ..., 47-ku

48, ..., 84-ku

Here the

levels is very

as follows (we use the word "ku" to

of characters having the same first

symbols
numerals & roman alphabets

hiragana (phonetic symbols)

katakana (phonetic symbols used to

represent foreign words)

greek alphabets

russian alphabets

line segments

2965 first level kanji ordered accord-
ing to their representative reading

3388 second level kanji ordered by

radicals and number of strokes

separat,ion of the kanji set into two

important. The first level contains

most frequently used kanji while the second level

kanji are rarely used. A normal Japanese sentence

consists of kanji, hiragana, katakana and some

punctuation symbols. But you can freely mix

foreign alphabets within a Japanese sentence, and
we do write such a mixture from time to time. so

various foreign alphabets are also included in this

table.

There are several ways to represent a file with

both ASCII and JIS characters in it. If your

machine uses an 8-bit byte to represent an ASCII

character, simply turning the most significant bit

on for all two-byte codes enables you to distinguish

ASCII and JIS code easily. This is used in VAX
Kanji Code. Some Japanese word processors use

so called Shift JIS code which also uses two 8-bit

bytes. However the most widely used internal

representation is to use escape sequences. JIS

codes are simply represented by a sequence of two

7-bit bytes and a sequence of them are sandwiched

between three-byte escape sequences ("<esc>$Qn or

' L < e ~ ~ > $ B ' l to start and "<esc> (J" or "<esc> (B" to

end.)
These various formats are easily interchange-

able. So assumes that its input file is a

sequence of 7-bit ASCII codes with JIS code parts

surrounded by escape sequences.

TUGboat, Volume 8 (1987), No. 2

Division into subfonts

The Japanese character set described in the previous

section is divided into the following 33 subfonts.

This division naturally corresponds to the categories

mentioned above. The control sequence name for

each subfont is used to refer to the individual

characters in each subfont. Usually a user is not

aware of the existence of subfonts, but if he wishes,

he can specify. say. the second character in 4-ku. by

"{\ jh i ra \char2In .

\ ~ S Y

\ jroma

\ j h i r a

\ j k a t a

\ jgreek

\ j r u s s i a n

\ j keisen

\ j a , ..., \ j l

\jm, \ j z

1-ku & 2-ku (symbols)

3-ku (numerals & roman alphabets)

4-ku (hiragana)

5- ku (kat akana)

6-ku (greek alphabets)
7-ku (russian alphabets)

8-ku (line segments)

16-ku,.. .,47-ku (first level kanji)

48-ku ,..., 84-ku (second level kanji)

In each subfont, a character code corresponds

to "ten" number except in kanji subfonts. 26

kanji subfonts (\ j a , \ jb ,..., \ jz) all have 256 kanji

characters in them except \ j 1 and \ j z . Kanji in
each level are densely packed into 256 character

positions of each subfont in their order. So the
last subfont in level 1 (\ j l) has only 49 (=
2965 - 256 x 11) kanji and the last one in level 2

(\ j z) has only 60 (= 3388 - 256 x 13). Appendix 3

shows the font tables for several subfonts generated

by $QX and the ordinary t e s t f o n t . t ex . Note

that these control sequences are generic, i.e. these

subfont selectors are assigned the actual subfont

by a single control sequence defined in j p l a i n . t e x

(plain file for m, see below).

Font selection

provides several different fonts for Japanese

and j p l a i n . t e x defines useful font selectors which
switch all the necessary subfonts at once. For exam-

ple, a default font is selected by a following control
sequence (\ j s t d) in j p l a i n . t e x (This definition is

simplified a little):

\ font \djsystd=dnpjsy38

\ fon t \d jh i ras td=dnpjh i ra38

\ fon t \ d j k a t astd=dnp jkat a38

\ font \ d j astd=dnp j ka38

\ j f on t \d j bstd=dnpjkb38 dnpjka38

\ j f on t \d j cstd=dnpjkc38 dnpjka38

\def \ j s td{ \ le t \ j sy=\d jsys td

\ l e t \ j h i r a = \ d j h i r a s t d

\ l e t \ j kata=\dj ka tas td

\ l e t \ j a= \d jas td \ l e t \ j b= \d jb s td

\ l e t \ j k= \d jk s td \ l e t \ j l = \ d j l s t d

\baselineskip=18pt

\j intercharskip=O.Opt plus0.08pt

\ jspaceskip=9.l542pt %38dots on 300dpi

\jasciikanjiskip=l.66667pt

plus0.83333pt minus0.55556pt)

