
Andrew Trevorrow
TJniversity of Adelaide

DVItoVDU is an interactive program that allows
the user to view pages from a m 8 2 DVI file on a
variety of commonly available visual display units
(VDUs). It runs under VAX/VI\IS and is written in
Modula-2 from the University of Hamburg.

The software is in the public domain and
available on the VAX/VRIS distribution tape.
Most of this article is based on material from the
DVItoVDU User Guide and the DVItoVDU System
Guide. The TEX source files for these two documents
are also on the distribution tape.

The version described below is numbered 1.5
(October 1985).

Concept ion
TQX usage began at Adelaide University early in
1984 and the clamour for a previewing program
started soon after. Although there are excellent,

rational reasons for such a tool in a system,
our users had somewhat more pragmatic concerns:
people had to come to the Computing Centre to
collect their laser printer output; there was a charge
of 10 cents per page! (This has since been dropped.)

Another concern was the high level of paper
wastage, particularly in those early days when most
users, including myself, were learning about W and
all its intricacies. While the need for a previewer
was obvious, I could see a number of difficulties in
writing such a program.

Around this time I happened to stumble
upon Hamburg's Modula-2 system. After a few
weeks of pleasant experimentation with this new
language, I eventually realized that Modula-2's
procedure variables provided an elegant. high-level
solution to one of the key design problems for the
particular previewer I had in mind; that is, the need
to efficiently drive a variety of terminals from the
one program. Up until then I'd been reluctant to
seriously consider starting the project. The thought

of having to resort to VAX Pascal wizardry or
MACRO magic was just too depressing.

IVhy not WEB? Quite apart from the above
design problem, it was never really a serious
contender. At the risk of being sacrilegious I must
confess to having some reservations about the WEB
system. I believe its benefits are outweighed by the
disadvantages of using a cryptic language in which
WEB. TEX and Pascal errors are all possible.

Modula-2 in fact matches WEB in its facilities
for creating highly modular programs In addition.
system generation is much faster because Modula-2
allows separate compilation. It is usually possible
to make a change to an implementation module.
compile and link. and have a new EXE file in
seconds. Compare this with the many minutes
normally needed to change a WEB module. run
TANGLE, then Pascal and the linker (not to mention
WEAVE. TEX, etc., if you want your documentation
up-to-date).

A modern language such as hfodula-2 and a
good screen editor are sufficient tools, I believe. to
create well-structured software with good-quality,
internal commentary. Having access to m Y or some
other typesetting system to create accompanying
documentation is an added luxury.

I was also keen to write a fairly large program
in Modula-2 to see how it compared with Pascal. I
must say I was pleasantly surprised by the utility of
Modula-2 and the reliability of Hamburg's compiler.

Design Considerations
The main design goal was to have just the one
preview program able t o work efficiently on various
types of terminals used throughout the campus.
Since many TJ$ users do not have access to a
high-resolution graphic VDU. the program also
had to produce useful displays on a simple ANSI

Volume 'i? Number 1

Articles

terminal, such as a VT100. A number of other

capabilities were considered essential:
Absolute page selection using either the natural

DVI page order or the TEX page counters.

Relative page selection by requesting the next page

in either direction.

"Pan and zoom" (the ability to view any region of

a selected page, and at any desired scale);
Error detection in the form of explicit warnings

about such problems as a page off the paper or the

use of a non-existent font size.
A preliminary version of DVItoVDU that met

most of these goals was released in September 1984.
A number of substantial changes have been made

since then, mainly to improve efficiency and to

provide a more flexible user interface.

Running DVItoVDU
The information in this section is a condensation of

the DVItoVDU User Guzde.
We'll assume you've just run f 00. tex through

TEX to create foo.dvi. To look at the pages in this

DVI file you simply type 'dvitovdu f 00'. Some

command options may be necessary if DVItoVDU is

to work properly. In particular, the /vdu qualifier

must correctly describe the type of terminal you are

using.
The DVItoVDU command can be followed by a

number of qualifiers. where each is assigned a value:

/vdu

/resolution

/xsize

/ysize

/magnification

/font-directory

/dummy-font

/help-f ile

type of terminal

pixels per inch

paper width

paper height

override magnification
master font directories

used if font not found

used by ? command

The last three are really for system wizards; their

default values should be set up so that most users

need never worry about changing them. (The

DVItoVDU command is installed in the system DCL

tables using a command language definition file

supplied with the software. This CLD file can be

modified to specify default qualifier values suitable

for your site.) Let's look at all the qualifiers in more

detail:

VDU Type The /vdu=atr?ng cjual~fier i i uscd to tell

DVItoVDU what type of VDU you are uiing. s f r l n q

is a strmg of characters ternmated b j a space or the

start of the next qual~fier hlost sites rilight set up

'/vdu=ANSI' as the default If ANSI doe? riot deici~be

your VDU, you need to override the default Lalue

For example. if you're using a VISUAL 530 terminal.

type 'dv~tovdu/vdu=v~s550 f 00'.

