Gauss has called mathematics a science of the eye, and in
conformity with this view always paid the most punctilious
attention to preserve his text free from typographical errors.

James Joseph Sylvester
address to British Association, 1869

TUGBOAT

THE TEX USERS GROUP NEWSLETTER
EDITOR ROBERT WELLAND

VOLUME 4, NUMBER 1 . APRIL 1983
PROVIDENCE + RHODE IsLAND .« USA.

TUGboat, Volume 4, No. 1

ADDRESSES OF OFFICERS, AUTHORS AND OTHERS

ARMADING, Tom FURUTA, Richerd
Medical Cantar Computing Fociity Univ of Washington
University of Rochester Computer Science, FR-35
Rochester, NY 14827 Seattls, WA 98195
716-275-2613 206-543-7798
BEEBE, Neison H. F. GOUCHER, Raymond E.
Colage of Science Computer American Mathematical Sacisty
Department of Physics P.0. Box 5248
University of Utah Providance, R 02040
Sak Lake City, UT 84112 iy
801-561-5254 401-272-9500
BEETON, Barbare GROSSO, Paul
Amarican Mathematica) Socisty Univ of Michigan
P.0. Box 6248 1075 Beal St
Providence, R 02940 Ann Arvor, M1 48109
401-272-9500
GUTHERY, Scoit 8,
BENNETT, J. Michael Schiymberger Well Services
Regional EOP Ctr, Aarhus Univ 4669 SW Froeway
Ny Munkegade P O Box 2175
8000 Aarhus C, Denmark . Houston, TX 77027
4
BERTELSEN, Erik 13828497
Regional EDP Center, Univ of Aarhus (RECAV) AL
B Minkgade Mathematical Reviews
Bygning 511 Church Streat
DK-8000 Aarhus C, Denmark P.0. Box 8604
45 6 128355; Telex: 64 754 recau dk Ann Arbor, MI 48107
BIGELOW, Charles 313-184-1228
Departmant of Computer Science .
Stanford University ION, Patrick
Stenford, CA 94305 Mathematical Reviews
611 Church Street
BUNNER, Irens £.0. Box 8604
JOJ Wordware Ann Arbor, MI 48107
P O Box 354 313-764-7228
Cupertino, CA 95015
415-965-3245 JOHNSON, John D.
CARNES, Lance S et
163 Linden Lane Cupertino, CA 95015
Wil Yaboy, CA 94941 415-065-3245
415-388-8853
CHILDS, Bart KNUTH, Doneld E. .
Department of Computer Science Deportrent of Computer Sciance
Texas A & M University Stanford University
College Station, TX 77843 Stanford, CA 94305
409-845-5470
KRAPP, Devid
CODE, Meria Calma
Data Processing Services Architect, Engrg & Construc R&D
1371 Sydney Or 11075 Rosalle St
Sunnyvale, CA 94087 San Diego, CA 92121
CURTIS, Pavel 619-453-2660
ARPAnet: Pavel.Cornall@Udel-Rolay LAMPORYT, Leslie
SRI International
et W areneal Sy 353 Rravood Ave
P.O. Box 6248 Menlo Park, CA 94025
Providence, R 02940 415-859-3652
401-272-9500
MacKAY, Pierrs A.
FUCHS, David Dept of Computer Science
Dapartment of Computer Science Univ of Washington
Stanford University OR-35
Stanford, CA 94305 Seattle, WA 96195
415-497-1646 206-543-2266

McCLURE, Robert M.
Unidot, Inc

1028 W Mauds, #309
Sunnyvale, CA 34085
4087336617

MOHR, August

P 0 Box 1757

Santa Cruz, CA 95061
409-425-1222

NAUGLE, Normen W.
Department of Mathematics
Texas A & M University
College Station, TX 77843
409-845-3104

NICHOLS, Monts C.

Exploratory Chemistry Division

Sandia National Laboratories 8313

Livermore, CA 94550
415-422-2906

PALAS, Richerd S.
Department of Mathematics
Brandsis University
Waltham, MA 02154

PIZER, Arnold
Department of Mathematics
University of Rochaster
Rochester, NY 14627
T16-215-4428

PLASS, Susan

Polya 203

Canter for Information Tachnology

Stanford University

Stanford, CA 94305
4)5-497-1322

PRICE, Lynne A.

CALMA

Resoarch end Development

527 Lakeside Orive

Sumnyvale, CA 94006
400-245-7522

RODGERS, David

Textset, Inc

1612 Anderson -

Ann Arbor, MI 48104
313-764-7228

SIEGMAN, Anthony E.

Ginzton Lab 35

Stanford University

Stanford, CA 84305
415497-0222

SPIVAK, Michael

2478 Woodridge Drive

Decotur, GA 30033
404:329-0372

STERKEN, Sim
2701 Lookout Circls
Ann Arbor, MI 48104

STROMQUIST, Ralph
MACC

University of Wiscons

1210 W. Dayton Street

Madison, WI 53706
608-262-8821

THEDFORD, Rilla J.

Mathematical Roviews

611 Church Strest -

P.O. Bax 8604

Ann Arbor, M1 43107
313-764-7228

TOBIN, Georgis K. M.
Office of Research
OCLC Online Computar Libeary Center, [nc
6565 Frantz Rd
Dublin, OH 43017
614-764-6000

TRABB-PARDO, Luis
Department of Computer Science
Stanford University

Stanford, CA 94305

TRICKEY, Howard
ARPAnet: hwtQsu-2i

TUTTLE, Josy K.
1P Sharp Associates

220 California Averus

Suite 201
Palo Alto, CA 94306
415-327-1700

WELLAND, Robert
Department of Mathematics
Northwestern University
2033 Sheriden Roed
Evanston, IL 60201
312-864-2898

WHIDDEN, Semuel 8.
Amarican Mathematical Soci
P.O. Box 8248
Providence, RI 02040
#01-272-9500

WHITNEY, Roneld

Amarican Mathematical Society

P.0. Bax 6248

Providenca, R1 02040
401-272-9500

ZABALA, Ignacio
Department of Computer Science
Stanford University
Stanford, CA 94305

ZAPF, Hermann
Seiterswog 35 '
D-6100 Dermstadt Fed Rep Germeny

TUGboat, the newsletter of the TEX Users Group (TUG), is published irregularly for TUG by the American
Mathematical Society, P.O. Box 6248, Providence, RI 02940. Annual dues for individual members of TUG, $20.00
for 1983, include one subscription to TUGboat. Applications for membership in TUG should be addressed to the TEX
Users Group, c/o American Mathematical Society, P.O. Box 1571, Annex Station, Providence, RI 02901; applications
must be accompanied by payment.

Manuscripts should be submitted to a member of the TUGboat Editorial Committee, whose names and addresses
are listed inside the front cover. Articles of general interest, or not covered by any of the topics listed, as well as all
items submitted on magnetic tape, should be addressed to Barbara Beeton, American Mathematical Society, P.O.
Box 6248, Providence, RI 02940.

Submissions to TUGboat are for the most part reproduced with minimal editing. Any questions regarding the
content or accuracy of particular items should be directed to the authors.

TUGDboat, Volume 4, No. 1

OFFICIAL ANNOUNCEMENTS

TUG Meeting, July 11-15 1983, Stanford University

A meeting of the TEX Users Group is scheduled to be held at Stanford University
during the week of July 11-15, 1983. Joey Tuttle, of L P. Sharp Associates, Palo Alto,
will be in charge of compiling the program and of local arrangements. The first two
days will be occupied by an Introductory AMS-TEX82 Users Course for secretaries and
technical typists, presented by Michael Spivak (see page 4). A preliminary program and
a registration form are being mailed with this issue of TUGboat.

TUG Membership Dues and Privileges
Individual Membership

1983 dues for individual members are $20. A library subscription is also $20; see the
statement on page 4 regarding the difference between individual membership and library
subscriptions. :

Membership privileges include all issues of TUGboat published during the member-
ship (calendar) year. All new members and other persons inquiring about TUG will be
sent a complimentary copy of TUGboat Vol. 1, No. 1 (1980). Members residing outside
North America, upon payment of a supplementary fee of $12 per subscription or volume
year, may have TUGboat air mailed to them. Lengthy macro packages, such as Max
Diaz’s Fécil TeX (Appendix A, TUGboat Vol. 2, No. 2), will be published separately in
the future; details will be given on the order form.

Institutional Membership

Institutional membership dues are $200 per year for 1983. Membership privileges
include: designating up to 5 persons as individual members, special rates for participation
at'TUG meetings, and being listed as an institutional member in each issue of TUGboat.

" TUGboat Schedule

The deadline for submitting items for Vol. 4, No. 2 (1988), will be August 22, 1983; the
mailing date will be September 30. Contributions on magnetic tape or in camera copy form
are encouraged; see the statement of editorial policy, page 3, Vol. 3, No. 1. Editorial
addresses are given on the inside front cover. For instructions on preparing magnetic
tapes, or for transferring items directly to the AMS computer, write or call Barbara
Beeton at the address given, (401) 272-9500, ext. 299.

It is TUG’s policy to keep all issues of TUGboat in print. Each member is entitled
to receive all issues which appear during the membership year, as well as Vol. 1, No. 1.
Domestic subscriptions are mailed third class bulk, which may take up to six weeks to
reach its destination; shipments outside North America are mailed surface printed matter,
unless the air mail option is elected. If you have not received an issue to which you are
entitled, write to TUG at the address given on the order form for general correspondence.

TUGboat Advertising and Mailing Lists

For information about advertising rates or the purchase of TUG mailing lists, write
or call TEX Users Group, Attention: Ray Goucher, ¢/o American Mathematical Society,
P. O. Box 6248, Providence, RI 02940, (401) 272-9500, ext. 232. .

*« ok * *x * ¥ ¥ * *kx * #%

General Delivery

* % * %x % % * * ¥ ¥ *

LIBRARY SUBSCRIPTIONS —
WHAT ARE THEY?

One of the subscription options for TUGboat is
the “library subscription”. The price is the same
a8 for an individual membership, and a frequent
question is, What is the difference?

Some organizations wish to obtain copies of
TUGboat for a library, or for various reasons do
not wish their “organizational” subscription to be
directed to a particular individual (e:g. individuals
leave, the project which required TEX information
is taken over by someone else, etc.). It is to satisfy
these reasons that the “library subscription” was es-
tablished. Library subscribers will receive the same
mailings on the same schedule as individual mem-
bers. However, only members (individual members
or individuals representing institutional members)
may participate in TUG meetings.

* k% Xk x ¥ *k %k *x K ok X

USERS’ COURSE IN AMS-TEX
Michael Spivak

It will be necessary for AMS-TEX to be com-
pletely re-written for TEX82. Fortunately, there are
so many improvements in TEX82 that the rewrite
should be easier, and the final product less kludgy,
than the original. I will be spending the entire
month of May at Stanford working on this, so the
new AMS-TEX should be much better (or perhaps
much worse) than the old one. It will probably in-
corporate some things from Leslie Lamport’s macro
package LaTEX, though how much, or how, hasn’t
been decided yet.

