
66 TUGboat, Volume 6 (1985), No. 2

Vndblt (Vanderbilt University): H. Denson Burnum,

615-322-2357

WashStU (Washington State University): Dean Guenther,

50%335-O4ll

Wzmn (Weizmann Inqitute, Rehovot, Israel):

Malka Cymbalista, 08-482443

Yale: Bill Gropp, 203-436-3761

Index to Sample Output

from Various Devices

Camera copy for the following items in this issue
of TUGboat was prepared on the devices indicated,
and can be taken as representative of the output
produced by those devices. Some items (noted
below) were received as copy larger than 100%;
these were reduced photographically using the PMT
process. The bulk of this issue, as usual, has been
prepared (all with w 8 2) on the DEC 2060 and
Alphatype CRS at the American Mathematical
Society.

- Apple Laserwriter (300 dpi):
Textset advertisement, p. 103.

- Canon CX (300 dpi):
Metafoundry advertisement, p. 100.

- Epson LQ1500 (180 dpi):
Norman Naugle, An elementary sum,
p. 70; TI/PC running PC w .

- QMS Lasergrafix 800 (300 dpi):
Norman Naugle and Tomas Rokicki,
\output= . . . \random, p. 71;
TI/PC with PC 7JjX.

Gregory Marriott, A m 8 2 implementation

on the HP9000 Series 500, p. 80.
M i c r o w advertisement (Addison- Wesley),
p. 102; IBM PC using M i c r o w .

- QMS Lasergrafix 1200 (300 dpi):
Michael J. Ferguson, Multilingual m,
p. 57; VAX 111780 (VMS).

- Toshiba P351 (180 dpi):

PC 7JjX advertisement, p. 104;
IBM PC/XT using PC T)jX.

- Versatec (200 dpi): Hans Riesel, Report

on experience with m80, p. 76; reduced
from 130%; w 8 0 , DEC-20.

- Xerox Dover (384 dpi): Amy Hendrickson,
Some diagonal line hacks, p. 83.

GRAPHICS COMMANDS FOR TkjX
DISCUSSION IN W H A X CONFERENCE

Alan Spragens
Stanford Linear Accelerator Center

The W h a x network conference carried a number

of comments concerning graphics and lljK during a

period from about a year ago until about six months

ago. Then the discussion petered out, presumably
because no consensus was reached. My file of mail

items comprising this discussion runs to 53 printed

pages.
I wrote the following description of parts of

that discussion as a memo to a committee at S L A C

investigating how we might best create merged text

and graphics on our computer systems. Although we
have been creating such documents experimentally

for some time i n a variety of ways, it has required

hacking. We're on the track of methods applicable

to a variety of systems and devices, usable by our

community of hundreds of physicists who do their

own papers. I tried to give a flavor of the discussion
and mention some ideas that seemed important to

me rather than a summary, thinking that more in-
terested parties should get hold of the actual material

that came over the wire. Accordingly, I don't include

here mention of important contributions from some

of the main participants in the discussion, such

as Todd Allen and William LeFebvre, and I hope

they'll pardon the omission.

The w Project's "party line" on why the

language and DVI (T)jX "device-independent"
output) format lack graphics commands was stated
by David Fuchs a year ago: (1) there is no way
to provide the capabilities in a device-independent
manner, and (2) the world lacks a standard, compre-
hensive, accepted language for describing computer
graphics. Dave mentioned that m ' s designers
recognized the need for graphics capabilities in a
language specifying the appearance of a printed
page, so they included the \special command for
extending the language for just such a purpose. He
exhorted people to consider the long range view,
beyond present technologies, rather than dash off a
"standard" that would be unsatisfactory in a couple
of years, e.g., consider shading, halftones, splines,
color, etc. Since this "party line" message came
over the net a year ago, I called David last week to
ask if anything had changed. He said nothing had
changed, that they had hoped that "Adobe would
take over the world by now," but it hadn't. He also
mentioned that a number of sites, including Stan-
ford, had implemented various graphics languages

TUGboat, Volume 6 (1985), No. 2 67

via \ spec ia l that were device-dependent and site-
specific. He suggested not limiting ourselves to a
particular language, but allow for inclusion of a
standard (e.g., put a "tag" such as s l a c into our
commands). One suggestion that came up in the
m a x discussion was to establish a "registry" of

graphics commands under the zgis of the Users
Group to avoid incompatibilities, a t least within the
T$$ community. Dave said such a registry had not
been established to his knowledge.

The w h a x discussion centered around com-

mands for producing line graphics. There was little
discussion of commands for inserting external files
or of the more esoteric graphics functions such as
color and shading. I think I can fairly say that
the following line-graphic operators were generally
agreed to be desirable: line, circle, ellipse, a rc ,
and spline.