The current verslon of DYItoVDU m~ll accept

the followmg /vdu ~ a l u e s

AED483 AED m~rh 512 hy 483 scree11

AED512 AED w t h 512 by 512 screen

ANSI any ANSI compatible VDU

REGIS any ReGIS compatible VDU

VIS5OO VISUAL 500

VIS550 VISUAL 550
VT100132 VTlOO in 132 column mode

VT640 VTlOO with Retro-Graphics

VTlOO and VT220 are synonyms for ANSI. GIGI,

VK100, VT125 and VT240 are synonyms for REGIS

Printer Resolution The /resolut ion=? command

tells DYItoVDU the resolution of the device that
will be used to print your document. DVItoVDU

treats the imaginary sheet of paper on which a

DVI page will appear as a two-dimensional array of
tiny dots known as "paper pixels." z is a positive

integer that defines the number of paper pixels
per inch, horizontally and vertically. lye have an

Imagen IMPRIKT-10 laser printer. so our default

/resolution value is 240.

Printer Page Size The /xsize=dzmcn and

/ ys ize=dimen qualifiers qualifiers define the

dimensions of the paper upon which your docunient
will be printed. /xsize defines the width and

/ysize the height. Every time you select a page,

DVItoVDU will use these paper dimensions to check

that the page edges fall within the paper edges.

dimen is a positil-e integer or real number followed

by a two-letter unit: i n , cm. mm. pc, pt or px. RIost

of these should be familiar from TEX. DVItoVDU

provides an additional unit, px. for paper pixels.

(These two-letter sequences are the same as the

commands used to change the units of dimensions;
more about all the commands on page 28.) Our laser

printer uses A4 paper by default; i.e., /xsize=8.3in

and /ysize=11 .Tin.

TUGBOAT

DVItoVDU: A TEX Page Previewer

Figure 1.

The Initial Dialogue Region

Total pages=n DVI page=O TeX page=[OI Next=> Terse
Window a t (h,v) wwd by wht Page a t (minh,minv) pwd by pht I N
status
Command :

Explanation of entries:

Total pages=n The total number of pages in the DVI file.
D V I page=O TeX page= [O] The current page number and its corresponding

TEX page counters.
Next=> The direction the N command will advance through pages

(initial setting is forward)
Terse The current display m o d e o n e of Terse, Box, and Full

(initially terse).
Window a t (h . v) wwd bv wht The current location of the window's . , .

upper left corner and the size of the window in paper
coordinates.

Page a t (minh,minv) pwd by pht The location of the page rectangle's
upper left corner and the size of the rectangle. (The page
rectangle is the smallest rectangle enclosing all rules and
characters on the current page).

I N The current unit of m e a s u r e o n e of I N . CM. MM, PT, PC,
and PX (initially inches)

status Line for s ta tus and error message display (initially
blank).

Command : Line for command entry.

DVI File Magnification The lmagnif icat ion=i Help File The /help-f ile=string qualifier
qualifier allows you to replace the magnification used specifies a file containing the text to be dis-
in the DVI file with some other value; i is a positive played by the ? command. Our default file is
integer 1000 x the desired magnification. The given dl : [texl dvitovdu. hlp.

value should be chosen carefully so that the new
font sizes still correspond to existing PXL files. You

VDU Dialogue Region
If your command line is correct and if the /vdu

should only supply a replacement magnification
value matches the type of terminal you're actually

if you intend to print the DVI file with the same
override.

using, then DVItoJJDU will clear the screen and
display something similar to Figure 1. These four

Font Directory The /font-directory=list lines represent the "dialogue region." The rest of the
qualifier selects a master directory containing screen is called the '.window region" and should be
subdirectories of font PXL files. DVItoVDU gets
all its font information from PXL files. list is a
list of values separated by commas and enclosed
in parentheses. A typical default list might be
(dl: [local.fonts] ,dl: [tex.fonts]).

Dummy Font The /dummy-f ont=string qualifier
specifies a font to be substituted when a font cannot
be found at the size required by your document.
DVItoVDU will warn you if your document uses a
font at a non-existent size. Rather than abort, it
will load the PXL file specified by /dummy-f ont and
continue so you can look for more errors. Paragraphs
using this dummy information are likely to have
ragged right margins. A typical default dummy font
might be dl : [tex .fonts .I2001 amrlO . pxl.