The Joy of TEX will also be completely rewritten
(sometime in the distant future, on a far off galaxy),
partly because of additions, differences, and a few
incompatibilities with the old AMS-TEX, and partly
to improve the exposition. (One main change I have
in mind is to eliminate most of the side trips—
telling people not to read them just because they’re
in small type is like the judge telling the jury to
ignore that last remark—and instead collect them
together into a second part. So the first part will
enable people to get going using AMS-TEX, and the
second part will involve more esoteric things.)

It is to be hoped that I will get a lot of ideas
about how to do things from the AMS-TEX course

TUGboat, Volume 4, No. 1

given in July. It should be emphasized that this
course is & course only in AMS-TEX! On the one
hand (the low one) it is not a course in how to use
a computer or a text editor; it will be assumed that
everyone has their own favorite (or well-hated) text
editor, or will be learning one. On the other hand
(the high one) it won’t be a course on TEX either;
it will cover only those things that you can do with
the AMS-TEX macro package. Participants are en-
couraged to bring examples of horrendous typeset-
ting problems; I will try to leave time at the end of
the course to attack a few.

¥ % % ¥ X ¥ % * 3 ¥ *

TUG TREASURER'’S REPORT
December 31, 1982

Income:
Membership/Publications’
1981 Merbership : $ 1,300
1981 Back volume sales 2,156
1982 Membership 10,100
1982 Library subscriptions 535
1982 Foreign postage option 588
Supplements? 376 $ 15,055
Institutional Membership®
Educational $ 200
Non-educationat __200 400
Meetings
Meeting, Cincinnati, 1/82 $ 4,500
Meeting, Stanford, 7/82* 11,025
Course, Stanford, 7/82¢ 27,468
Waiver, Meeting/Course
Fees® (450)
. Manufacturers’ Reps Fees* 300 42,843
Other
Videotape sales/rental $ 2,200
Advertising and st sal
mailing i es -0-
Royalties (TEX manual) -0- 2,200
Total income $ 60,498
Expenses:
TUGboat (2 issues)
Printing $ 2,22
Postage 1,143
Editorisl services® : 3,460
Clerical services® 3,300
Computer expense 3,555 $ 13,678
Meetings
Cincinnati, 1/82 $ 4,130
Stanford, 7/83 2,460 6,590

TUGboat, Volume 4, No. 1

Other
Supplements? $ 225
TEX distribution suj Pport
(Sta.nford) -0-
ANSI meetings® 2,503
Legal and tax consulting® -0-
Advertising TUG membership
& TUGboat® -0-
General mailings 1,335
Subsidies!® -0-
Printing, other 1,212
Miscellaneous*! 1,688 6,963
‘Total expenses $ 27,231
Summary:
Balance forward 1/1/82 $(8,660)
Total income 60,498
Total expenses (27,231)
Balance 12/31/82 $ 24,607
Notes:
All expense figures include an AMS overhead charge of

1.

8.
9.

17.13%.

1981 membership was open through April 30,
1982; 130 1981 members were accepted in 1982;
since then, individual 1981 issues have been avail-
able for $10 each ($30 per volume/3 issues).
As of December 31, 1982, there were 731 1982
memberships/subscriptions, including libraries and
complimentary: 258 -foreign, including Canada and
Mexico; 473-U.S.

47 copies of reprints of Max Dfaz’s Facil TEX were
sold.

The issue of Institutional Membership was finally
resolved at the Stanford meeting in July, but it
proved to be too late to launch an effective mem-
bership drive. Only the American Mathematical
Saciety and Calma became Institutional Members
during 1982. However, as of March 31, 1983, TUG
has 27 Institutional Members.

. 136 members participated in the TUG Stanford

meeting, July 25-30, 1982: 62 attended the TUG
meeting; 9, the TEX82 short course; and 65, both
the meeting and short course. Representatives of
Hewlett-Packard, Florida Data and Symbolics par-
ticipated also.

. The Finance Committee approved the waiver of fees

for one member to participate in both the TUG
meeting and the TEX82 short course.

. Editorial services include programming, reviewing

and editing; clerical services include maintaining the
data base and mailing list, and other administrative
duties.

. $8,500 was allocated to Stanford primarily for

Professor Arthur Samuel, who acted as TEX coordi-
nator, answering questions, distributing tapes, and
fixing bugs in the TEX source code. However,
another source of support was found for this func-
tion, and the amount budgeted was not used.

The Steering Committee authorized attendance by
Lynne Price at two meetings of ANSI X3J6.

Some legal /tax consulting was received for which
there was no charge. Advertising TUG membership,

10.

5

meetings and TUGboat was accomplished at no cost
to TUG through news releases distributed to various
trade publications with very favorable resulis.
Money available to the Finance Committee to sub-
sidize travel and membership fees for individuals
when appropriate.

11. Postage/express charges, telephone tolls and sup-
plies, plus programmer and clerical services not as-
sociated with production of TUGboat.

Respectfully submitted,
Samuel B. Whidden, Treasurer
£ X % % ¥ ¥ % £ % * %
TUG BUDGET — 1983
Income:
Membership/Publications
1981 Back issue sales,
300810 $ 300
1982 Back issue sales,)
708815 1,050
1983 Membership, 6508820 13,000
1983 Library subscnptxona,
300%20? 600
1983 Foreign postage option,
75Q812 900
Supplements® - 500 $ 16,350
Institutional Membership ‘
1983 Membership, 2508200 § 5,000 5,000
Meetings
Stanford 7/83 $ 8,000
Fall '83° 7,000 15,000
Other
Videotape sales/rental $ 3,000
Advertising and
mailing list sales 500
Royalties (TEX manual) 500 4,000
Total income $ 40,350
Expenses:
TUGboat (2 issues)*
Printing $ 2,200
Postage 800
Editorial services 4,300
Clerical services 4,000
Computer expense 3,200 $ 14,500
Meetings
Sta.nford 7/83 $ 4,90
Fall '833 4,960 9,920
Other
Supplements® $ 350
ANSI meetings® 1,180
Legal and tax consulting ~ 500
Advertising TUG membership
& TUGboat® 1,500
General mailings 1,100
Printing, other 2,180

6
Subsidies’ 1,180
Miscellaneous® 2,300 10,260
Total expenses $ 34,710
Budget summary: (revised 4/83)
Balance forward 1/1/83 $ 24,607
Total income 40,350
Total expenses (34,710)
Estimated balance 12/31/83 $ 30,247
Notes:

These figures, with the exception of the budget sum-
mary, are identical to those published in TUGboat Vol.
3, No. 2. The rescheduling of the Stanford meeting from
March to July has been noted.

Al exgense figures include an AMS overhead charge of
18%.

1. Numbers of members and subsecriptions are based on
1982 figures for individual memberships and library
subscriptions. The estimate for institutional mem-
berships is now obsolete; 27 institutional members
have joined as of March 31.

2. Lengthy descriptions of macro packages will be
available for purchase separately.

3. Although no formal plans have been made for a
second general meeting in 1983, one is assumed for
the Fall.

4. Editorial services include programming, reviewing
and editing; clerical services include maintaining the
data base and mailing list, and other administrative
duties.

5. Support is budgeted for attendance at one meeting
of ANSI X3J6.

6. Costs for advertising TUG membership in trade
publications.

7. Money available to Finance Committee to subsidize
travel and membership fees for individuals when
appropriate.

8. Postage/express charges, telephone tolls and sup-
plies, plus programmer and clerical services not as-
sociated with production of TUGboat.

Respectfully submitted,
Samuel B. Whidden, Treasurer

* *k ok * * % *k * ¥ % k

Software

* % *x % ¥ % %x %X X %x ¥

TEXhax SUMMARY
David Fuchs

Here's a distillation of the information that has
gone through the TeXhax mailing list over the last
few months. Most of it consists of details of install-
ing and maintaining the WEB and TEX systems, and
it is not very well organized.

One change to both systems is that all of our WEB
programs now discard trailing blanks on all input

TUGboat, Volume 4, No. 1

lines. This aids in portability, since there are a
surprising number of systems in which the number
of trailing spaces a program gets to see on each
line is some random function of the phase of the
moon. It also improves the TEX langusage, since it is
harder to have invisible differences between two files
lead to differing results. Implementers should check
their change files, since we had to alter a system-
dependent module in many of the programs to make
this change (look for input_in).

Another reason you might get the “Change file
entry did not match” error is that most of the dis-
cretionary hyphens (\-) that were included in the
WEB source code have been removed, since they are -
no longer necessary with TEX82’s hyphenation algo-
rithm. Similarly, a number of comments in the WEB
programs that looked like x now look like Ixl|,
since this is the correct way to use WEB. Finally,
the ANSI Pascal document specifically rules out the
statement WRITE(I:0), so we have changed all our
WEB programs to say WRITE(I:1) to mean “write out -
I with no leading or trailing blanks”.

For TEX, there are a few other changes to watch
for: The module (Globals in the outer block) has
been renamed (Global variables), so if any of your
change file entries say “(Globals ... }” you’ll have
to change them. The ¢¢ and go macros have been
joined by A¢ and ho, which you should add to your
change file if this is a module you changed. Finally,
the macros float and unfloat have been added to aid
TEX installers on systems on which it is impossible
to use native floating point numbers for glue ratios.

There are a few new features in WEB. First, the
new control sequence @* is similar to 0°, except
that it indicates that a hexadecimal constant fol-
lows. Note that TANGLE.WEB actually uses 0" in one
place, so if you are trying to bootstrap a new Tangle
from an old one, you’ll have to temporarily change
0"8000000 to @ °1000000000 in the new TANGLE. WEB
when you process it with the old Tangle (otherwise,
the old Tangle will ignore the 0" and interpret
8000000 as a decimal number, and you’ll end up
with a TANGLE.PAS that won’t run on itself). This
adulterated Tangle should be able to run through a
clean copy of the new Tangle and produce the same
correct Pascal program. Once you reach this state,
you can toss out the altered Tangle, and forget that
we ever suggested changing a WEB file directly.

.T'wo other new primitives: @/ forces a line-break
in the Pascal output of Tangle, and 0=. . .0> means
to put the included text into the Pascal output
“verbatim”. Also, WEAVE now keeps track of which
modules are changed, and prints all references to
these module numbers with an asterisk. WEBHDR al-

TUGboat, Volume 4, No. 1

lows you to output only the changed modules, so
you can make a short listing of only the modules
you changed, by using your change file to put
“\let\maybe=\iffalse” in limbo at the beginning
of the WEB program. See the latest TOPS-20 TEX
change file for an example of this.