Note that only 15 subfonts (corresponding to

\ j s y , \ j h i r a , \ jka ta , \ j a , ..., \ j l) are preloaded
and switched by this command. Users must specify

each subfont separately if they want t,o use foreign

alphabets or level 2 kanji. However it is much

better to use m y ' s fonts for roman, greek and even

russian alphabets in normal application. So we

encourage people to use w ' s fonts instead of JIS

foreign alphabets. \ j smal l used in the example

input file of Appendix 1 is another example of a

font selector.
The control sequence \ jf ont is introduced to

save ~ T m ' s memory space for font information.

Most kanji subfonts have identical TFM file and the

use of this command:

\jfont\fontname=fontfilel f o n t f i l e 2

enables to load f o n t f i l e l as \fontname using

the already loaded font information for f ontf i l e 2 .

Thus it does not consume any font space at all.

Modification to w ' s input mouth

Now we can state the task of m ' s input mouth

clearly. Treat every character in the input file as

does except for JIS codes surrounded by escape

sequences. For those two-byte codes. deceive

as if it has seen the corresponding subfont selector

and an appropriate \char command. For example,

if you have the following line in the input file:

. . . <esc>$@$3$1$0FIK\81G9!#<esc>(J . . .
it should be seen as if they were:

. . . {\j hira\charl9\char76\char47)%

{\ji\charlll){\jk\char37){\jd\char59)%

{\ jhira\char39\char25}C\jsy\3). . .
(Try to decipher it using the font table in Ap-
pendix 2.) There is a little lie in this description.

jl&X performs two other things to ensure the

proper treatment of Japanese text. First, it inserts . . .
\ j f on t \ d j kstd=dnpj kk38 dnpj ka38 \ j i n t e r cha r sk ip between every pair of Japanese

\ fon t \d j l s td=dnpjk l38
characters. Secondly, it inserts \ j asc i i kan j i s k i p

between an ASCII character and a Japanese one.

106 TUGboat, Volume 8 (1987), No. 2

For the normal setting of these glues in j p l a in . t ex ,

see the excerpt in the previous section.
The first glue ensures that Japanese sentences

can break at any point except "Kinsoku Shori"

explained below. And if it is necessary, this glue
can stretch a bit to enable right justification. The

second glue puts an appropriate amount of space
between an English word and a Japanese character.

The internal data structure for tokens is also

extended, but I do not describe it here.

Kinsoku Shori

Normal Japanese sentences can break at any point

as I stated above. But there are exceptions. These

exceptions are called "Kinsoku" in Japanese and

the proper treatment of "Kinsoku" is "Kinsoku

Shori". Certain characters cannot appear at the

beginning of a line (such as close parenthesis and

comma) and certain other characters (such as open
parenthesis) cannot happen at the end of a line.

These conditions are naturally met in m if you

write these characters next to or just before the

neighboring character without inserting space. But

in m, glues are put into every gap between
Japanese characters so you need to get rid of this

extra glue between a "Kinsoku" character and its

neighbor.

Spacing

Although the number of characters are many. the

saving feature of Japanese characters is that they
all have the same width and height. There is no

kerning, no ligatures, so typesetting is simpler than

English in a sense. But there are a few characters

you must pay attention to. They are punctuation

marks such as period and comma. We have
Japanese period "maru" (1-ku 3-ten) and Japanese

comma (1-ku 4-ten). For these characters rn
provides "Japanese space factor code" (j sf code)

whose function is similar to that of sfcode in w.
Whenever encounters a Japanese character,

this j s f code is used instead of sf code.

Carriage return is treated a little bit differently

in m . Single carriage return in JIS characters is

not equivalent to space. So no extra glue is inserted
there. But two or more consecutive carriage returns

has the same effect of ending a paragraph as in m.
ASCII space cannot appear among JIS characters

but Tab can appear because it is one of the control

characters. This Tab is simply dropped by JQX.
To put it in another words, single carriage return,
tab or nothing between Japanese characters are

all converted to \ j in te rcharskip by except
Kinsoku Shori.

JIS space (1-ku 1-ten, two byte code is "!!") is

treated as a normal Japanese character (although it
is invisible), so it gives you exactly one character-

wide space on output.

Generation of font files from dot fonts

For m and device drivers to work, we need two

kinds of font files: GF files and TFM files. I

generated them from dot fonts by a simple LISP
program.