"

blank at this stage.
The top two lines show status information.

Until a page is selected, most of the status values are
meaningless and set to zero.

The third line is initially blank. DVItoVDU
displays messages of various kinds in this line. Some
of these messages appear only briefly but may convey
helpful information. Others are more important and
indicate some sort of problem, such as an invalid
command or a page that won't fit on the paper; in
these cases DVItoVDU will prompt you to hit the
RETURN key before continuing.

Volume 7 , Number 1

Articles

The last line in the dialogue region is for
entering commands. The first thing you nornially
want t o do is choose a particular page for display.
For example, typing '1' will select the first page in
the DVI file. Many commands can be entered in
the one command line. Hit RETURN to execute the
command(s).

VDU Window Region
A paper pixel can be either black (corresponding to
a tiny blob of ink) or white (no ink). A typical DVI
page contains characters from one or more fonts, and
perhaps a few rules. A rule is simply a rectangular
region of black pixels, usually in the shape of a thin
horizontal or vertical line. A character is usually a
more complicated pattern of black and white pixels.
Every character and rule has a paper position-or
reference point-defined by a pair of pixel values
(h.v) where h is the horizontal coordinate and v is
the vertical coordinate. DVItoVDU uses a paper
coordinate scheme in which the position (0,O) is
a pixel one inch in from the top and left edges of
the paper. Vertical coordinates increase down the
paper, horizontal coordinates increase to the right.
Confused? Figure 2 may help clear things up.

The window region is used to view the current
DVI page. DVItoVDU treats this region of the VDU
screen as a two-dimensional array of dots, but we
refer to these dots as "screen pixels" to distinguish
them from the paper pixels described above. A
screen pixel is usually the smallest possible area
on a VDU screen that can be drawn or erased; the
greater the number of screen pixels in a given area,
the higher the resolution of the VDU. (DVItoVDU's
definition of a screen pixel is more precisely known
as an "addressable location.")

The initial window sizes (widths by heights in
pixels) for the VDUs currently implemented are:

AED483 512 by 442
AED5 12 512 by 471
ANSI 80 by 20
REGIS 768 by 400
VISSOO, VIS550 1024 by 688
VT100132 132 by 20
VT640 1024 by 650

The most accurate representation of a page will
occur a t these unscaled values, since one paper
pixel equals one screen pixel. You can increase or
decrease the area currently visible by using the H and
V commands to change the size of the window region.
The higher the resolution of the VDU, the greater
the accuracy of such scaled displays.

Xote the very low resolution of the ANSI and
VT100132 VDUs. These are not really graphic
terminals: DVItoVDU has to define a screen pixel to
be an entire character position, since the individual
dots making up characters cannot be turned on and
off. An ANSI screen typically consists of 24 lines of
80 columns, therefore the initial window region is
80 pixels wide and 20 pixels high (the top 4 lines
are used for the dialogue region). At more useful
window sizes the resulting displays will be extremely
crude. Nevertheless, a variety of formatting errors
can still be detected on such terminals; just don't try
proofreading your document!

The size and location of the window region
are automatically set every time a page is selected.
DVItoVDU tries to show as much of the paper (and
presumably the page) as possible, and without too
much distortion. After comparing the shape of the
paper with the shape of your VDU's znztzal window
region, and depending on the location of the page,
DVItoVDU may show the entire paper. or the top or
bottom half, or the left or right half. If any part of
the page is off the paper then the entire paper and
the entire page will be shown. Since most paper sizes
have portrait dimensions (width < height). and most
VDU screens have landscape dimensions (width >
height), DVItoVDU will normally show the top half
of a sheet of paper containing the selected page.

Every time the window region needs to be
updated, the entire screen is first erased.

DVItoVDU Commands
In response to the 'Command: ' prompt you can enter
one or more of the following commands in upper- or
lowercase. Multiple commands are processed in the
order given but the window region is only updated,
if necessary, at the end. For example, NFD gets the
Yext page, switchs to Full display mode, moves the
window Down, and only then displays the page. If an
invalid command is detected, any further commands
are ignored. Most commands consist of only one or
two characters; some can be followed by parameters.
Spaces before and after commands and parameters
are optional.

The DVItoVDU commands are summarized in
Figure 3, and they are described in detail in the
sections that follow.

Miscellaneous Commands

Help The ? command displays help on the available
commands.

TUGBOAT

DVItoVDU: A Page Previewer

(-1 , -1) in inches Paper edges will be displayed if visible

Figure 2.

DVltoL'D U's Paper Coordznate
Scheme.

i 1" The number of pixels per inch is set by /resolution qualifier

(0,O) i
............. * i increasing h coordinates

1,' 1
increasing

v coordinates

Window width is set by H command.