The new TANGLE.WEB uses the new @ feature,
while the old versions of Tangle will ignore it as an
unknown control code. Thus if you are bootstrap-
ping to the new Tangle by using an old Tangle,
your first new TANGLE.PAS will not quite agree with
the TANGLE.PAS that you get after running the first
new TANGLE.PAS on the new TANGLE.WEB. But the
difference is only in the debug-breakpoint code, and
doesn’t alter the meaning of the Pascal program, so
this won’t cause any special trouble.

A number of people have pointed out deficiencies
in the way change files are done. For instance, it
is not too convenient to change a. single line in the
middle of a module. There is also some sentiment
for a system in which you list all of the lines you are
changing, so that Tangle/Weave would detect the
case where you get a new version of the program and
one of the modules which you have in your change
file has been altered (so your change might no longer
be correct). I personally favor this approach, but we

don’t have the manpower to consider implementing’

this right now.

A note of caution on Tangle: More than one
person has tried altering Tangle to produce all lower
case output. This is dangerous business, because
Tangle’s code for collapsing constants looks in the
output buffer for the strings “DIV” and “MOD”. Thus,
you can get incorrect results if you change Tangle
such that “div” and “mod” might end up in the
buffer.

Tangle’s output is now a bit different than it used
to be. First of all, line breaks occur at semi-colons
or right braces whenever possible. Also, comments
are inserted showing where each fragment of code
came from. For instance, part of the Pascal output
might look like:

...{123:} Foo; {456:}
Bar; {:456} More; {:123} ...
This means that module number 123 looked some-
thing like this:
Foo;
(Another module)
More;

And module 456, called {Another module), consisted
of the single line:

Bar;
Thus, it is now easy to tell where each piece of Pascal
code came from. We intend to use this information

7

with the data gathered in the statement eounting
experiment to find out how much of the total run-
time of TEX82 each individual module accounts for.
Note that the new output format implies that
each program produced by Tangle is of the form:

{xxx:} PROGRAM ZZZ; END. {:yyy}

The Pascal manual and the ANSI standard are not
specific about whether a program can end with a
comment, but no one has yet reported this to be a
problem.

Here’s a problem that a few TEX installers are
facing, having to do with evaluation of expressions.
Consider:

program expres(output);

type sizteenbit = 0..65535;

var s, : sizteenbit; 1,7 : inleger;

procedure p(k :integer);

begin write(k) end;

begin
s :=65535; 1 := s+ 10; p(z);
Sem £:=10; ¢ := s+ ¢; p(2);
8em p(s +t); p(65535 + 10);

end.

This program should print out 65545 four times. We
have heard reports of a few compilers that try to op-
timize some of the expression evaluations to be six-
teen bit calculations, and produce the wrong result
in some of these cases. The new ANSI Pascal stan-
dard document specifically says that all expressions
have to be computed to full integer precision, so the
compilers in question are in the wrong. This does
not bode well for sixteen-bit systems with a “LONG
INTEGER” type, however, since even if you use your
change file to change all integer variables to LONG
INTEGER, the compiler might not do the above cal-
culations correctly.

Us folks at Stanford are interested in address-
ing any bugs you may find in any of our WEB pro-
grams. The bug report format we most appreciate
is “Module X in program Y is wrong because Z.” If
you have found that a bug exists in TEX82, but you
can’t locate the cause, then it would help for us to
look at all the data. We need input files as well as
the log file. If you say \tracingall, TEX gives its
most verbose output. So please turn everything on,
in the vicinity of whatever bug you're diagnosing;
this makes it much easier to pinpoint the problem.

In the same vein, please send a note if you
come across any supposedly non-system-dependent
modules in TEX that you find you had to change.
They might be appropriate to be added to the index
under “system dependent”, or we may alter them so
they aren’t systemn dependent any more.

A hint for installers/maintainers: One trick I use
is to keep a copy of Prof. Knuth’s change file for
the Sail system. Whenever there is a new TgX, I
look to see where his new change file is different
from his old one, and I check my change file for
TOPS-20 to see if it needs a similar alteration. You
can do the same thing by keeping a copy of the
TOPS-20 change file, and seeing when it changes.
Actually, now that things are pretty settled down,
it is probably easier just to check TeX82.BUG to see
which modules have been changed, to check whether
your system-dependent stuff is impacted. I also save
a copy of all the WEB programs, so that when new
ones come, I can find all the changes, but this has
not been necessary very often.

Advice on making your TEX efficient: It is im-
portant that all records are declared such that they
will be packed efficiently into memory. Referring to
Module 110 in the brown Version 0 listing of TEX,
note how the type memory.word is made. The hope
is that your compiler will use 32 bits of storage for
each memory_word. Well, one of the variants of
memory_word, glue_ratio, is a real. In Pascal/VS,
for instance, a real is allotted a double-word, which
blows it right there. The proper thing to do in
that case is to change the definition of glue.ratio in
module 106 to be a short_real (in the change file, of
course). .

Similarly, VS Pascal insists that if you really
wanted a variable declared 0..255 to occupy a byte
instead of a word, you have to say

foo: packed 0..255

(note that the placement of the reserved word
packed is non-standard). So, to get TEX down
to a reasonable size, you'll have to change the
definitions of quarter_word, half word, and perhaps
even two_choices and four_choices in module 110.
This sort of change might be appropriate in other
places too, but because most of memory is taken up
by memory_words, it shouldn’t be crucial.

After your TEX port has passed the TRIP test, you
should turn off run-time debug support. For produe-
tion TEX it shouldn’t be necessary to do bounds
checking, uninitialized variable checking, and the
like. Of course, if you run into an apparent bug,
yow’ll probably want to turn it back on to help trace
the problem as far as possible before reporting it to
Stanford (hint, hint).

Advice on porting TEX: First, make sure to con-
gider the modules that are listed in the index under
‘Dirty Pascal’. A few of these modules are debug-
ging code that look through the big “mem” array,
and are considered dirty because they read from
variants that weren’t written into. That is, TEX

TUGboat, Volume 4, No. 1

may have done MEM[0] . SC:=0.0, but a dirty module
might WRITE(MEM{0].INT). This has worked OK
on all machines we’ve run into so far, but one can
imagine an architecture in which it would cause a
problem. Of course, normal users will never run into
this code—it’s only for TEX installers/debuggers.

The dirty module (Display the value of
glue_set(p)) requires a little special attention. On
our system, if glue_set(p) was erroneously set to a
pattern of bits that did not represent a legal floating
point value, due to a bug in TEX, then our run-time
system would blow up while trying to print out its
value. In order to make the code robust in the face
of such bugs, so that the person trying to find the
origin of the bug would be able to continue the job
and use TEX82’s internal debugging support to look
around for further clues, the module in question was
changed so that it first looked at glue_set(p) as an in-

‘teger and figured out whether it was a legal floating

point number. I not, it simply prints “?.?” in-
stead of write(glue_set(p)). Of course, this is very
system-dependent. On other computers, it may be
appropriate to remove this test, but it will certainly
be true that you’ll at least have to change it.

Other than the debugging modules mentioned
above, TEX should never read from a different
variant than it writes into in any record. Also,
TEX should never refer to an uninitialized vari-
able, except for the variable ready_aiready. The
details about ready_already are pretty well covered
in the section of the TEX program titled “The Main
Program.”

Different systems have different conventions
about 1/0 to the user’s terminal. On some systems,
INPUT is hardwired to the keyboard, QUTPUT is the
screen, and that’s it. On others, there might be
another built-in file that is hardwired to the screen,
and INPUT and OUTPUT might always refer to disk
files. Another possibility is that the program ean
dynamically tell the system which files should be
associated with the terminal, and which with the
disk. The TEXware programs and TEX itself try to
be flexible enough to deal with all these possibilities.
Consider TFtoPL, which mentions three files in its
program statement in module 2: tfm._file, pl file and
output. Module 2 also mentions that all of the writ-
ing to the output file goes through the print and
print_in macros; so if you have a system, say, where
output to the terminal must go to file iy, then you
can change the definitions to:

0d print(#)==write(tty, #)
d print_in(#)==write_in(tty, #)

TUGboat, Volume 4, No. 1

You’d probably aiso want to change the program
statement not to include the file output, and you
might have to do a rewrite on tty.

The same comments go for PLtoTF. DVltype is
a bit different, though. It uses the file output for its
main output, so you probably don’t want this file
associated with your terminal. Hence, if output is
hardwired to the terminal on your system, you will
want to change the macros in module 3 to:

0d print(#)==write(type_file, #)

0d print_in(#)==write_in(type_file, #)
You’ll also have to include a declaration of type_file,
and do a rewrite in some other modules.

DVItype holds a dialog with the user to get the
values of certain parameters. The files term_in,
term_out: terxtl_file are declared in the section
Optional Modes of Qutput to be used for this pur-
pose. If, say, your system reserves the pre-declared
files snput and output for this function, then you can
change the declarations to macros:

0d term_in==input
0d term_out==outpul

Pretty sneaky! You can do the same thing if the file
tty is hardwired to your terminal.

There are more headaches due to differing ap-
proaches to I/O on different systems. On many sys-
tems, reading a single character from a file is a rela-
tively expensive operation. That is, the time spent
doing

program slow;
var ¢: char;

while not ¢of do begin
while not eoin do read(c);
readin;
end;
end. :
is 8 major portion of how long TEX itself takes to
run. There’s not too much we can do about this if
your system does read(c) via a slow procedure call.
However, many systems provide some sort of exten-
sion so that you can read a whole line of input at
once, more efficiently. For instance, on our system,
you can say:
var line: packed array [1..80] of char;
howmany: integer;
read(line:howmany);
and the variable howmany will get the number of
characters actually read in. In any case, all of our
programs always read a line at a time into a buffer
array (usually in a procedure called input.in), so if
a facility similar to the one just mentioned exists in
your system, you should be able to use it with TEX

9

by changing just a few modules. (Some people may
be able to do this sort of thing by calling a procedure
in another language.)

Things are even worse for I/O of binary byte data
(TFM and DVI files) and word data (FMT files). Not
only might it be inefficient, but I/O of binary data
is even less standard than character. Even if your
compiler accepts things like:

var w: file of integer;

b: file of 0..255;

write(w, 456); write(b, 123);
you are well advised to check out that these things
will work as expected. It is best to experiment with
a small program to read and write such files before
jumping into the TEX system, if there is any doubt
as to how these files will work on your system. Once

.again, for efficiency’s sake, you may have to block

things up yourself using an array as a buffer.

