
TUGboat, Volume 8 (19871, No. 1 49

Macros

Multiple, Independent Marks

Jim Fox

University of Washington

provides marks to help synchronize output

routines with macro expansion. They are necessary

because macros are expanded before text is fitted

onto a page-and therefore are expanded before

page numbers are assigned or page boundaries are

known. The mybook has numerous examples of

elementary mark usage. And, as long as only one

kind of information, chapter numbers, for example,

needs to be communicated, the marks as described

work well. However, some implementations nerd to

keep track of a couple of things, or need to use all

of the marks on a page. A more flexible approach

is required.

Knuth considers this problem in the W b o o k

when he suggests passing several 'independent'

items of information with "\a \or \b \or \ c

. . . " constructions, but this is really a deception.

The items in the \or constructs are not very

independent - they all have to change values at the

same time.

The macro package presented here provides

multiple, independent marks for output routine

synchronization. It solves the concurrency problem

by keeping all mark text in lists - with seperate lists

for independent marks. A continually incrementing

sequence number identifies which elements of the

list correspond to the conventional top. first. and

bot marks. This sequence number constitutes the

only real mark in the system.

The mark lists are both an advantage and

an encumberance. Since all marks on a page

are recorded, they are all available to the output

routine and can be used for seemingly un-mark

related functions. (An example is given at the end

of the article.) The marks also take up macro space.

Documents such as dictionaries that use a lot of

marks should be carefully coded to use the shortest

mark text possible. The primitive \noexpand

can be very useful here.

How the marks are used

Since each of the multiple marks is completely

independent of the others. their usage is quite

simple. First define a new mark, \abc, for example,

by

\newmark\abc

Then use \abc as if it were \mark

\abc{mark t ex t)

\abc{top t e x t \ e l s e bot t e x t)

In the output routine extract the abc marks

with

This defines three control sequences: \topabc,

\f i r s t a b c , and \botabc.

You can then use these just as you would

use the conventional \topmark, \ f i rs tmark. and

\botmark.

How the macros work

List macros are discussed in Appendix D of the

m b o o k . Mark lists are similar to those in the

book. but have a sequence number in addition to

the list marker and text. The lists have the form:

\m@rker (seq){(text)l \m@rker (seq) {(text)) . . .

where \m@rker is undefined until the list is ex-

panded, (seq) is an increasing decimal number, and

(text) is the mark text.

The argument of \newmark is defined to add a

new item to the corresponding list. Note that the

sequence number is shared by all lists. For example:

\newmark\x \newmark\y

\x{a) \yCb> \xic)

defined the mark lists to be
\list@x=~\m@rkerO{)\m@rkerl{a)\m@rker3~c~~

\list@y={\m@rkerO{)\m@rker2Cb))

When the lists are expanded in an output routine.

via \getmarks, each sequence number is compared

to the numbers in the real \topmark and \botmark.

Let (top) and (bot) be those numbers, respectively.

and let the list we are processing be \ l i s t@xxx

(from \newmark\xxx). Then the text of the list

element with the greatest (seq) where (seq) 5 (top)

becomes the topmark (\topxxx). The text of the

first list element where (seq) > (top) becornes the

firstmark (\ f i r s txxx) . Finally, the text of the

last list element where (seq) 5 (bot) becomes the

botmark (\botxxx).

TUGboat, Volume 8 (1987), No. I

An example that uses all of the marks

Here is a partial crossreference capability that makes use of mark lists.

Define an alternate mark list scanner
\catcodei@=11

\def \m@rksdef @#I(%

\ifnum\curm@rk>\bm@rk \let\m@rker=\m@rkrecover

\t@b=\e@{\e@\m@rker\the\curmQrk{#l)~%

\@else \ifnum\curm@rk>O

\m@rk@csafter{\xdef}{#l){\number\pageno)\@fi

\t@a=(\m@rkerO{))\@fi)

\cat code ' @=I2

At the beginning of your file initialize the cross-reference mark list

\newmark\xref % marker for cross references

and in the output routine

\begingroup\let\m@rkscan@=\m@rksdef@

\getmarks\xref

\endgroup

Then a cross-reference definition, \xref(alf a), for example, will define the control sequence

\alf axref to expand to the page number of the page containing the *.\xref (alf a)". The

output routine must have processed the page in question. of course.

The marks macro package

% multi-marks macro package

% by Jim Fox, Oct 1986

%
\catcode6\@=ll

%

% \expandafter is used a lot, so we use a short name for it

%
\let\e@=\expandaf ter

%

\toksdef\t@a=O \toksdef\t@b=2 \toksdef\t@c=4 % temporary registers

%

% \list@cs makes a control sequence by adding the preface 'list@'

% to its argument; e.g., \list@cs\xx - -> \list@=

% Note that it requires a double expansion

7 0

% \list@csafter reaches over its argument to create a control sequence

% via \list@cs ; e . g. , \list@csafter\def \xx - -> \def \list@xx

%

TUGboat, Volume 8 (1987), No. 1

%

% \newmark\xx defines a new mark. It initializes the mark's

% list macro, \list@xx, and defines \xx.