Use U, D, L, R and W commands~
: t o move the window.

: Window height is
I set by V commanc

'aper height is set ~
)y /ysize qualifier. ~

:Only this portion of the: :
'page is currently visible. I

Page height. 1

I HAL 9000 Beginner's Guide
march,mazz,) L 4 (

Page width.

Paper width is set by /xsize qualifier

Status The S command shows various qualifier
values and statistics about the number of fonts,
characters and rules used on the current page.

Quit The 4 command quits from DVItoVDU

Page Selection

Selection by Page Position The i command selects
the i th DVI page. i must be a positive integer from
1 to n where n is the total number of pages in the
DVI file.

Selection by Page Counters The [a o . zl z91
command selects the DVI page whose ten TEX
page counters match the given specification. zo to
i9 are integers separated by periods. Each integer
is optional and trailing periods may be omitted.
An absent integer will match any value in the
corresponding counter. If more than one DVI page
matches, the lowest will be chosen. For example, [I
is equivalent to [. I and will select the first
DVI page, even though the request matches every
possible page. If your TJ$ source file doesn't change
the value of \count0 (\pageno in plain m) then
the zth DVI page will match TJ$ page [zl.

Volume 7, Number 1

Articles

Next Page The N command selects the next DVI
page, depending on the current DVI page and the
current direction (> or <). Before any page has been
requested, N will select the first DVI page if the
current direction is >, or the last DVI page if the
current direction is <.

Set Forward Direction The > command arranges for

future N commands to select DVI pages in ascending
order. If i is the current DVI page, an N command
will get page i + 1 unless i is the last DVI page.

Set Backward Direction The < command arranges

for future N commands to select DVI pages in
descending order. If z is the current DVI page, an N
command will get page i - 1 unless i is 1.

Changing the Page Display
The way in which the current page is displayed
can be varied from a full, accurate representation
t o a terse, fast display for when fine details are
unimportant. The window region is updated in the
following manner: Visible paper edges are drawn
first followed by visible rules (shown in full no matter
what the display mode). Visible characters are
finally shown on a font by font basis; those fonts with
t he least number of characters on the page are drawn
first. Every few rules or characters, DVItoVDU
will check to see if you've typed something a t the
keyboard; you can hit the RETURN key to abort the
display, or you can change the display mode by
hitting the T, B or F keys.

Terse Character Display The T command displays

a terse representation of characters. On most VDUs
the T$$ text fonts should be readable; the characters
will be in approximately the right position and may
even be about the right size. Note that the text fonts
will all look alike; you won't be able to distinguish
between roman and bold characters for example.
Most VDUs assume all characters come from a TJ$
text font and map them into similar-looking ASCII
characters. Characters from non-text fonts, such as
math symbols, will usually appear incorrect.

Outline Box Character Display The B command
displays box outlines of the smallest rectangles
containing all black pixels in characters. The
reference points of most TEX characters are usually
located near the bottom left corners of these boxes.
Box mode is intermediate in speed between Terse
and Full modes.

Full Character Display The F corninand displays a
full representation of all pixels in characters. This
display is the most accurate but may take some
time; hit RETURN or switch to Terse or Box mode if
you get bored. On the higher resolution VDUs, a

good compromise between speed and accuracy is to
start off in Full mode so that math symbols and any
other special characters are displayed correctly, and
to switch to Terse mode when the bulk of the text
begins.

Changing Units of Dimensions
A11 the numbers in the second line of the dialogue
region are dimensions in terms of t he units shoarii
at the end of the line. The parameters following
some commands are also dimensions in terms of
these units. Unlike the dimensions in TEX. you
don't explicitly type the units when you need to
specify a dimension to DVItoVDU; simply enter an
integer value or real value (which will be truncated
to four decimal places if necessary). A given value
is rounded up internally to the nearest paper pixel
based on the current units and the conversion factors
shown below.

Inches The IN command causes dimensions to be
shown and entered in terms of inches (/ r e so l u t i on

defines the number of paper pixels per inch).

Centimetres The CM command causes dimensions
to be shown and entered in terms of centimetres
(2.54cm = l i n) .

Millimetres The MM command causes dimensions to
be shown and entered in terms of millimetres (10 mm
= I cm).

Picas The PC command causes dimensions t o be
shown and entered in terms of picas (1 pc = 12 pt) .

Points The PT command causes dimensions to be
shown and entered in terms of points (72.27pt =

1 in).

Pixels The PX command causes dimensions to be
shown and entered in terms of paper pixels.