Two installation points: There have been some
questions on how to run the TRIP test file. To get
results that are identical to ours, you’ll have to com-
pile a special version of TEX that has some compile-
time constants set to values that probably don’t
match the values you’d want to use in a production
version of TEX. In particular, you should turn on
the stat and debug switches, and make the following
definitions in your change file:

0! mem_maz = 3000; {greatest index in TEX’s internal
mem array, must be strictly less than maz_halfword;
this is the value appropriate to the TRIP test file}

0! error_line = 64; {width of context lines
on terminal error messages}

0! half error_line = 32; {width of first lines
of contexts in terminal error messages,
should be between 30 and error_line — 15}

0! maz.print_line = 72; {width of longest
text lines output, should be at least 60}

0! dvi_buf_size = 800; {size of the output buffer,
must be a multiple of 8}

0d hs.mem._base = 2200 {smallest index in the
single-word area of mem, must be
substantislly larger than mem_base
and smaller than mem_maz}

Finally, TEX's try_break procedure is still to big
for some people’s compilers when the stat switch is
turned on. We suggest using your change file to
put the stat code into a small procedure statically
embedded within #ry_breek, so that you won't have
to worry about local/global variables.

10 TUGboat, Volume 4, No. 1

OUTPUT DEVICES AND COMPUTERS

A 1 Facit [Fla.Date Imagen | Laser- |Linotron| P Symbolics| , . Xerox | Xerox | Xerox

cig? APS-5 % 5’:& 62| osp l"m‘” et 10| graix | 202 C::n/ LGP.1 [Varian| Versstec | po | ¥ep | om00
Amdahi{MTS) #Michigen]
Amdahl Wash,
(MVS) st
Apolo *0CLC *0CLC
[Ethornat Stanford Stanford
[oec10 Venderbilt Vanderbilt
Ioscxo * T:,,GH ‘,,” *‘:,':"‘
S _— *SR1 Acaet AMS *CMU

06 T
MV8000 A&M
= B
1BM(MVS) *CIT
IBM(VM) *SLAC
liemato H::’;m
Onyx C8002 TYX Corp,
[Prime #Livermory
ISail [Stanford
Siemens *GMDI
£52000 Bonn
Sun % *Toxtael T *Toxtoot]
Univac Univ.
1100 Wis.
vax ue Cal
kunin) SentaCruz Toch.
W *UC . |
(Unix) Irvine Wash.
VAX *INFN Texae Sci.
(VMS) CNAF Argonne | A au Caima | popl | Sendie
*{running TEX82)
Index to Sample Output - Epson MX-80; 100%: L J. Bunner and J. D.
from Various Devices Johnson, TEX on the HP-1000, p. 16; HP-1000.

- Florida Data OSP 130; 130%: p. 13; DEC 2060.
As with previous issues of TUGboat, several articles

have been submitted for publication in the form of - HP 2680A; 145%: L. Carnes, “Small” TEX, p. 24;
camera copy. The following items were prepared on the HP-3000.

devices indicated, and can be taken as representative of

the output produced by those devices. With each item — Imagen Imprint-10; 100%: G.M.K. Tobin,

is given a percentage, which is the size of the copy as Computer Calligraphy, p. 26; Apollo.

received; items received as copy larger than 100% were

reduced photographically using the PMT process. The - Versatec; 130%: R. Furuta and P. MacKay, Unix
bulk of this issue, ss usual, has been prepared on the TEX Site Report and the two articles which follow,

DEC 2060 and Alphatype CRS at AMS. p. 17; VAX/UNIX.

TUGDboat, Volume 4, No. 1 . 11

LOW-COST DOWNLOADABLE Printers
FONT DEVICES Model(s): CI1-300, C1-600
Nelson H.F. Beebe Character Grid: 17 X 17
: Manufacturer: C-Itoh Electronics, Inc., 5301 Beethoven
C°lll)°§ea:‘§°’in°: glfm? uter Street, Los Angeles, CA 90066, USA
parument ol 1 1ysics Telophone: (213) 306-6700.
University of Utah
Salt Lake City, UT 84112 Model(s): Florida Data OSP 120 and 130
Tel: (801) 5’81-525 4 Character Grid: matrix variable depending on character
) configuration; maximum dot density -
obtainable 360H X 192V (graphics option
A fundamental problem with typesetting is that Manufacturer: ;"{::'li?il;l%ata 600-D John Rodes Blvd
output devices capable of displaying material as it ‘ Melbourne, FL 32035, USA "
would appear in typeset form are expensive and Telophone: (305) 259-4700.
slow. Electrostatic printer plotters have resolutions Remarks: Up to 18K RAM font storage. Sample out-
of 100 to 400 dots per inch and can produce up to put of the earlier Florida Data BNY model
20 pages/minute, but cost from $10K to $100K and E‘;‘z{)rge f°‘l‘ggl;n TU%(’)‘_"I‘; IY(;tnf’l:Ig{x t,l-
require special paper. Laser printers offering resolu- put ole?; cme’nf %SP 130 ;ppeafs on p.
tions of 240 to 300 dots per inch can produce up to 12 of this issue.

12 pages/minute on normal paper and cost around i)
$20K to $25K. High-quality phototypesetters start ?:: :'Ig)" Grid: TIn:'(o;c ribe 1(_]00 _
around $20K, but are generally quite slow, requir- pgnufacture: Infoscribe, 2720 S. Croddy Way,

ing as much as 10 minutes/page, often on expensive Santa Ana, CA 92704, USA
hotographic paper. Telephone: (714) 741-8595.
P pic bape . . . Remarks: 96 characters font storage
It seems worthwhile therefore to investigate
Model(s): Okidata Microline 92 and 93

what low-cost output devices capable of accepting Charecier &rid: 9% 9
downloaded fonts are available on the market today. M:':r“mn'::) Oﬁ data Corp., 111 Gaither Drive

The goal is to find output devices which can dis- Mount Laurel, NJ 08054, USA
play a typeset page about as rapidly as normal Telephone: (800) 654-3282. '
text can be displayed. This survey sets an upper Remarks: 96 characters font storage

limit of about $5K ($10K for color terminals) and Model(s): Printek 900 series

includes both dot-matrix printers and display ter- Chaeracter Grid: 9 X 9 and 18 X 18

minals. The cost limit excludes workstations like Menufacturer: Printek, 1517 Townline Road,
the Xerox Star and the Apple Lisa which are de- Benton Harbor, MI 49022, USA
signed from the beginning to support multiple fonts. SPhon: (616) 925-3200.

Multi-font devices whose fonts are pre-recorded in

ROM storage by the manufacturer are excluded be- Terminals
cause of their general lack of usefulness for scientific Moda) BBN BitGraph
typesetti s): itGrap!

tting. Screen: 768 X 1024 monochrome

Since the number of manufacturers of printers Cheracter Grid: unlimited; proportional fonts supported.

and terminals has become very large, I will no doubt ~ Menfacturer: Bolt Beranek and Newman, Inc., 10
Ty arge, Moulton Street, Cambridge, MA 02174,

have missed several. If reader response is sufficient, I USA

would be willing to update this column in later issues 1yephone: (617) 497-3178.

of TUGboat. At present, all but two of these devices Remarks: With the default 12x 16 font, the BitGraph
have severely limited maximum character matrix displays 64 lines of 85 characters. With a
sizes, and most cannot properly handle proportional 5 x 8 terminal font, the smallest that has
spaced fonts. The maximum matrix size is noted as i‘;ﬁﬁ?&?&;ﬁﬂ;ﬁﬁ?ﬁ&’hﬂ
“n X n”, and the number of downloaded characters readable. ? e

or amount of memory for font storage, where avail-
able, is also given. For terminals, the screen resolu- Model(s): CIT-427
. s . . - s eae Screen: 640 x 480 color
tion (H X V) is also given, since this is a limiting ¢, 0 coo 85 14
factor on the display quality. Entries are tabulated Manufacturer: C-Itoh Electronics, Inc., 5301 Beethoven

alphabetically by manufacturer name. Street, Los Angeles, CA 90066, USA
Telephone: (213) 306-6700.
........ Remarks: font storage 7 96-character sets

12

Model(s):
Screen:

Character Grid:

Manufacturer:

Telephone:
Remarks:

Model(s):
Screen:

Character Grid:

Manufacturer:

Telephone:
Remarks:

Modei(s):
Screen:

Character Grid:

Manufacturer:

Telephone:
Remarks:

Modei(s):
Screen:

Character Grid:

Manufacturer:
Telephone:
Model{s):

Screen:

Character Grid:

Manufacturer:
Telephone:

Remarks:

Model(s):
Screen:

Character Grid:

Manuyfacturer:

Telephone:
Remarks:

Datacopy
1728 X 2200 monochrome

Datacopy, 1070 East Meadow Circle.

Palo Alto, CA 94303, USA

(415) 493-3420.

Datacopy does not yet make this display
available as a terminal, but I am including
it here as somet.hing to be watched closely.
The screen is sharp enough to display read-
able 4-point type on a full page of text,
or the engraving lines in a page lmage of
a dollar bill. The January 1983 issue of
Computer Graphics World (p. 65) contains
a photograph of a sample image.

Direct 828. 831, 1000, 1025

640 x 480 monochrome

10x12

Direct Inc., 4201 Burton Drive,

Santa Clara, CA 95054 USA

(800) 538-8404.

2 128-character user-definable fonts; down-
loading must be in blocks of 16 characters.

Quadram Omega Data X7

960 X 528 monochrome

5x 7 ASCII or 6 X 8 symbol

Quadram Corp., 4357 Park Drive,
Norcross, GA 30093, USA

(404) 923-6664.

66 lines of 160 characters, or two split
screens with 66 lines of 80 characters. Up
to 2048 downloaded characters.

Ramtek 6211

640 x 480 color

8 x 12, proportional spacing
Ramtek Corp., 2211 Lawson Lane,
Santa Clara, CA 95050, USA

(408) 988-2211.

Tektronix 4027, 4112, 4113 (raster),
4114, 4116 (storage tube)

640 X 480 color (4027, 4113),

640 X 480 monochrome (4112},

4096 % 4096 monochrome (4114, 4116)
8 X 14 on raster, vector fonts on storage
tubes

Tektronix, Inc., Instruments Division, P.O.

Box 500, Beaverton, OR 97077, USA
{503) 627-2256.

font storage 31 96-character sets (tube),
and 4116 support user-defined vector fonts.

Terak 8510a, 8600

640 x 480 monochrome (8510a)

and color (8600)

8 x 10 and 16 X 10 in monochrome,
unlimited in color

Terak Corp., 14151 N. 76 St.,

Scottsdale, AZ 85260, USA

(602) 998-4800.

LSI-11 based workstation with DEC RT11
or UCSD Pascal operating systems.

TUGDboat, Volume 4, No. 1

Model(s): Vectrix VX128 and VX384

Screen: 672 x 480 color

Character Grid: 8 X 8

Manufacturer: Vectrix Corp., 700 Battleground Ave.,
Greensboro, NC 27401, USA

Telephone: (800) 334-8181.