Two "systems" of defining these commands

emerged, which I'll describe shortly. There was
some discussion as to how the graphics commands
should be implemented in w , that is, how macros
to resolve them into \special 's would work, which
I'm leaving out. (That information would be of
interest to macro writers, however-contact me if
you want it.) A suggestion that new w commands
(instead of \special) be implemented for graphics
was generally rejected.

Paul Grosso described a system wherein the
different graphics capabilities of different devices are
resolved by "tags" in the graphics language. e.g.,
\specialCFOO : ABC)\specialCBAR : XYZ3 where FOO
and BAR are devices and ABC and XYZ are differing
graphics commands for the two devices. This
caused a number of complaints that m ' s device
independent philosophy was thereby violated. It was
suggested that DVI-to-device translator programs
should ignore graphics commands unacceptable to
target devices, rather than treat them as errors.

There was some discussion of pen specification;
generally the people concerned with pens seemed
to want them defined in terms of shape and size,
and they wanted to be able to store pen definitions,
perhaps by name or number, and recall them
later. A suggestion that METAFONT-style pen
definitions be adopted was favorably commented
upon by several people. Such a definition might
look like \special(pen 5 e l l i p s e 2pt Ip t3 for
an elliptical pen shape whose width is 2 points,
whose height is 1 point, and whose definition is
stored as pen 5. Some people advocated that pen
shapes be characters in a font; I didn't quite grasp
the significance of this suggestion.

Regarding the set of graphic operators to be
accepted, two distinct systems emerged in the
discussion. One was called the delta system; the
other was called the join system. I believe the salient
characteristic of the delta system, as proposed by
Pierre MacKay, is that graphics coijrdinates are
given in units relative to the "current" position
on the page. In the join system, coordinates are
absolute. To illustrate, conceivable delta system
commands are shown in Table 1, more or less as
presented by Pierre MacKay working from TiTROFF
specifications of Brian Kernighan.

l i n e dh dv draw line from current position by
dh dv

c i r c l e d draw circle of diameter d with left
side here

e l l i p s e d l d2
draw ellipse of diameters d l d2

a rc &I dvi dh2 dv2
draw arc from current to dhl+dh2
dvl+dv2, center at dhl dvl from
current position

sp l ine dhl dvl dh2 dv2 . . .
draw B-spline from current position
to dhl dvi , then to dh2 dv2, then
to . . .

Table 1. Graphics Commands of the delta System

In all of the above examples, dh dv is an incre-
ment on the current horizontal and vertical position,
with down and right positive. The exact syntax
of the commands could be somewhat different, de-
pending on how the w macros implementing the
\ spec ia l were written. The point is to note that
the delta system depends on relative coordinates.
The join system, proposed by Howard Trickey and
based on work of Ignacio Zabala, depends on abso-
lute coordinates. This sounds less desirable until we
see an important additional command that is pro-
posed: point n , where n is an integer in the range,
say, between 0 and 255. That is, the current cursor
position is saved and associated with the numeric
name. Thereafter, its absolute coordinates may be
used in a set of line graphics commands similar to
those of the delta system. An additional command
of the join system would be a join command which
would draw a line from one previously named point
to another, perhaps using a "pen" of specified shape
and size which could also have been defined and

named. The usefulness of the join approach may be
seen from the TEX code in Example 1, contributed
to the discussion by Howard Trickey.

68 TUGboat, Volume 6 (1985), No. 2

\def \p#l{\special{point #I))

\def\j#l#2{\special{join 4 #I #23)

\tabskip=15pt

\halign{&&\hf il#\hf il\cr

John& Harry& Alexander\cr

\pi& \p2& \p3\cr
\noalign{\vskip 30pt)

\p4& \p5& \p6\cr
Helen& Janet& Amy\cr)

\jl5\j24\j36

Example 1. The join Graphics System in Tj$

This code is a table specification which, were
the point and join commands implemented, would
create a table with three columns and draw lines
from points centered under John, Harry, and

Alexander to points centered over Janet, Helen,
and Amy, respectively. The obvious advantage is
that the user needn't know where the points pi-p6

will be placed on the paper. It was noted that
points in one system could be converted to points
in the other with some Whackery. There was
discussion of such questions as whether points and
pens would be remembered across page boundaries.
Pierre MacKay pointed out that the join system
would be preferable if a graphic were closely joined
with text, as in the example, but that the delta
system would probably be better for graphic objects
created independently of text.

Some discussion about how to treat the ends
of splines escaped me, presumably because of my
small experience drawing them. There seemed to
be some agreement that options on spline-drawing
commands should allow one or both of the end
points ends to be "hidden" or "visible."

One entry in w h a x mentioned the ANSI
standard called GKS (Graphical Kernel Standard)
which is being proposed. Copies of the committee's
working papers can be obtained for $35.00 from

X3 SecretariatICBEMA
311 First St. NW, Suite 500
Washington, D.C. 20001

Phil Andrews described the part of the standard
called a "Virtual Device Metafile" (VDM) which
establishes a set of primitives device drivers would
be expected to handle. They include: polyline,

polygon, circle, arc, arc close (pie or chord),
and cell array (an array of colored points). More
complicated figures such as splines are supposed to
be drawn before the VDM is written.