Moving the Window
The window region can be moved to any position
over the current page. The parameters h and c are
dimensions ranging from -480 inches to +A80 inches
(for those of you m i n g billboards). You will be
told if the entire window moves outside the page
rectangle defined by minh, mzna, maxh and maxv.
If this does happen, the movement is restricted
to just outssde the edges to make it easier to get
back over the page using only the U. D, L and R
commands. Note that the location of the window is

TUGBOAT

DVItoVDU: A T o Page Previewer

automatically set every time a page is selected. This
position will normally be (-1, -1) in inches; i.e., the
top left corner of the paper.

Set Window Position The W h,v command moves
the window region's top left corner to the given
paper position. h is the horizontal coordinate, v is
the vertical coordinate. If h and v are absent then
the window is moved to (minh,minv), the top left
corner of the page rectangle.

Up The U v command moves the window up v
units. If v is absent then window moves up by its
current height.

Down The D v command moves the window down v
units. If v is absent then window moves down by its
current height.

Left The L h command moves the window left h
units. If h is absent then window moves left by its
current width.

Right The R h command moves the window right h
units. If h is absent then window moves right by its
current width.

A positive integer following a command that can
take a parameter is never interpreted as a DVI
page selection. For example, 'D5' will always be
interpreted as "move the window down 5 units"
and never as "move the window down by its current
height and then select page 5." As it turns out,
this ambiguity is not a problem because all the
commands that can have parameters only affect
the current page. There is no point in moving the
window (or changing its size) and then selecting a
page in the same command line since the window
location is automatically reset every time a page is
selected.

Changing the Window Size
The width and height of the window region can be
changed independently. It is up to you to maintain
a suitable aspect ratio. The location of the window
will not change unless the page becomes invisible.
The parameters uld and ht are dimensions ranging
from 1 pixel to 480 inches. Note that the width and
height of the window are automatically set every
time a page is selected; their values will normally
depend on the paper dimensions.

Horizontal Size The H wd command sets the
Horizontal size of the window to the given width. If
wd is absent then window width is set to its initial,
unscaled value.

Miscellaneous

? Show help on commands.
S Show qualifier values and current page status.
q Quit.

Page Selection

i Select i th DVI page.
[io . ilis] Select DVI page according to page

counters.
N Select next DVI page.
> Make N command move forward.
< Make N command move backward.

Page Display

T Select terse character display.
B Select bounding rectangle character display.
F Select full pixel character display.

Units of Dimensions

I N Use inches.
CM Use centimetres.
MM Use millimetres.
PC Use picas.
PT cse points.
PX Use pixels.

Moving the Window

W h , v Move top left corner to (h , v) .

U v Move up v units.
D 2: Move down v units.
L h Move left h units.
R h Move right h units.

Changing Window Size
H wd Set horizontal size to wd.
V ht Set vertical size ht.

Figure 3. Sum.mary of Commands

Vertical Size The V ht command sets the Vertical
size of the window to the given height. If ht is absent
then window height is set to its initial, unscaled
value.

Just a brief note on the scaling method used by

DVItoVDU: Rules and glyphs having the same top,
bottom, left or right paper coordinates also have the
same scaled coordinates. This ensures baselines will
line up but means that rules and glyphs may change
shape when the window is moved to a new position.
The effect is most noticeable on the low-resolution
VDUs.

Command Examples
The spaces between commands in the following
examples are for clarity: they are not mandatory.
Commands can also be typed in lowercase.

Volume 7. Number 1

Articles

< N N N

If these commands are given before any page has
been requested, they will select the 3rd last page
(assuming there are at least 3 pages). Note that
DVItoVDU will only display the 3rd last page. The
intervening pages are still processed though, and
you'll be warned about any problems with them
(such as a page off the paper).

F W H V

This command sequence can be very useful for
looking carefully at the results of a small
experiment. You might. for instance, want to check
the appearance of two characters moved closer
together by a negative \kern. Remember that
the unscaled window size chosen by HV produces
the most accurate display, since each screen pixel
corresponds to exactly one paper pixel.

R9999 L D9999 U
Sometimes you need to move quickly to the right
edge of the page ro have a look at line breaks, or you
might want to go to the bottom and look at where
the page was broken. This particular command
sequence will move the window's bottom rzght corner
t o the bottom right corner of the current page
(maxh,maxv) . R9999 moves the entire window to
the right of the page, but only just. L then moves
the window left by its current width so that the rzght

edges of the window and the page coincide. D9999
moves the entire window below the page. but only
just. U then moves the window up by its current
height so that the bottom edges of the window and
page also coincide.