Remarks: Low-cost frame buffer; no cursor com-

mands; font magnification factors 1..16
plus slants in 45 degree increments; 96
downloadable characters.

* % k % ¥ %X * ¥ *x % %

TEX ON THE OSP130

Patrick Ion
Bill Hall
Rilla J. Thedford
Mathematical Reviews
611 Church Street, Ann Arbor, Michigan 48104

Mathematical Reviews is now using the Florida
Data OSP130 as a TEX output device. The OSP130
prints on continuous stock (cards and paper} as well
as on cut-sheet paper. Average time per dense page
of TEX output is 1 min:40 sec. Current dot resolu-
tion is H120 x V128, although the machine does
have the potential for producing much higher resolu-
tion. This improvement requires a modified spooler
capable of handling a second set of font masks. At
present the fonts used are those with a resolution
of 128 x 128 pixels/inch prepared by METAFONT
for the Florida Data BNY. Although the dot resolu-
tion is similar, the quality of the output is greatly
improved. We are all very pleased.

Our OSP130 is driven by a Monolithic Systems
MSC8004 Z80 processor which is fed and controlled
through a multiplexor by the Dec2060 machine in
Providence, RI. We used a parallel Centronics inter-
face and a hardware handshake, checking Busy only
[this involves using the 8255 in Mode 1}, to interface
the OSP with the Monolithic.

The authors wish to thank the following people
for all their help in making our first attempt at such
a task a SUCCESS: Frank Price and Jim Neil of
Florida Data Corporation, Marty Haase and Joel
Berkman of Monolithic Systems, and David Fuchs
of Stanford.

Anyone desiring more information about TEX on
the Florida Data OSP should contact the authors at
the above address or call 1-313-763-6828.

TUGboat, Volume 4, No. 1

Sample Output from Florida Data OSP 130

and obtain the factorizations

(7 550 — 1 =(5% - 1)LspMsa, Lsa,Msa=5%+35% +1F555% +1)
(8) 6% +1=(6%* + 1)LesMea, Lea,Mes =62* +3.6* +1765(6* +1)
(9) 778 +1=(7" +)LraMra, Lra,Mrs=(T* +1P F75(7%2 + 7% +1)
(10) 107 +1=(10%* + 1)L;04Msoa, Where Ljos,Mjoa

=10%* +5.10%* + 7.10%* + 5.10* + 1 F10¥(10%* +2.10** + 2.10* +1)

(11) 11M%0=(11%+1)LyyMna, where Ljj,Mi
=11544 5,114 211341125, 5.11% 41 T 115(11%4 41134 _ 1124114 1)

The appropriate formulas for L. and M are printed at the end of each relevant main
table. .

The numbers with an Aurifeunillian factorization can be completely factored
more readily than other numbers §* — 1, because they break into two roughly equal
pieces. For this reason, Table 2LM has been extended $o 2400, twice as far as the
other base 2 tables. The Aurifeuillian factorizations for the other bases (in Tables
8+,5-,6+, 7+, 10+, 11+ and 12 +) are not given in a separate table as in base
2, but are incorporated in a special format in the tables themselves and are carried
somewhat farther than the consecutively indexed entries, the extensions being listed
below a line of dashes in the respective tables.

Since the factorizations produced in (4) to (11) cut across those produced in
(2) and (8), it is important to analyze how the two factorizations relate to each
other.

Example. Since 156=22.39, we have from (3) that

2841 = p $44(2) = Pa(2)P12(2)P52(2)P156(2)
20 ,
= (5.13.58.157.1613) 13°.313.1249.3121.21841
and from (4) that

27% + 1 = LsgM7¢ = (18.53.157.13".313.1240)(5.1618.8121 .21841)

The fact that the second factorization splits both the algebraic and primitive
parts of 27% + 1 suggests that in order to describe this multiplicative structure,
the primitive parts of L., and M, should be defmed and then L, and M, can
be expressed as a product of primitive parts as in (2). To do this we denote the
respective primitive parts by L and M}. For base b, let ¢¢ = €4(d) = [1 +(b]d)}/2,
where d is odd, (b,d) = 1, and (b|d) is the Jacobi symbol. (Recall that (b]1) = 1.)
Also, let n = 2°m, m odd, 620. Then we have the formulas (which we state
without proof)

fvi

13

14

* % % %x * * > ¥ *x * ¥

Site Reports

* % k *x % *x * X *x ¥ *

-NEWS FROM ALL OVER
David Fuchs

Here’s lots of news in no particular order:

TEXS2. The code’s in pretty good shape. We've
been running with version 0.95 for six weeks, dur-
ing which time we found three small bugs. At the
same time, installing TEX found as many bugs in
the VAX/VMS Pascal 2.0 compiler, and one bug in
the DECSystem 10/20 microcode! This must mean
something.

As I am writing this, Professor Knuth is test-
ing version 0.96, which corrects the bugs, and adds
a dozen or so new features, and about as many
small improvements. Barring any further problems
with microcode, by the time you read this, version
-0.96 should be available through normal distribution
channels. We expect to need only one more round
of changes by the time the manual is complete.

Chapter 21 of the new manual (‘Boxes’) is cur-
rently being written. When Chapter 23 is done,
we’ll do a pre-print of the whole manual, and declare
the current version of the code to be 1.0. Our
tape distribution people [Ron and Maria Code, Data
Processing Services, 1371 Sydney Drive, Sunnyvale
CA 94087 (408-735-8006)] are willing to take orders
for version 1.0, and they will hold them until every-
thing is ready to go. Of course, you can order version
0.96 if you like, since it will be almost the same.

A new feature of the tape distribution is that you
can order all the fonts at any of a nurnber of different
resolutions. Currently, we have 200, 220, 240, 260,
280 and 300 dot/inch versions available, but more
will be forthcoming if the demand is great enough.

Right now, the distribution tape includes change
files for TOPS-20 only. I hope to be able to add
change files for other systems in the near future. On
the other hand, it is fine for users of the same kind of
systems to band together and handle it themselves.
For instance, the VAX/UNIX port is up and running
at a number of sites, and you should contact Rick
Furuta for details on its distribution.

There have been several independent IBM ports,
by Susan Plass at Stanford CIT, Roger Chaffee at
SLAC, and Bruce Nemnich at MIT. The latter two
have both discovered a method of saving a preloaded
TEX under VM/CMS! Jobn Johnson reports he has
TEX82 running on his HP-1000, and is happy to
talk to interested parties (he’s getting output-on his

TUGboat, Volume 4, No. 1

Epson printer). Bart Childs and Norm Naugle at
Texas A&M are in the final stages of getting TEXS82
running on their Data General MV8000. I'm sorry
if I've left anyone out, my only excuse is that things
are very hectic.

Conspicuously absent from the list is any 68000-
based system. Our SUNg are just coming into opera-
tion, but it looks like the modifications done to
the VAX/UNIX compiler to enable it to deal with
TEX can be transferred directly to the SUN ver-
sion of UNIX 4.1C BSD, and SUN Microsystems has
promised to do so. Another encouraging sign: Apple
is giving us a Lisa to try to put TEX on; it remains
to be seen whether their compiler is good enough.

I’ve been working on a VMS port. Tangle, Weave,
PLtoTF, TFtoPL and DVItype went into VMS 3.2
running Pascal 2.1 with little problem, since the new
compiler has much improved I/O support. TEX82
on VMS currently is able to correctly run through
the TRIP test file. The biggest installation problems
were the half-dozen or so compiler bugs I ran into
on the way and had to kludge around. These have
been reported to Digital, so when the next release
of the compiler rolls around everything should be
beautiful.

Since the last TUGboat, we've added a mnew
means of communication for the TEX community: an
inter-network mailing list called TeXhax. Recipients
of messages to TeXhax are on the ARPAnet, CSnet
or UUCPnet. The mailing list has 70 members scat-
tered around the country, and even in England and
Germany. A number of the addresses are computer
bulletin boards, so the readership is actually larger
than 70. Most messages to date have dealt with
TEX installation and portability questions, but I'm
hoping that when the manual is completed and both
TEX82 and CSnet are in wider use, TeXhax will be-
come a forum for information about macros, output
devices, fonts, etc. For those of you with no access
to any network, we’ll be summarizing newsworthy
items from TeXhax in TUGboat (see my other ar-
ticle in this issue).

If you want to be added to TeXhax, send mail
to TEXHAX-REQUESTOSU-SCORE on the ARPAnet,
or DRFOStanford on the CSnet, or Shasta!DRF
on UUCP. Please include your network address,
your real name and location, and CPU and output
devices you’re interested in. To send a message to
everyone on TeXhax, send mail to TEXHAX@Score (or
. .Shasta!Score! TEXHAX, or to me, and 'l relay it).

One of the most exciting things going on is Leslie
Lamport’s work on his LaTeX system. This macro
package makes T}iX82 look a bit like Brian Reid’s
SCRIBE system, including such features as:

TUGboat, Volume 4, No. 1

— A Secribe-like cross-reference system, where sec-
tions, theorems, etc. are given symbolic names
by a \label{foo} command, and then refer-
enced as “Section \ref{foo}”.

— Scribe-like environment commands—e.g., for
an enumerated list, one writes
\begin{enumerate} ... \end{enumerate}.
These will nest properly, and different levels
will be numbered differently.

~ A PICTURE environment, with picture-
drawing commands.

— The ability to define different document styles.

- Automatic table of contents and list of figures.

- Flexible figure and formula numbering.

— Partial document compilation.

The system is now in “Beta Test” at a few installa-
. tions; and the first preprint of the manual is done.
Leslie has offered to speak about his system at this
summer’s TUG get-together, which is reason enough
for everyone to attend! We hope to be able to put
the entire thing on the distribution tape, and dis-
tribute the manual, before the TUG meeting,.

We heard from Dr. Wolfgang Appelt of the Gesell-
schaft fiir Mathematik und Datenverarbeitung, a re-
search organization in Germany. He reports that a
meeting for TEX users in Germany was attended by
people from more than a dozen installations, many
of which were already running TEX82. We hope
that this group will turn into the German chapter of
TUG. Interested parties should contact Dr. Appelt
at GMD, Postfach 12 40, Schlo8 Birlinghoven, D-
5205 St. Augustin 1, Bonn. They are producing
TEX82 output on a Perq/Canon printer, and are
looking into the posgibility of interfacing to the
Hell-Digiset typesetter. Also, they hope to make
use of Frank Liang’s hyphenation-pattern-generator
-(which should be available on the distribution tape
soon) to enable TEX82 to do German hyphenation.

I've heard from quite a few people with Imagen
and Symbolics printers. It looks like prices are com-
ing down a little, and I hope the new entry in the
marketplace, the Lasergrafix machine based on the
Xerox 2700 engine, will help continue the trend.
I don’t know any more about Lasergrafix, except
that the folks at Texas A&M report that they are
promising support for TEX output. Meanwhile, our
HP 2680 has been connected to our Ethernet, and we
hope to start seeing real TEX output from it soon.