Leslie Lamport's Uw system was mentioned
for its graphics capabilities. The interesting thing
about UTEX'S graphics is that they are generated

by itself, rather than at the DVI-device level;
they require nothing more of the device and DVI
translator program than is already present if w
is working-the capability to place characters at
coordinates as specified in the DVI. The IAQY
graphics work by typesetting line segments, straight
and curved, from special fonts supplied with the
macros. Circles and arcs of various sizes are
available as are lines at various slopes (Tf$ draws
vertical and horizontal lines itself). Certainly,

the LATEX graphics capabilities are quite limited,
but they suffice for many purposes and require no
enhancements to the system and its friends.

They do require a fat version of m, and I suspect
some printer peculiarities may cause broken lines.

John Aspinall from MIT recommended two
books on splines in response to a query about where
they came from: A Practical Guide to Splines by
Carl de Boor (Springer-Verlag, 1978) and "Local
Control of Bias and Tension in Beta-Splines" by
Brian A. Barsky and John C. Beatty in ACM
~ansac t ions on Graphics, 2(2) April 1983. He
noted that, traditionally, the spline was a drafts-
man's tool, a long, flexible piece of wood used to
draw a smooth curve through a series of points.
The spline was held in place by weights, called
"ducks," a term which did not make the transition
into mathematical jargon.

A number of rancorous exchanges were made
debating the proper position of point 0,O on the
physical device page. This question was settled by
David Fuchs who declared that point 0,O is 1 inch
down and 1 inch to the right of the top left corner
of the actual output page. He then said, "the Great
and Powerful Oz has spoken." That is the l&X

standard; it is what DVI expects.
Finally, Charles Karney proposed three new

\special commands: (1) to specify landscapel-
portrait page orientation, (2) to print portions of
text in a arbitrary rotation, and (3) to position
text correctly with respect to a figure. I believe

the meaning and implications of the first two
proposed commands are fairly obvious. The third

is more complicated and was described as follows
(more or less). The idea is to allow w e d labels
(or callouts or nomenclature) on figures that are
contained in separate graphics files. (Heard this idea
before?) The graphics files don't know anything
about w, and the DVI doesn't know anything
about where the labels should go. Basically, Karney
proposes that 'I]EX typeset the labels and the
graphic file specify where they should be placed.
The two are coordinated by a tag given to each
label. This proposal requires that the DVI-reading

TUGboat, Volume 6 (1985), No. 2 69

program read the graphics file and pull out the label
specifications, storing their positions and rotations
in a table. This information would then be inserted
into the label specifications in the DVI so that the
DVI-reading program could set the labels in their
correct positions, possibly using the capability in
Karney 's proposal (2). Presumably the graphics-
generating program would need to be able to
generate the described label material; perhaps a pre-
or post-processor could pick out the information
and put it somewhere for the DVI-reading program,
but the positioning coordinates, it seems, would
need to come from the graphic generating program.
As another respondent to the proposal asked, "Do
most device-independent graphics packages offer a
reasonable way of inserting a 'put l a b e l n here'
control sequence in their output stream?''

Miscellaneous activity at Texas A&M

Norman W. Naugle and Tomas G. Rokicki

The following three pages illustrate the output from
several devices interfaced to QX at Texas A&M, as
well as announcing the availability of a C version of
w 8 2 .

"An Elementary Sum" was output on an E p
son LQ1500 (180dpi x 180dpi) using 200dpi fonts
(180dpi fonts are not yet available). It was w e d
on a TI/PC running PCT@ (it also works on
Mic ro rn) , and used an output driver and screen
preview system written by Tomas Rokicki, which
will soon be available on most MS/DOS machines.

We have drivers that work, or can quickly be
made to work, on almost any reasonable dot matrix
printer or screen display device (currently: TI-855
printer, TI/PC screen, LQ1500, and Printronix P-
300). Almost any new driver can be written in
a matter of two days. These drivers are written
in WEB and translated into C, and then, in some
cases, modified in machine language. They can
be supplied for VAXIVMS, VAXIUnix, Unix in
general, MS/DOS, Prime and DG (soon others), as
well, of course, as for the QMS-800, 1200, 2400,
and soon the Smartwriter. We are also considering
the Postscript problem, but no actual work has
begun. Some of the drivers suffer from the lack of
fonts in the correct size (for example the TI screen),
but most have a set of Almost (Computer) Modern
fonts.

Our port of to C is aimed at the Unix
world, even the large machines, although our main
interest is the small systems. The main advantage
to C is its portability.

All of these will be available from the Texas
A&M TQX Users Group. Write or call for informa-
tion.