I N W-1,-I V12 HI6 T
I t is often useful to get an overview of the positioning
of the page within the entire paper. These commands
will do just that on all the VDUs currently
implemented (assuming A4 paper dimensions).
I N sets the current units to inches just in case they
were something else and W-I, -1 moves the window
t o the top left corner of the paper. V12 sets the
window height to slightly more than A4 paper height
and HI6 sets the window width to a value that will
ensure the paper shape maintains approximately the
right proportions. T sets the display mode to Terse
since you're probably not concerned with finer details
when looking at the entire paper.

C.561 W I N H2.5 V2.6 R l U1 F
This is the likely command sequence that led to the
window display shown in Figure 2. The author has
been clever enough to define a \chapter macro that
sets \count I to the given chapter number. [. 561

will thus select t,he appropriate DVI page (\count0
is ignored).

Description of System Design
Most of the material in this section is from the
D VItoVD U System Guzde.

As its name would i~nply, a Modula-2 program
is typically built up from a number of separately
compiled modules. Each module can import
data and procedures from other modules. An
imported module is further decomposed into a
definition module and an implementation module.
The definition part contains declarations for all
exported objects and serves as the interface to client
modules. The details of how exported objects are
actually realized are hidden from clients in the
implementation part. Rapid system regeneration
is possible because client modules depend only on
the definition part; the implementation part may
be modified (e.g., optimized) without the need to
recompile any client modules. Figure 4 shows the
importation dependencies of all the modules making
up DVItoVDU.

Not only do modules allow a large program to
be broken up into more manageable chunks, they
also provide a sensible basis for a description of that
program:

DVItoVDU The main module is primarily
concerned with the user interface. It handles all
the interactive command processing and contains
the high-level logic used to update the dialogue and
window regions. Data and procedures are imported
from the following modules to help the main nlodule
carry out its many tasks.

DCLInterface This module provides the interface
to the VAXJVMS command language interpreter.
(DCL stands for Digital Command Language, just
in case you're wondering.) The command line used
to invoke DVItoVDU is parsed and the DVI file
name extracted. All the qualifiers are also initialized,
either to explicit values given in the comn~and line or
to site-dependent default values.

VDUInterface DVItoVDU can work efficiently
on different types of VDUs by letting Modula-2
procedure variables act as generic VDU routines.
These routines, along with the generic VDU
parameters, are defined in VDUInterface. As
little as possible is assumed about the capabilities of
a VDU. In particular, the availability of a graphic
input device is ignored. DVItoVDU should be able to
work on any terminal that can:

TUGBOAT

DVItoVDU: -4 Page Previewer

Figure 4.

DVItoVD U's Module Map. A n
arrow from module A to module
B indicates the latter imports data
and/or procedures from the former
(B is said to be a client of A). If the
definition part of module A changes,
then all client modules must be
recompiled and DVItoVDU relinked.
If the implementation part of module
A changes, only the relinking stage is
necessary.

I DVI~OVDC i
I (main module)

R E G I S V D U m

Points of interest:

1. DVIReader does not depend
on PXLReader. It does know
that PXL files contain crucial
typesetting da ta , but leaves
it up t o t h e main module to
specify how and where to get
such information.

2. VDUInterface exports the
generic VDU routines and
parameters used in the main
module.

3. DCLInterface extracts the DVI
file name and qualifiers from the
VMS command line.

4. VDCrInterface needs the /vdu

value to select a n appropriate
VDU initialization routine.

5. Specific VDU modules import
the generic VDU routines and
parameters from VDUInterface

and, in return, export a n initial-
ization routine. VD C'Interface
will decide which one is actually
executed.

6 The Tektronix 4010 module
imports the TeXtoASCII array
t o map Q X characters into
corresponding ASCII characters
S o t e tha t VDCInterface does not
know about the Tektronix 4010
module.

7. The VISUAL 500, VISUAL 550
and VT640 terminals all emulate
Tektronix 4010 graphics.

8. T h e VISUAL 550 terminal uses
VISUAL 500 graphic routines t o
update the window region and
VT640 routines to update the
dialogue region.

s Mix text and graphics on the screen (some VDUs
make no distinction).
s Erase all of the screen, or individual text lines.
s Move the cursor to any given screen pixel.
s Display a rectangular region of screen pixels
(possibly just one).

The generic VDU routines are:

Start Text switch to "text mode"
ClearTextLine erase given line
Move To TextLine move to start of given line
Clearscreen erase the entire screen
StartGraphics switch to "graphics mode"

LoadFont for later ShowChar calls
ShowChar show given Terse character
ShowRectangle show given rectangle
Reset VD U may need to reset VDU

Most are quite trivial t o implement for a specific
VDU. The main module looks after all the tricky
graphic operations such as the clipping of characters
and rules outside the current window region, and the
way in which visible paper pixels are scaled to screen
pixels.

