
TUGboat, Volume 7 (1986), No. 3

the user need only type \beginbar and \endbar.

Marks are used to stop and start multiple page

change bars.

The change bar question brings up some inter-

esting points.

A problem arises when you also want to use

marks for something other than change bars: chap-

ter numbers, for example. Inthat case you can't just

have \beginbar include, say, \mark{\startabar>

because you would lose the chapter number infor-

mation that was also being kept in mark text.

I haven't implemented a general solution to

this problem, but I think it could go as follows.

Define a \newmark macro that would be invoked

for each distinct mark function. In this case \new-

mark\barmark and \newmark\chaptmark. Then

provide a \setmarks macro that defs each of the

allocated marks; e.g., in this case \setmarks would

be (automatically) defined as follows:

\def \setmarks{\mark{%

\def\noexpand\thebarmark{\barmark)%

\def \noexpand

\thechaptmarkC\chaptmark>>>

then in the text, the usage is

\def \barmark{\startabar)\setmarks

and

\def\chaptmark{ . . .)\setmarks.

In the output routine the appropriate marks are

first defined and then used:

\botmark . . .

followed by

\thebarmark . . . and \thechaptmark . .

The idea is that the actual mark contains only

\defs, which are defined when \botmark (or \ top-

mark, etc.) is referenced.

The second point concerns \ spec ia l s in gen-

eral. It does not seem to be universally understood

that the random paging mechanism in the dvi

file format implicitly proscribes global specials [cf.

TUGboat 6, #2 pp. 66491. Any global formatting

function that uses specials (changing the paper ori-

entation, for example) must repeat the appropriate

special command on every output page.

In addition, dvi file printers should be careful

not to remember \ spec i a l parameters between

pages.

Letters

Bugs in METAFONTware

To the Editor:

I have discovered a couple of bugs in the META-

FONT utility programs having to do with packed

files and would like to share this discovery.

The first bug is severe, and makes it virtually

impossible to use packed files. It occurs in the

Kellerman and Smith implementation (VAX) of

PKtoPX (version 2.2), the program which converts

packed files to the PXL format most commonly

used by device drivers. The bug is in the change

file rather than the WEB file, so none of the other

implementations are affected. I don't know whether

this bug has been previously discovered or not; the

number of sites using PK files is still limited. Also,

if a driver reads PK files directly, it does not use

PKtoPX and the bug does not apply.

The nature of the bug is that, in the Font

Directory at the end of the PXL file, the pointers

to the glyphs are incorrectly expressed, making it

impossible for the driver to find the rasters for the

glyph in the main part of the file. According to

section 9 of PKtoPX, "The third word of a glyph's

directory information contains the number of the

word in this PXL file where the raster description

for this particular glyph begins, measured from the

first word which is numbered zero." Word, in

this context, refers to a 32-bit number ("longword"

in VAX terminology). The problem is that the

changes for the VAX implementation accidentally

change this offset from an offset of longwords to

an offset of bytes, making the offsets four times
greater than they should be. The procedure in

question, pixel-integer, writes a 32-bit integer to the

PXL file and increments a variable called pxl-loc,

which contains the current offset into the PXL file

in longwords. Kellerman and Smith changed this

procedure to write the integer as four separate

bytes, which is all well and good, but logically

the PXL file is still a stream of longwords, so the

increment of pxl-loc should have been left alone.

To fix the bug, find the following line in

PKTOPX . CH:

p x l ~ l o c : = p x l ~ l o c + 4 ;

and change it to:

i n c r (pxl-loc) ;

This will force the variable pxl-loc to once again be

a longword-count instead of a byte-count.

TUGboat, Volume 7 (1986), No. 3 189

The other bug, which occurs in GFtoPK (version

1.2), is more subtle. and possibly inconsequential,

depending on the driver which is using the packed

file. Unfortunately, the error is in the main WEB file,

causing it to crop up in all implementations.

The problem occurs in module 64, "(Scan for

bounding box)". This code is supposed to take

the pixel image of a glyph as generated by META-

FONT and strip off rows and columns consisting of

all-white pixels from the sides, top, and bottom,

resulting in a tighter character. It seems to work

in all cases except when there are one or more

all-white columns on the left. When this happens,
the algorithm fails and the mas-m variable (and

therefore width) is set to a value one greater than it

should be. PKtoPX cheerfully passes this incorrect

value to the font directory in the PXL file. Whether

this is a problem or not depends on the individual

device driver. The actual raster image is correct -

it's just the width that is wrong. If the driver uses

the width in the TFM file rather than the one in

the PXL file, then the error has absolutely no effect.

If the width in the PXL file is used, the character

appears one pixel wider than it actually is. In

any case, not many characters are affected. I am

not familiar enough with METAFONT to describe

the conditions which cause all-zero columns to be

added on the left. I t appears on various characters

in various fonts at various magnifications. For an

example, do a GFtype of cmr10.300GF and look at

the character with a decimal code of 20 ('). After

suppression opf the left column, which is all zeros,

the actual width of the character should be 10, but

a PKtype after GFtoPK is run will show a width

of 11. This is the only character in this particular

font file which has this problem; other font files

have more than one erroneous character, while still

others have none at all.

To fix this bug, add the following section to

GFTOPK . CH:

Ox

min-m := min-m + extra ;

max-m := min-m + max-m - 1 ;

height := max-n - min-n + I ;

width : = max-m - min-m + 1 ;

QY

min-m : = min-m + extra ;

max-m : = min-m + max-m - 1 - extra ;

height : = max-n - min-n + I ;

width : = max-m - min-m + 1 ;

Oz

Where this section goes in the change file

depends on what changes are already in the file, of

course. For the Kellerman and Smith VAX version,

it goes immediately ahead of:

Qx

Qd preamble-comment == 'GFtoPK 1.2 output'

Qd comm-length = 17

QY

Qd preamble-comment ==

'VAX/VMS GFtoPK 1.2.0 output'

Od comm-length = 27

Qz

E. W. Sewell

Software Engineering Specialist

3822 Hillsdale Lane

Garland, TX 75042-5334

(214) 272-0515

Editor's note: These problems have been commu-

nicated to David Kellerman at K&S and to Tom

Rokicki at Stanford. David agrees that use of

P K files is still very limited, and therefore these

programs haven't been given a great amount of

exercise. He was already aware of both bugs and

said that all corrections would be on the K&S

distribution tape no later than October 1, 1986.

Tom Rokicki responded with additional up-

dates to the PK file software; see his note on

page 140.