%

% The list macros, \list@xx in this example, have the form:

% \m@rker<seq>{<text>}

% \mQrker<seq>{<text>).

% where \marker is undefined until the list is actually expanded,

% <seq> is a continually incrementing, decimal sequence number,

% and <text> is the actual mark text.

%

% The new mark, \xx in this example, is defined to add its argument,

% along with a \m@rker and sequence number to the end of the

% corresponding list. It also sets a 'real' mark containing the

% new sequence number.

%
\newcount\m@rkcounter\m@rkcounter=0

\def\newmark#1{\begingroup\escapechar=-I

\list@csafter\gdef#l{\m@rkerOo)% start list

\long\gdef#l##l{\begingroup\escapechar=-l\setm@rks

\list@csafter\addm@rk#1~\the\m@rkcounter{##l)}\endgroup)\endgroup}

%

% \addmark puts the \marker, sequence number, and new mark text

% at the end of a 'list' macro.

%

\long\def \addm@rk#l#2{\t@a=\e@C#l)\xdef #l{\the\t@a\noexpand\m@rker#2}}

%

% \setmarks increments the mark counter and sets the mark

%

\def\setm@rksC\global\advance\m@rkcounter byl\mark{\the\m@rkcounter}}

%

% In an output routine \getmarks\xx will extract from \list@xx

% the appropriate \topxx, \f irstxx, and \botxx marks.

%

\newcount\tm@rk \newcount\bm@rk % top and bot mark numbers

\newcount\ecs@ve % saves the value of \escapechar

\newif\ifnofirstm@rk % true when \firstxx has been defined

\newcount\curm@rk % records the sequence,number from the mark list

%

% \m@rk@csafter reaches over its first argument to build

% one of the control sequences; \topxx, \firstxx, or \botxx

% e.g., if the text was \getmarks\xx, then \markname expands to 'xx'

% and \m@rk@csafter\show{top} - -> \show\topxx

% and \m@rk@csaf t er{\long\e@\def }{hot) - -> \long\def \botxx

%

\def\mOrk@csafter#l#2{\e@#l\csname#2\m@rkname\endcsname)

TUGboat, Volume 8 (1987), KO. 1

%

% \getmarks scans the mark list

%

% \topxx = the text of the

% is less than or

% \firstxx = the text of the

% is greater than

% \botxx = the text of the

% is less than or

%

and sets:

last list item whose sequence number

equal to \topmark

first list item whose sequence number

\topmark

last list item whose sequence number

equal to \botmark

\ecs@ve=\escapechar \escapechar=-I

\edef\m@rkname{\string#l}% used by \m@rk@csafter

\let\@else=\else\let\else=\relax % so mark text can contain \else, \or, \f i

\let\m@rker=\m@rkscan \list@cs#l\m@rkend \markrestore % 'do' the list
\let\else=\@else \let\f i=\@f i \let\or=\@or

\escapechar=\ecs@ve}

%

% \markscan looks at the next list item and defines the appropriate

% \topxx, \first=, and \botxx control sequences

% They are \long\def 'd to handle the unusual case of marks with \par's

70

\def\m@rkscan{\afterassigment\m@rkscan@\curm@rk=}

\long\def \m@rkscan@#l{%

\ifnum\curm@rk>\tm@rk\@else\m@rk@csafter~\long\e@\def~~top~~#l~\@fi

\t@b=\e@{\e@\m@rker\the\curm@rk{#l}}%

\@else \if nof irstm@rk\m@rk@csaf ter{\long\e@\def }{f irst}{#l>%

\ifnum\curm@rk>\tm@rk\nof irstm@rkf alse\@f i\@f i

\m@rk@csafter{\long\e@\def}{bot}{#l}%

\t@a=\e@{\e@\m@rker\the\curm@rk{#1}}\@fi}

%

% at the end some of the list must be restored

%

% \m@rkrecover is used when there are unscanned list items, otherwise

% \m@rkend is reached and stops the scan

%

\long\def\m@rkrecover#l\m@rkend{\t@c={\m@rker#l}}

\def\m@rkend{\t@c={}}

%

% \markrestore rebuilds the list (with at least a new \topxx)

%

\m@rk@csaf ter{\long\e@\xdef }{list@)(\the\t@a\the\t@b\the\t@c})

%
\cat code' \@=I2

%