Volume 7 , Number 1

Articles

From an efficiency point of view, the two most
critical routines are ShowChar and ShowRectangle.
ShowChar is used by the main module to display
a character in Terse mode. The only information
given is the character (currently restricted to
\charO. . \charl27) and its screen position. Since
characters are displayed one font at a time, some
VDUs can use scaling information sent by the most
recent LoadFont routine to select an appropriate
hardware font.

ShowRectangle is used for all other window
graphics. It is used to draw the paper edges, to
draw all rules (regardless of display mode), to draw
all glyph outlines in a Box display, and to draw
the horizontal lines making up all glyphs in a Full
display. The majority of rectangles are in fact
horizontal or vertical lines just one screen pixel thick.
The generic VDU parameters are:

DVIstatusl DVI status line, usually 1
windowstatusl window status line, usually 2
message1 message line, usually 3

command1 command line, usually 4
bottom1 bottom text line in screen
windowh window's top left h coord
windoww window's top left v coord
windowwd unscaled window width
windowht unscaled window height

These parameters are actually integer variables. The
main module treats them as constants.

There are two screen coordinate systems used by
DVItoVDU:
rn When updating the screen in text mode (i.e., when
updating the dialogue region or during a ? or S

command), DVItoVDU assumes text lines start at 1
and increase downwards. The bottom text line on
the screen is given by the parameter bottoml.
rn When updating the screen in graphics mode,
DVItoVDU assumes the top left screen pixel is
a t (0,O). Horizontal coordinates increase to the
right and vertical coordinates increase down the
screen. The top left pixel in the window region is
a t (windowh, windowv). Specific VDU modules may
have to do a translation to the actual coordinate
scheme used by the VDU. The size of the window
region in screen pixels is given by windowwd and
windowht.

AED512VDU, ANSIVDU, REGISVDU, . . . Each
specific VDU module exports an initialization routine
that will assign appropriate procedures to the generic
VDU routines and specific integers to the generic
VDU parameters. VDCTInterface imports all these
initialization routines and uses the /vdu value set in
DCLInterface to execute one of them.

DVIReader This module exports the routines and
data structures needed to move about randomly in
a DVI file and interpret selected pages. Although
the main module is currently the only client. it is
anticipated that DVIReader could just as well form
the basis of a more conventional DVI translator such
as a non-interactive device driver.

Font, character and rule information is stored in
dynamically allocated lists to avoid imposing any
limit on their numbers. The length of the font list
is determined soon after opening the DVI file by
reading all the font definitions in the postamble.
Each font node is a record made u p of many fields;
one of these fields is the head of a character list. The
nodes in each character list will store the positions
and codes of all characters on a page. Besides
the font list. there is also a rule list. The nodes in
the rule list will store the positions and dimensions
of all rules on a page. (Character and rule positions
are stored as pairs of horizontal and vertical paper
pixel coordinates. The manner in which DVIReader
calculates such positions is based firmly on Donald
Knuth's D V I t ype.)

Just before interpreting a selected DVI page. the
rule list and all the character lists are deallocated
if necessary. During interpretation, DVIReader
adds a new rule or character node to the tad of an
appropriate list. When the main module processes
such lists, rules and characters will be displayed
in somewhat the same sequence as seen in the
DVI page; i.e., top-to-bottom and left-to-right.
(Since there is a separate rule list, as well as a
character list for each font, the precise sequence is
not remembered.) After interpretation, the nodes in
the font list are sorted so that fonts with the least
number of characters (> 0) will be processed first.

The various lists contain most of the information
needed to display the page; they are traversed by
the main module whenever the window region is
updated. If the page isn't empty then DVIReader
will also determine the edges of the page rectangle.
This is the smallest rectangle containing all black
pixels in glyphs and rules. as well as all character
reference points (needed for Terse displays). The
main module uses the page rectangle to decide if

TUGBOAT

DVItoI7DU: A Page Previewei

the page is off the paper, and to restrict window
movement.

PXLReader DVItoVDU gets all its character
information from standard PXL files. PXLReader
exports routines for moving about in such files
and grabbing various bytes and words. A PXL
file contains the crucial TFM widths needed by
DVIReader to correctly position characters when
interpreting a DVI page. These widths, along with
other details about each glyph, are kept in a PXL
file's font directory. A directory is loaded just once
for each font (the very first time the font is seen) and
DVItoVDU will display 'Loading font da t a from

. . . ' in the message line.
A PXL file also contains glyph shape information

(in the form of bitmaps) for all characters in a
font. The main module uses these bitmaps

during a Full display to draw characters a font at a
time. Each time a PXL file is opened, the message
'Drawing charac ters from . . .' will appear.