On the phototypesetter front, things are heating
up. The TEX project is looking for a new machine
more appropriate for our needs than our Alphatype
CRS. Autologic is promising that we’ll be able to
download our fonts to a Micro-5 if we buy one and
write the code ourselves, but recently Compugraphic

15

has become re-interested in TEX (perhaps taking the
cue from HP and Apple). If they decide they’re will-
ing to let the 8600 be made Metafont-compatible,
we'll be facing a hard decision. This has to get
straightened out pretty quickly —we want to print
the TEX manual on the new machine. Stay tuned.

A number of corporations around the country
have inquired about the availability of TEX experts
to hire, on a full-time or consulting basis. So far,
I haven’t been able to help them very much, but if
you fit the bill, you might want to get in contact
with me for more information.

Some people have encountered trouble with
square roots on TEX82. Recall that TEX82 makes a
different assumption about the position of the square
root symbol within its box than TEX80 did. To get
acceptable output with TEX82, you’ll need up-to-
date symbol and math extension fonts. (The reason
for this change was to improve the alignment of the
surd with the top rule, even in the face of rounding
on different raster resolutions.)

Another item of note is that we’re trying to im-
prove the efficiency of TEXS82. I should point out
that it’s none too shoddy as it is—the compiler be-
ing used in its development is very stupid when it
comes to code generation, but we find that TEX82
is about the same speed as TEX80 in Sail, and it’s
quite a bit better than the old Pascal version. A
good optimizing compiler, coupled with a reason-
able disk I/O system should produce a fairly zippy
TEX. In order to squeeze out lurking inefficiencies,
however, we're conducting an experiment: A num-
ber of compilers support some form of statement
execution profiling, where the user is told, after his
program rung, how many times each statement was
executed. With the aid of a little system wizardry,
we’re compiling such counts for TEX82, with the
results cumulative over all users of TEX on the SU-AI
computer. See if you can guess which Pasecal state-
ment was executed over 80 million times during the
2900 or so times TEX was run over the last 6 weeks
(answer below). We're not just playing games, of
course; we're trying to find where we should spend
our time trying to speed up the code, by un-rolling
loops, using macros instead of procedure calls, ete.
Finally, there will be index entries in the published
TEX code indicating the modules that are part of the
inner loop, so that they can be hand-optimized on
various systems if anyone cares to do so. The answer
to the question above is8 CSPTR:=0 at the beginning
of the GETNEXT procedure. By the way, of the almost,
20000 lines of code in TEX82, 752 of them were not
executed in over a month. Many of these statements
are fatal error messages.

16

TUGboat, Volume 4, No. 1

TEX on the HP-1000

Irene J Bunner and John D Johnson
JpJ Wardware, P.O. Box 354, Cuperting, CA 85015; (415) 985-3245

TE3E2 for Hewlett-Packard HP-1000 Com puter Sys-
tems has been implemented by JDJ Wardware. The
code was cbtained from Donaid E. Knuth and the
\WEB programming system was used to perform the
modifications required to make TEXB2 run on this
mini-computer. It is Interfaced to an inexpensive
($50000) Epson MX-80 dot matrix impact printer.
A combination of automatic tramslation and hand
editing have been used to create a set of foots us-
able by this device.

HP-1000 mini-com puters are 18 bit architecture ma-
chines with a real time, multiuser operating system.
Programming is supported by a sereen mode editor,
a Pasocal compiler, and a symbolic debugger. The
standard addrsssing accommodates programs up to
64K Bytes, much too small for TEX Extended ad-
dressing, supported by a virtual memory system,
permits larger data sizes. Program segmentation
permits larger code sizes. Heavy utilization of these
two features enable us to fit TEXB2 on the HP-1000.

The Epson MX-80dot matrix impact printer is used
in its high resolution graphics mode. In this mode
1t has a horizontal resolution of 120 dots per inch
and a vertical resolution of 144 dots per inch. The
dot size is larger than this resolution resulting in
adjacent dots overlapping. A program was written
that reads in the DVIflle produced by TEX and spe-
oial pixel files. It constructs the raster image for a
complete page in memory before outputting to the
printer. Interweaving rows of dots is required dur-
ing this outputting. Eight horizontal rows of dots
are printed, the paper is advanced by % dot width
then the eight interweaved horizontal rows of dots
are printed. About six minutes are required to print
a full8% by 11 inch page.

Special raster descriptions for the fonts are required
so the definition of pixel flles was changed for this
implementation. One of the changes is to a vertical
raster instead of a horizontal raster. Even though
the print head moves horizontally, the MX-80is ba-
sically a vertical raster device. The eight dots it
prints In parallel are arranged in a vertical row.
Raster descriptions are changed from a 32 bit orga-
nization into a 16 bit organization to accommodate
the word width of the HP-1000. The biggest change
is to low resolution. Metafont was unavailable so
the first approximation to the required pixel files
was created by writing a program to automatlcally
transiate standard pixel files into the new format.
This progam reads in a 240 dot per inch PXL flle
and produces a 120 dot per inch vertical raster pixel
file. The small difference in the printer’s horizon-
tal and vertical resolution is ignored Harizontal di-
mensions are accurate while vertical dimensions are
com pressed.

Translation to low resclution pixel flles is achieved
by mapping four pixels from the input flle to a sin-
gle pixel in the output flle. If two or more of the
input pixels are set, then the corresponding output

pixel is set. Characters appear too black in these
automaticaily created pixel files. The large dot size
compared to the resolution causes the strokes to be
too wide. Better looking characters are obtained
by hand editing the fonts. A program was written
which translates a pixel file into an ASCII file that
contains a picture of each charaster built up using
at signs and spaces. The system editor is then used
to modify these pictures. Finally, another program
transiates from the ASCII flle back into a pixel file
Hand editing a fontrequires several hours and sev-
eral iterations.

Porting TEX to a small machine turned out to be
quite a challenge. The first step was to bring up
the Tangle program so that the WEB sources could
be translated to Pascal. This was not too difficult.
Porting TEX itself was much harder. Iis data is too
large, its code is too big and it has too many flles for
the standard Pascal runtime I/O system. The large
data problem is handled by utilizing extended ad-
dressing which requires moving large arrays to the
heap. WEB macros in the change flle are used to
do this. For each large array, the change flle cre-
ates a polinter to the array as well as an entry in
the initialization code which does a “new” on this
pointer. Other macros change all the old accesses to
the array into pointer dereferenced accesses.

The large code problem is solved by segmenting.
This was very difficult because TEX is too large to
be handled by the automatic multilevel segmenter.
Special segmenting is used which allows the pass-
ing of value parameters between segments Luck-
ily, TEX uses only value parameters so no changes
to parameter lists are required to accommodate the
segmentation. A program was written to aid in seg-
menting TEX. First it reads and parses the Pascal
source and builds a procedure call graph. Then this
program is used interactively to place procedures
in various segments. The goal Is to minimize cross
segment calls subject to an overall segment size re-
striction. Once the user is satisfled with the segmen~
tation, this program builds the required source files
to pass to the compiler as well as the segmentation
flles to pass ta the linking programs. Several itera-
tions were required before acceptable segmentation
was achieved.

TEX declares more files than the standard Pascal
runtime I/O system can handle. The main prob-
lem with this I/O package is its inability to use file
buffers in the extended addressing area. To over-
come this problem, a special runtime I/O system
was written which can put file buffers in the heap.
WEB macros are used to map standard 1/O state-
ments into calls to these speoial I/O routines.

TEXB2 is now available on the HP-1000 family of
computerss Currently, typesetting performance s
roughly 1500 words per minute. This page was for-
matted using an A700 Series HP-1000 and output
on an Epson MX-80 printer.

TUGboat, Volume 4, No. 1

Unix TEX Site Report

Richard Furuta and Pierre MacKayt
Department of Computer Science
University of Washington

‘We'd like to take this opportunity to introduce
ourselves to the TUGboat readership and report on
new developments. We took over the Unix TEX site
coordinator duties from Robert Morris in November,
1982. Since then, much of our TEX time has been
devoted to TEX82, both on Unix and on Tops20.
We have submitted a separate article in which we
describe TEX at our particular site in more detail,
but here, let us turn our attention to the state of
TEX on Unix machines.

We are pleased to report that TEX82 is
currently running on VAX/Unix, 4.1BSD, thanks
to the efforts of Pavel Curtis of Cornell University
and Howard Trickey of Stanford University. New
versions of TEX82 have been coming up on Unix
within 2 couple of weeks of their announcement at
Stanford, so we are pretty much up to date. Howard
and Pavel have written an article summarizing their
experiences in porting TEX82 to Unix which follows
this report. Details on how to obtain TEX82 for
your own VAX are below.

Unfortunately, we have not heard of any
versions of TEX82 for other flavors of Unix. Some
interest has been expressed in porting TEX82 to
the Sun workstation (running 4.2BSD) and some
preliminary work is in progress. We have also heard
from a person who wants to port TEX82 to a PDP-
11 running 2BSD Unix, but as far as we know,
he has not yet started working actively on it. If
you're doing a port to one of these other machines
or versions of Unix, please keep us posted.

We are trying to handle as much of our
correspondence as possible through electronic mail.
We can be reached from the Arpanet, from CSNet,
and via uucp. Our Arpanet and CSNet addresses
are Furuta@Washington and MacKay@Washington.
On wuucp, it’s

.. .decvaximicrosoft!uw-beavertuw-junetfuruta
and ...uw-june!mackay. An alternate uucp route is
...ucbvax!lbl-csam!uw-beaver.. . .

tOur work is funded, in part, by a grant from
Northern Telecom.

_ Berkeley Unix, version 4.1.

17

‘We also are maintaining an electronic mailing
list, Unix-TEX@Washington, for discussions between
Unix TEX sites. If you want to be included on this
list, send Arpanet, CSNet, or uucp mail to Furuta.

TEX82 for Berkeley Unix, 4.1BSD

TEX82 is now available for sites running
We are now making
available a “beta test” distribution which includes
sources for TEX and WEB, libraries, fonts, and
whatever device drivers we can obtain. At the time
of writing, we have drivers for the Versatec, thanks
to Carl Binding of our Department, and for the
Imagen laser printer, thanks, again, to Pavel Curtis.
We also hope to have a Symbolics laser printer
driver in place before the distribution begins. If you
have DVI 2 drivers for other devices, please send
them to us and we’ll happily include them in future
distributions. Our fonts are now in the PXI format,
128 characters per font (the-older arrangement), and
with magnifications of 1.0, 1.2, and 1.3 included for
most entries.

