
TUGboat, Volume 8 (1987), No. 2

true and the meaning of \value is defined as the

attribute value.

Notice the macro \value: When it is passed

as an argument to \compareQwithQattribute it is

still undefined. In other words, we have the funny

case of a macro which- to some extent -defines

the arguments, that it receives, itself.

The two examples above show rather simple

applications of keyword parameters without great

practical value. They should primarily be regarded

as an explanation of the basic ideas how such macros

can be written. In practice further extensions may

be necessary. One extension may be the mixture

of positional and keyword parameters, another one

the definition of macros, where the keywords in the

argument list may have to be reordered before they

get interpreted.

The discussion on positional versus keyword

parameters has a long tradition in computer science

and common understanding is probably, that key-

word parameters are preferable to positional ones

in many cases. Also several document processing

systems, e. g. Reid's SCRIBE system (B. K. Reid:

SCRIBE -Introductory User's Manual, Unilogic

Ltd., Pittsburgh, 1980), make use of keyword pa-

rameters to some extent. (There are even a few

features in I4m which look like keyword parame-

ters though Lamport does not use this terminology.

See, for example, the options that can be given with

a \document style command.)

Using the concept of keywords parameters

can probably lead to macro packages with user

interfaces, which look quite different from existing

ones and might be preferred by many users. Maybe

even the writing of "bridgeware" macro packages

to other formatting languages. for example a macro

package that makes (at least certain classes of)

SCRIBE documents processable by 'QX, might

become easier.

When I first thought about keyword parameters

I was surprised, that it took only a few hours to write

down some macros that solved the problem. So,
if after all the examples above may show nothing,

they at least prove once again

power of W ' s macro language.

the flexibility and

\expandafter vs. \let and \def in Conditionals

and a Generalization of PLAIN's \loop

Alois Kabelschacht

Max-Planck-Institut fiir Physik

Conditionals with \expandafter

Sometimes the replacement text for a 7&X macro

should end with one or another macro call, depend-

ing on a condition. The trivial solution

. . . \if \aa \else . . . \bb \fi
works only if neither \aa nor \bb needs an argument.

Otherwise a more complicated construction such as

the following example from plain. tex is needed:

\def\ph@nt{\ifrnmode

\def\next{\mathpalette\mathphQnt3%

\else\let\next\makephQnt\fi\next)

There is the alternative:
\def\ph@nt{\ifmmode

\expandafter\mathpalett e

\expandafter\mathph@nt

\else\expandafter\makephQnt\fi)

which uses the fact that the expansion of both

\else . . . \fi and \f i is empty. This alternative

is definitely shorter (by 4 tokens) and as far as I can

see not slower. It has the further advantage that it

also works if expandable tokens are expanded but

no commands are digested (e.g. in the replacement

text for \edef). The alternative construction is

clearly even more economical in such cases where

one of the branches would otherwise contain a

'\let\next\relax'.

A generalization of PLAIN's \loop macro

Using the above idea one could e.g. replace PLAIN's

definition of \iterate (used in conjunction with

\loop):

\def\loop#l\repeat{\def\body{#l}\iterate}

\def \iterate{\body \let\next\iterate

\else\let\next\relax\fi \next}

\let\repeat=\f i % this makes

% \loop . . . \if . . . \repeat skippable

by
\def\iterate<\body

\expandafter\iterate\else\fi)

Finally, omitting the \else and rearranging things

a bit one obtains
\def\loop#l\repeat{\def\iterate

<#l\expandafter\iterate\fi)%

\iterate \let\iterate\relax]

TUGboat, Volume 8 (1987), No. 2

which allows constructions such as

\loop . . . \ i f \ e l s e . . . \ repeat

\loop . . . \ i f case . . . \o r . . .
\ e l s e . . . \ repeat

The final ' \ l e t \ i t e r a t e \ r e l a x ' throws away the

token list for the body of the loop which could be

quite long.

in t h e Commercial Envi ronment

Se t t ing Mult i -Column O u t p u t

Elizabeth M. Barnhart

A little more than two years ago, T V G U I D E

magazine started to investigate the possibility of

using the rn typesetting language to compose

both the national feature and local program-listing

sections of the magazine. The idea of vendor inde-

pendence was one of the most attractive attributes

of using this as our composition language.

Academic vs. t h e Commercial Envi ronment

As we started to get more involved, we discovered

that a large percentage of the m community

consisted of academic users of m in colleges and

universities around the country, but that few com-

mercial typesetting applications were using m.
The academic user is usually involved with

a relatively small quantity of output -from a few

pages to perhaps several hundred pages. In contrast,

T V G U I D E publishes over 100 editions in the

United States and Canada for each weekly issue.

The output comes to approximately 15,000 pages

per week, presenting quite a different processing

problem.

In the typical academic environment, one per-

son might key in text through a word processor

or PC editor and handle the style and output of

the text by the inserting of typesetting commands

directly into the text. In our environment, the same

keystrokes are captured once, and may repeat in

several areas and in many editions of the magazine.

No one single person enters the text that makes

up a page of the magazine. Editors for each local

station gather the programming information and

send it to the main office in Radnor, Pa. Output

is handled by feeding items through pre-defined

typesetting-specification files.

Specific Problems

Although 7QX has many positive features, we

have encountered some problems as we experiment

with a variety of the type elements that compose

T V G U I D E .

One problem is that was designed for

much wider columns than the ones called for by our

typesetting specifications. We have been able to get

around this with adjustments of the \ tolerance

and penalties that control the line breaking algo-

rithm in m. It would be infeasible to use the

defaults for these penalties, which would require

frequent interacting with the copy to eliminate the

many "ouerju11 boxes" that would occur.

Another problem is that TJ$ is a paragraph

setting composition language: all other composition

languages that our staff had been exposed to set

type line by line. In line-by-line systems, once

a line of type has been hyphenated and justified.

it is closed and will not be changed; l&X can

rework a paragraph completely differently when one

word is eliminated. This has been presenting some

problems in our environment, since knowing exactly

where a line breaks is important to us. Our text

often includes optional copy, and we need to know

how lines will fit together if optional copy in the

center of a paragraph is eliminated. Taking text

measurements from the longest version of the copy

has been our solution to this problem.

We have also encountered difficulties with the

fact that when TEX produces a . dvi file. the fonts

involved lose their identity. They are assigned a

number in the font table contained in the "postam-

ble" of the .dvi file. We need to be able to convert

the text back to the original format, so we must be

able to reconstruct the font calls made in the orig-

inal text. We are experimenting with dealing with

this problem by forcing system-specific font calls

into the . dvi file using the \ spec ia l command.

Another one of the big problems we have

encountered is the complexity of defining page

layouts with "output" routines. Each section of

T V G U I D E is different and within those sections

each page can be different. One example would be

switching from a three-column to a two-column for-

mat within an article. Another layout requirement

is leaving drops for photographs or artwork that

occupy portions of more than one column of type.

We are experimenting using \parshape commands

within output routines to deal with this problem.

We may find ourselves developing a front-end page