For the first few months, I tried to gather as

many Japanese fonts in dot format as possible to
enhance m ' s Japanese fonts. There were not

many. but I have found two 24-dot fonts and two
32-dot fonts. One of the 24-dot fonts is part of

the JIS standard for dot printers and one can freely

copy and distribute it. In the beginning, there was

no other way, so I mechanically generated 36, 48

and 72-dot fonts from this JIS 24-dot font to satisfy

the need for larger fonts.
But recently we started collaboration with

DNP (Dai Wippon Printing Co., one of the biggest
printing companies in Japan), and they provide us
with fonts of various sizes. We found out that a

38-dot font goes well with m ' s standard 10 point

font, so we are preparing the fonts (both Mincho

style and Gothic style) with the following dot sizes:

These are for the 300 dpi printers, so if you change

the resolution you need different sizes as well.

Another important factor when generating

Japanese fonts from dot fonts is where to draw the

baseline. If you put a box surrounding a Japanese

character just on the baseline, non-uppercase ASCII

characters look sunk under the baseline. It is diffi-

cult to find the optimal point, but we experimentally

settled on the following solution. Place the baseline

one sixth of the box height above the bottom edge
of the box.

TUGboat, Volume 8 (1987), No. 2 107

Modification to device drivers

As I stated earlier, I tried to make the necessary

modification as small as possible. But you need

some modification to the device drivers if you want

to run the whole system efficiently.

For example, we are now using DEC2065 and

IMAGEN 8/300 and 3320 printers. A device driver

for this combination is known as DVIIMP. This

program loads all the information for a font when

it first encounters a new font. And this becomes a

great overhead if you use it on dvi files generated

by m. Japanese kanji are grouped into subfonts

only by code order and there is no "working set"

property ("use of one character in a font implies

the use of other characters in the same font for

a while") among them. So I modified this device

driver to load the font information of each character

one by one.

On UNIX machines (we use SUN-2 and SUN-

3). there is no device driver which directly uses

the GF file and most of them use old PXL files.

So Japanese fonts are converted to extended PXL

format (extended because it contains more than 128

characters, but the basic structure is the same). and

device drivers are modified to accept this extended

PXL formats.

I made a similar modification to the previewer

in X-window system (xdvi) and it is running on our

s u x s .

Restrictions

jl$J is quite general and can be used as widely as

itself. But there are still minor restrictions.

a You cannot use Japanese characters directly in

math mode. But you can always escape to
horizontal mode using \hbox. so this is not a

real restriction.

You cannot use Japanese characters in control

sequence names. But no one has ever wanted

to do that until now.

The number of Japanese fonts usable in a job is

limited. This limit is 17, because one Japanese

font preloaded by normally consists of 15

subfonts and allows a maximum of 256

fonts. If you use other fonts of TEX or level 2

kanji or JIS foreign alphabets besides normally

loaded Japanese fonts, you must be content

with fewer Japanese fonts. But for ordinary

purposes. this number is just enough. If you
try to typeset a really big dictionary. you may

reach this limit. But well before that you will

face the following restriction.

The IMAGEN print server we are using allows

only 3072 different characters per job. and only

653302 bytes for font information per job. This

is a real restriction for Japanese Tm. For

example, Appendix 1 (only 4 pages!) cannot be

output at once and you need to separate it into

individual pages.

A bit of history

There have been several attempts to use T&X to

format Japanese text. The first and pioneering work

was done by Fujita [I]. It was based on m 7 8 .

The modification of SAIL code together with the

improvements on output device was carried out to

make a usable system. I heard that it is still running

at his lab, but now it is obsolete.

Another one was reported by Sagashima and

Kawabata [2] at the second Japanese T&X Users

Group meeting. (For information on the Japanese

'l$X TJsers Group. see TUGboat vo1.7. no.3, p.192.)

They preprocess a file containing Japanese text to

feed it into W ' s mouth. I got hints from their

work. so this preprocess is similar to m ' s input

processing, but they literally converted Japanese

characters to font selector and \ cha r pair producing

an expanded intermediate file. They pointed out

various problems: inability to use more than two

Japanese fonts (they have been working with PXL
font files). incompatibility with T#'s magnification

sequence, to name a few.