The present distribution will be the latest
version of TEX82 available to us (presently 0.95).
Note that versions before 1.0 are considered to be
pre-releases 8o the language they define is subject to
change. If you want to wait for 1.0, please let us
know when you request your tape.

As the implementation uses a modified version
of Berkeley’s pe Pascal compiler, we will only be able
to provide a complete distribution to those sites with
source licenses for 4.1BSD. We will, however, try to
accomodate those with binary licenses for 4.1BSD.
Please make sure that you indicate clearly whether
you have a source or a binary license for 4.1BSD.

The complete distribution presently occupies
something on the order of 11 to 12 megabytes of
disk storage on our machine. Of this, about 3
megabytes is used to store the fonts, 1 megabyte
for the modified pe sources, and the remainder for
TEX82, WEB, device drivers, and other parts of the
system. Of course, not all of this needs to be
retained on-line. The frugal site may be able to
get by using only perhaps a half of this amount
of disk space.

Tapes will be in tar format, blocked 20, and
written at 1600 bpi, unless otherwise specified (we
can also write 800 bpi).

18

To order, send a check for $50 (U.S.
Funds) made to the University of Washington,
documentation of the type of Unix license you hold,
and your address to:

Richard Furuta

Computer Science, FR-35

University of Washington

Seattle, WA 98195
We would appreciate it if foreign sites could increase
the amount of their check as appropriate to pay the
added postal costs necessary for mailing the tape.
We’d prefer not to receive purchase orders. Please
contact us if that causes you problems and we’ll
try to set up alternate arrangements. If you have
a CSNet, Arpanet, or uucp mail address, please
include it—we’ll add you to our mailing list.

The lower limit of low-res fonts

As noted above, we run TEX on 3 DECSystem
2080 as well as on the VAX. Since we do have use
of the 20680, we occasionally run off PXL fonts for
other Unix sites with METAFONT. (METAFONT
is written in the SAIL programming language and
80 does not run on Unix machines. Indeed, use of
METAFONT is pretty much limited to DECSystem-
10's and DECSystem-20's.) We have recently
received several requests for very coarse-grained PXL
fonts at resolutions of 100 dots to the inch or less,
which prompts a few observations.

100 dots to the inch is just acceptable for
upright fonts, but rather chancy for slanted or italic
fonts, and anything significantly lower is hopeless.
There is not much point in asking for a PXL font
at 0.36 magnification (72 dots to the inch) unless
you simply want it as a rough guide for a pixel-
editing program. At least half the characters are
unidentifiable at that resolution. In the long run,
the best results at any resolution under about 300
dots to the inch will require a stage of pixel editing.
METAFONT is astonishingly good at making the
critical decisions about difficult regions of a font
character, but it is not perfect. At 100 dots to the
inch, it is often overstrained. This point can best be
appreciated by looking at an example from CMI10,
produced at .5 magnification. The slant brings out
all the worst problems of aliasing, and in this case
produces a comically misleading result.

tUnix and VAX are registered trademarks
of Bell Laboratories and Digital Equipment
Corporation, respectively.

TUGbDoat, Volume 4, No. 1

Char ‘185 Right bracket
Pixel Width 8 Pixel Height 16
X~offset 1 Y-offset 10
Raster Pointer 844

Width 0.27777 (2.7777 pv.)

sas
X

.....

(modified output from David Fuchs’s PXLTYP)

The upper horizontal of the right square bracket is
caught at a point where METAFONT’s rounding
operation shifts the entire lot of pixels one position
to the right and as a result the bar ends up on the
wrong side of the character. A pixel editor can fix
this better than METAFONT can. There is no point
in complicating the basic METAFONT character
descriptions with statements that will handle such
an extreme case. Even after editing, the italic and
slant fonts (CMSnn, CMInn and CMTInn) will still
look pretty crude. But most of the characters in
roman, MATHEX and even symbol fonts are not too
bad. Anyway, until the price and availability of
200 pixel/inch bit-mapped displays comes to be very
different from what it is now, we must live with
what we can get.
* ok k%

Porting TEX to VAX UNIX
Pavel Curtis and Howard Trickey

Over the past few months, the authors have
independently ported TEX82 to run under Berkeley’s
VAX/Unixt (version 4.1BSD). One of us (Pavel)
subsequently merged our ideas to produce the
VAX/Unix distribution of TEX announced in this
iasue’s Unix TEX Site Report. Both implementations
required small changes to Berkeley’s pc compiler.
This note describes the problems encountered in
making these changes and in bringing up TEX itself.

TEX porters are aware that the capabilities of
the available Pascal compiler will almost totally
determine how difficult the port will be. Unhappily,
the pc compiler has more deficiencies than ome
might wish. This is somewhat understandable,
since it was designed for instructional use and not
for the preparation of production software. On
the plus side, the documentation was good enough
to allow us to anticipate most of the problems.

TUGboat, Volume 4, No. 1

Also, we seem to be the exception to “Fuchs’ Law”
that TEX uncovers at least one compiler bug for
every compiler tried—our problems were caused by
deficiencies, not bugs. This meant that there were
few unexpected problems, and we were able to do
the initial port in surprisingly little time {one or
two weeks).

The most significant shortcoming of pc was
also the one major place where Professor Kuuth
departed from Jensen and Wirth’s Pascal and from
the proposed standard: a default clause in the case
statement. It has been suggested that the best
way to handle this problem is to write a program
to translate the case statements used in TEX to
case statements without default clauses. This is
actuslly fairly difficult to do properly, since it
entails discovering the type of the case expression
(character, integer, or integer subrange) and then
forming a succinct test for the gaps between the
expressions that actually occur as case labels. Since
the pe compiler already generates code to check for
an unmentioned value, the best possible translation
would result in doing this work twice. The old
PTEX implementation made a balf-hearted attempt,
by using an editor script to collect most of the
information needed, but one still had to do the
translation manually. We considered it imperative
that bringing up a new version of TEX be fast and
easy, enabling all installations to track bug fixes and
added features.

The last thing one normally resorts to in
order to circumvent a language deficiency is that
horror of horrors: compiler modification. No one
except the author or maintainer of a compiler really
understands the implications of a given change to
the code, so it is easy to introduce obscure bugs.
Also, the compiler modifier has to be wary of new
versions of the compiler from its maintainer. Having
said this, we must now say that we both came to the
conclusion, in this case, that compiler modification
was the apswer. Examination of the then current
code showed that pc was already trapping the
default case in order to have an error message
printed. It was immediately obvious how to give
control to another statement instead, and it was
hard to see how any bugs could be introduced.
Since so few changes were needed, the new-compiler-
version problem was not too daunting, so the deed
was done.

Compiler modification was definitely not the
answer for the next problem, memory packing. To
avoid wasting a large amount of memory, we needed
to define the types quarterword and halfword to
contain 8 and 16 bits, respectively. It is not possible

19

to convince pe to pack 0..65535 into 16 bits or 0..255
into 8 bits. While it might not be too difficult to get
the memory allocator to do this, the code generator
could easily be a different question. Fortunately,
the compiler well pack —128 .. 127 and —32768 ..
32767 into the proper sizes and TEX has been written
so that these ranges can be easily used in the all
important memory_word record. A similar problem
occurs with the non-character byte.files, but here
one must be careful that the bits actually written to
the files look like the range 0 ..255 has been used
(otherwise, device independent output files and TEX
font metric files can’t be transported between sites).
So, for example, instead of writing a value of 200 to
a file, we write 200 — 256 = —56.

In spite of the above, we would still waste a
tremendous amount of memory if we could not find
a way to fit the type called glue_ratio into 32 bits.
Usually a glue_ratfo is made the same as real, but
pc puts reals into 64 bits, and has no provision for
any kind of “short” reals. Fortunately, the VAX
hardware has a 32-bit floating point data type, so
the following trick could be used: Pascal is told that
a glue_ratto is a (32-bit) integer, but we really store
floating point numbers there; external procedures
(written in C) are then used to convert back and
forth between those pseudo-reals and pc’s 84-bit
variety.

The rest of the changes necessary were more
conventional. There were a few places where TEX
nses variables names that pc uses for special things
(e.g., input, text, time, and date), but the WEB
system provided an easy way to fix them. The pe
runtime system doesn’t provide for recovery from
file opening errors, or for closing a file immediately.
It was easy to modify a few of the run-time
library procedures to make files behave the way
TEX assumes they will. Specifically, the following
changes were made:

e Opening an input or output file that isn’t there
causes the “end-of-file” flag to be set true or
false, respectively, rather than being a fatal
error.

e Reading past end-of-file is silently ignored,
rather than being a fatal error.

o The first get from the terminal is now ignored.

e Provision is made to explicitly close a file. The
pc run-time system as supplied simply closes
files on scope exit.

The alternative to changing the run-time library
would be to do all input/output with external C
procedures, but this would have meant changing
every place in the code that used get, put, read,
write, tests for end-of-file, etc. Macros would have

20

helped to some extent, but it is hard to see how
to convert a file variable argument into information
that conveys the type of the file. Also, one has to
be on guard for a varying number of arguments.
Adding onto this the need to simulate Pascal’s
conventions about text files, it just seemed easier
to make the run-time library changes.

One particularly irritating thing about pec is
that it doesn’t accept keywords which are written
using uppercase characters, even though that is
required by the standard! (More precisely, there
is a flag allowing for upper case keywords to be
used but this switch also turns off all of the other
extensions Berkeley did make to the Jensen and
Wirth standard.) There were a number of places in
TANGLE that had to be changed in order to prevent
the conversion to uppercase. A subtle bug can show
up if one is not careful in making this change:
when TANGLE does constant folding, it looks for
keywords like MOD and DIV in the output buffer.
The easiest place to convert to lowercase is before
these comparisons, and if the comparisons are not
changed an incorrect program may result.

Another problem we had with TANGLE was
getting it to put the statement

#include "ext.h"
in the Pascal output. This statement is needed to
tell pc about externally compiled procedures. The
double quote marks in the statement could not be
emitted by TANGLE, and there was no way to force
the ‘#’ to be just after a line break. We introduced
primitives into WEB that eventually evolved into the
“verbatim Pascal string” and the “force Pascal line
break” primitives now in the standard WEB language.

The amount of time it takes to compile TEX is
a major annoyance. Using an otherwise unloaded
VAX 11/780, it takes approximately an hour of
real time to create a runnable TEX from the WEB
source code. Back in the real world, one of us has
experienced upwards of a five hour wait when other
people were using the machine. Now that the port is
complete, this is no longer such a bother. On those
infrequent occasions when a new version of TEX is
being installed, one can simply have the compilation
done in the middle of the night.