Because DVIReader creates a separate character
list for each font used on a page. there never needs to
be more than one PXL file open at any given time.

ScreenIO All low-level terminal i/o is handled by
the routines defined in this module.

Performance
A number of methods are used to make DVItoVDV
an efficient program:

Output buffering reduces the number of calls to
the standard VMS terminal output routine.

The DVI file and associated PXL files are mapped
into virtual memory for fast random access.
rn When a glyph is vertically scaled down during
a Full display, overlapping rows in its bitmap
are first ORed together to reduce the number of
ShowRectangle calls needed to build up the glyph.
rn Since the reference points of most characters in
a line will have the same vertical coordinate, some
ShowChar implementations reduce the number of
output bytes needed t o update the screen position
from one character to the next by remembering
the last vertical coordinate. (The sequence of
ShowChar calls for each font is determined by the
way DVIReader builds a character list.)

Specific ShowChar routines map a given TEX
character into a similar-looking ASCII character
using TeXtoASCII, a look-up table imported from
VDUInterface. (Since all 'l$X characters are assumed
to come from text fonts, those from non-text fonts
will appear incorrect .)

The following table shows the times taken to display
an entire DVI page on different VDUs:

Terse Display Full Display
compute elapsed compute elapsed

VT220 0.9 10 7.3 56
VT640 1.2 15 13.9 145
AED512 ? 2 3 ? 159
GIG1 1.5 34 14.6 2488
VIS500 1.6 5 2 18.2 193

all times are in seconds

The figures for the VISUAL 500 were obtained
while running the program on a VV4Y-11/780 with
20 interactive users. All the other VDUs were on a
VAX-111785 with 15 to 20 users. Each tern~inal was
operating at 9600 baud.

The page used in the above benchmark
contained some 2,500 characters from 16 fonts. The
window size was chosen by typing 'H16V12' in each
session. Substantial improvement in performance is
unlikely for any of the current batch of VDUs. The
large discrepancies between computation and elapsed
times. particularly in a Full display, are mostly due
to the huge number of bytes that must be sent t o a
VDU to update the window region.

The times shova in the above table do not
include page interpretation. hlost pages can be
translated in about a second of elapsed time.
depending on how busy your VAX is and how many
fonts are seen for the very first time. For example.
the first 50 pages in the preliminary LATEX manual
(the December 1983 version) were interpreted by
typing 'NNN . . . '. This took just over a minute of
elapsed time on a VAX-11/785 with 17 users logged
in (compute time was 22.3 seconds) Some 35 fonts
were loaded. When the same 50 pages were processed
again (by typing 'INN. . . '). the elapsed time dropped
to 30 seconds and the compute time to 15.9 seconds.

Conclusion
The current version of DVItoVDU should remain
quite stable. particularly from the user's viewpoint.
(I am open to complaints or suggestions though!)
Any changes are more likely to occur behind the
screens. so to speak. One change already in sight
is the reading of font data from GF files instead of
PXL files.

Other VAX/VMS sites with Modula-2 may be
sufficiently motivated to get the program running
on new types of VDCs. An implementation on a

state-of-the-art. bit-mapped graphics terminal would
be something to behold Note that a new 'I'DU can
be added without ha\-ing to make any changes to the

Volume 7 . Number 1

Articles

main module. The DVItoVDU System Guide lists
the necessary steps.

It should be pointed out that DVItoVDU is
currently targeted towards relatively primitive
terminals. Significant changes to both the display
logic and page data structures would probably be
needed to take full advantage of the latest graphic
workstations. For example, a large amount of
bit-mapped memory could store an entire rasterized
page and allow much more sophisticated updating of
the window region. Pan and zoom operations would
also be much easier using a mouse or thumbwheel

cursor controls.
A few hardy souls may even like to translate

DVItoVDU into another language or transport it
to another operating system. Note, however, that
Modula-2 does not specify any i/o facilities as part
of its language definition. While such facilities
are usually provided as library functions, there is
currently no widely accepted standard library. Until
this happens, Modula-2 programs will not be very

portable.
To help make any conversion easier, all system-

dependent code can be quickly located by searching
for the string "SYSDEP" in the various source files.
Terminal i/o is isolated in the ScreenIO module and
most file operations are confined to the DVIReader

and PXLReader modules. DCLInterface is also
highly VAX/VMS-dependent. I can only encourage
such attempts by stressing the advantages of a
page previewer:
rn Paper usage is reduced.
rn Document preparation time is reduced. The typical

proofing cycle of

/ w \
edit t print

can be replaced by

/ w \
edit +- preview.

Experimentation is encouraged. The results of
changing a global formatting parameter or altering a

macro definition can be quickly seen and evaluated.

TUGBOAT