After hearing their talk. I quickly realized that

you can dispense with the preprocessor if you use

the macro facility of TEX. So the first version

of was realized as a macro package without

changing TEX itself [3]. Although the quality of

fonts was not so good in the beginning. people were

amazed by the fact that TQX can typeset Japanese

with only about 500 lines of macros! I did the first

version just to see the feasibility of using T&X for

Japanese, but people around us started to use JTEX
as a daily tool and lots of them complained about

its inefficiency and poor font quality.

To improve the efficiency I internalized what

the macro does by modifying itself. The

number of changes required is not so great (about

40 change items are added to the change file)

and the result is superb! The current version

of processes a file with Japanese as fast as

original my. Also IPW, AM-mY etc. have

been extended just by preloading l p l a l n . t e x and

amstex. t e x into mX.
To improve the font quality. we have just

started collaboration with DNP (Dai Nippon Print-

ing Co.). They have their own high quality font in

TUGboat, Volume 8 (1987), No. 2

vector format, and. they kindly provide us with dot

format versions of various sizes. An example output

in Appendix 1 and sample font tables in Appendix

3 use these fonts from DNP.

Availability

jT@ is public domain software. It now works

on DEC2065 under TOPS-20 version 6.1 and on
various UNIX 4.2bsd systems. Several universities

have began to use it on their UNIX machines. If

you have a running TfjX with a decent device driver,
jT@ should work too without trouble. (You may

need to modify your driver a bit.)
Font files generated from the JIS 24-dot font

are also public and can be obtained from the author.

Several modified utility programs such as a

previewer are also available.

Future work

What is necessary for using 'I$$ to typeset Japanese

is almost completed with m. But there remain

many things to be done if you consider w as a

total typesetting system.

Some Japanese texts are written up to down.
And we need to support that. But this is

rather simple. Just rotate the font 90 degrees

counterclockwise and adjust the centerline of

each character if necessary.

We need to build a collection of macro packages

to facilitate the use of in various applica-

tions. Locally various forms are converted to

format, and several Japanese academic
societies show interest in using J~$J for the

publication of their journals. You may see the

emergence of J M S - r n in the near future.. . .
I t may be necessary to enlarge the number of

Japanese fonts usable in one document. This

is not so difficult. I could have done so if I

wished. and I am ready to do so if there are

sufficient demands.
Enhancement of Japanese fonts is really needed.

To define all Japanese characters in META-

FONT is a great challenge. And in the long

run, someone or a group of people. preferably

consisting of both font designers and computer

Acknowledgement

My thanks go to many people. Mr. Enari and

Mr. Ishii of DNP for providing us with the good dot

fonts in various sizes, Prof. Samuel for helping me to

modify DVIIMP and giving me useful information

on IMAGEN printers. Mr. Amamiya and Mr. Goto

who provided the machine environment in which
I can work, and many colleagues who used and

criticized and found bugs in early versions of ,=.
Finally I want to mention that without ''W:

The program" my endeavor to extend to

Japanese typesetting would have taken more time

than I could afford. It has been both fun and

exciting to read through the book seeking the best
solution for the problem. So my thanks also go to

Prof. Knuth.

References

[I] Hiroshi FLJITA: "Technical document type-

setting system: w' (in Japanese), Infor-

mation Processing, vo1.25. no.8, pp.848-853

(Aug. 1984).

[2] Masaaki NAGASHIMA and Youichi KAWA-

BATA: "Printing Japanese language using

W" (in Japanese), handout of the 2nd
Japanese Users Group meeting (Jul. 1986).

[3] Yasuki SAITO: "Japanese TEX" (in Japanese),

Working Group on Japanese Document Pro-

cessing 10-3. IPJSS (Jan. 1987).

-

scientists, must do it.

TUGboat, Volume 8 (1987), No. 2

Appendix 1 Sample Input file and O l ~ t p u t generted by JTEX

110 TUGboat, Volume 8 (1987). No. 2

TUGboat, Volume 8 (1987), No. 2

TUGboat, Volume 8 (1987), No. 2

TUGboat, Volume 8 (1987), No. 2

114

JIS Code Table (bottom right quarter)

TUGboat, Volume 8 (1987), No. 2

TUGboat, Volume 8 (1987), No. 2

Appendix 3 S a i n p l e Font Tnhle for severa l subfou t s

Test of ilnpjlilra.3S on 51ay 16, l!,S7 at 1254

116

Test of dripjka3S on May 16, 1987 at 1253

TUGboat, Volume 8 (1987), No. 2