For regular use, it appears necessary to have a
version of the program which has the PLAIN macros
preloaded. Unfortunately, UNIX is not as amenable
to this idea as some other systems, notably TOPS-
20. We were able, however, to retrieve a program
from the net.sources group on USENET which will
do the trick. The program, called “undump”, takes
a core-image and the executable file which produced
it and constructs a new executable file incorporating

TUGboat, Volume 4, No. 1

all of the data areas of the core-image. After some
involved machinations and close perusal of the order
of file opens or closes within TEX, a procedure was
derived for preloading any macro set. This saves
an average of 30 seconds or so of start-up time over
the non-preloaded version.

Some statistics regarding the port are in order.
The production version compiles into about 235,000
bytes of code. This doesn’t include the large data
arrays, which need not be allocated until runtime.
At least 250,000 bytes of data area are needed
in addition to the code to get a usable TEX. In
a memory-rich system it is not unreasonable to
allocate 500,000 bytes for this purpose. It is possible,
as mentioned above, to save a version of TEX that
has its data areas preloaded with fonts and macros,
but one wouldn’t want to have too many such
versions; they are on the order of 750,000 bytes long
each. As for running speed, a sample six-page paper
(single-spaced, 10-point type, using a page of macros
and a couple of fonts on top of PLAIN) took 44 cpu
seconds to format using the preloaded-with-PLAIN
version of the program. For comparison, the same
paper took 37 cpu seconds on the SAIL DEC-10
computer used to develop TEX.

With regard to output drivers for UNIX, there
are not many yet available. One of us (Howard)
has a driver written in C for the Xerox Dover
printer “press” format, adapted from a program
that handled the old (version 1) DVI files. The new
program handles either version. Pavel has written
one for the Imagen/Canon ImPrint Laser Printer,
also in C.

Looking back on the port, it must be said that
the combination of the WEB system and Professor
Knuth’s careful coding has resulted in quite a
portable program. It now takes less than a day
to bring up a new version of TEX and check that
it passes the nefarious TRIP test. It is rarely
necessary to touch the changes we've made, since
the new features and bug fixes usually don’t occur
in the “system-dependent” parts. As a result, TEX
is a program that can easily stay up to date and
incorporate the latest bug fixes at many sites on
many hosts. That, combined with the care taken
to ensure that the output will be the exactly the
same from host to host, means that we have a solid
basis for portable documents.

TUGboat, Volume 4, No. 1

TEX at the University of Washington:
Tops-20, Unix, Versatee, and the Monolithic

Pierre MacKay and Richard Furutat
Department of Computer Science
University of Washington

We would like to take this opportunity to
describe the TEX environment in the Department of
Computer Science at the University of Washington.

‘We presently run TEX82 on a DECSystem-2060
and on a VAX11/780, located in our Computer
Science Laboratory. Our primary output device
has been an elderly Versatec printer/plotter which
prints on 11” wide paper. The Versatec is shared by
TgX, troff, and Scribe users. We expect to receive
a laser printer shortly.

Since we have the use of the DEC-2060 and °

of the Arpanet, we have had the opportunity
to copy working versions of TEX82 directly from
the SCORE machine at Stanford and to prepare
our documentation using TEX82 even before the
problems involved in creating the Unix version of
TEX were entirely solved. We therefore gave a high
priority to putting together drivers for our Versatec.
This effort was complicated by the fact that while
the version 2 DVI files were created on the DEC-20,
the Versatec was connected to the 780°s Unibus, and
we had no controller to drive the Versatec directly
from the DEC-20 in any case.

We decided to begin by modifying a magnetic
tape file transfer system which we had developed
for TEX80 output. Although slow, this system had
the distinct advantage that it supplied bit-mapped
rasters to the Versatec at an even rate and avoided
the extreme variations in toner density which can
appear if the paper races past the print head to
skip over white space. Our first, very provisional
output driver, DVItoVRI, did all the necessary
translation for the Versatec, and wrote full-width
Versatec rasters, ten to a block, on magnetic tape
on the DEC-20. We then read the tape on the
VAX11-780 and printed the rasters on the Versatec.
Generally, we could fit twenty or thirty pages worth
of information onto a 2400’ tape reel. DVItoVRT
still exists, but it has never been entirely finished.
It boasts the version number 0.8, but that may be
something of an exaggeration. In any case it works.
It is dreadfully slow, but it works, though only for
vertically oriented output on roll-paper.

The DVItoVRT driver is based on the DVItype

tOur work is funded, in part, by a grant from
Northern Telecom.

21

.processor which was made available concurrently

with TEX82, and it preserves all possible elements of
DVItype. The addition to DVItype which may be of
most general interest is the part that reads the PXL
fonts. DVItype gets all the font information it needs
from the TFM (TEX Font Metric) files associated
with each font, but a driver program must take
account of the structure of the fomt itself. Our
programs read PXL files as described by David Fuchs
in TUGboat, Volume 2, No. 3, pages 8-12; they
allow for scaling either in the TEX input itself, or
at the time when the DVI file is interpreted for the
output device. The most practical use of scaling
is the latter. As a general habit, we format all
TEX material at true size and expand it to a 1.3
magnification in the driver program. A reduction of
77%, which is available on a several photocopying
machines, restores true dimensions and very much
improves the apparent sharpness of each typeface.
Since DVItoVRT does the necessary bit-pushing
to create a Versatec raster in as nearly standard
Pascal as we can manage, it is infuriatingly slow.
Processing and writing a page of WEB output to
tape takes about 30 seconds of elapsed time on
a moderately loaded TOPS-20 system, which is
enough to discourage all but the most devoted
user. Fortunately, in December, BNR Inc. lent
us a Monolithic Systems Corp. processor, which
is intended to be used as an intelligent controller
for the Versatec. (For a description of earlier uses
of the Monolithic and of the support programs
for earlier versions of TEX, see Phil Sherrod and
Alan Wright. “TgX Support Programs.” TUGboat,
Volume 2, No. 1, pages 17-19.) Except on the rare
occasions when its font memory fills up, and a new
font has to be written over one of the old fonts,
the Monolithic allows us to drive the Versatec just
about as fast as it can physically be driven. Sherrod
and Wright reported some improvements that they
made at Vanderbilt University, but we have not felt
the need to consider those yet. At present we are.
content with a two-step process based on software
developed at Stanford some years ago involving
(1) translation from DVI format to an intermediate
work file (VER) format, and (2) shipment of the VER
command and data file to the Monolithic processor.
We did modify the format of the VER file to allow
us to use the same second pass with both DVI 1
and DVI 2 and we updated the software to use PXL
files. These intermediate work files (VER files) are
queved and deleted automatically after use. This
can be an inconvenience, since they must be totally
regenerated again if needed, but they are so large
that we cannot afford to leave them on the disk.

22

We wrote a new program, DVI2VER, to handle
the first pass for DVI 2 files. This program,
based (like DVItoVRT) on DVItype, is now fully
debugged for vertical output on continuous roll
paper. We have not yet decided what to do
about rotated output on fan-fold paper. The one
thing we do not want to do is go back to bit-
pushing in standard Pascal. The regular use of
1.3 magnification and 1300PXL fonts makes fan-fold
paper ratber impractical in any case. We have
left the necessary hooks in the program so that
rotated output could be added, but there has been
no decision when or whether we will hang anything
on those hooks.

At present, the intermediate work file makes no

attempt to conform with BigEndian conventions. It

is very much an artifact of a 36-bit environment.
‘We have worked out a coding system which would
fit very nicely into a 32-bit environment, but at
present we do not know of any users who could take
advantage of it. The 32-bit coding would actually
result in a slightly larger work file if the TgXed
material included a large number of fall characters
(e. g., most of the characters in MATHEX fonts), but it
would result in a slightly smaller work file on a page
with short rule segments. In any case, we will soon
need to modify our present VER file format again
to allow for the new 256 character PXL file format
and to take advantage of the larger number of fonts
which may be defined in TEX82.

Once we had our output from version 2 DVI
working nicely, we were left with one more anomaly:
our METAFONT still produced proof-mode output
using version 1 DVI. We rewrote our copy of
MFOUT.SAI for the new conventions, and .now our
entire TEX environment is consistent with TEX82.
(When you try to produce postamble values to
simulate TgX output, you have to remember the
discrepancy between the TEX82 scaled point which
is 1/(2'%)th of a printer’s point, and the PXL font
FIX, which is 1/(22°)th of the design size. Otherwise
you get some very strange dimensions.) We have
also modified our METAFONT to use DEC’s GIGI
{crminal as the “drawdisplay” output device rather
than Stanford’s Datadisc terminal. Af present,
our principal concern with METAFONT is the
production of a set of Naskhi characters for an
Arabic Script enhancement to TEX82.

TUGboat, Volume 4, No. 1

* % % %X % % %X % *x % ¥

VAX/VMS

Monte C. Nichols
Sandia National Laboratory
Livermore, California

Last issue I reported that we expected to see
TEX82 running on VAX/VMS systems by late 1982.
Boy was I wrong. One problem has been the wait
for the new VMS version of Pascal, although that is
no longer a problem for most of us. Additionally,
the group at Oregon Software has been unable to
find spare time to devote to bringing up TEX82
(note that their work on TEX has been on an un-
compensated basis — Yes, you can get something
for nothing, Virginia, it just takes longer). Several
others have been working on the implementation but
have been thwarted by other problems. David Fuchs
(Stanford) has just reported success using VMS 3.2
and Pascal 2.1; see page 14. Hopefully the new
version of Pascal will soon reside on many VMS
machines (it was delivered in Italy long before it was
available here on the West coast) and we will all be
in business.

There should be several other articles in this issue
written by VMS folks. In addition, I have received
several letters very recently that contain leads for
further articles of interest to the VMS community.
Hopefully they will find their way into the next issue
of TUGboat.

David Fuchs has very kindly made available many
more fonts in .tfm and .pxl format. They are for
200dpi devices and the .pxl files exist in magnifi-
cations of 1000, 1100, 1200, 1300, 1400, and 1500.
These files are presently being unpacked from tape
and will be sent soon fo Oregon Software where they
can be distributed to you. These fonts will work for
the most recent version of TEX now being distributed
by OS as well as the version of TEX82 that we all
long to see. In addition, I still have the files sent me
courtesy of AMS which supplement those from D. F.
but which exist only as METAFONT files and thus
need to be “treated” by the METAFONT program
on a DEC 10 or 20 machine,

I want to again encourage anyone who develops a
spooler for devices other than those presently avail-
able on VMS to send them to me or to Oregon
Software so they can be made available to the rest
of the VMS community.

¥ % * * * * * *x *x % ¥

TUGboat, Volume 4, No. 1

TEX AT CALMA R&D
David Krapp

At Calma R&D in San Diego, we produce
approximately five thousand pages of technical
documentation every six months. The majority
of this work is in the form of user manuals for
our computer-aided design systems. Until now, the
typesetting of these books was done by a commercial
typesetter, at considerable expense to the company.
The typeset copy is then mailed to our corporate
publications office for printing.

Late last year, after a brief familiarization and
testing period, a decision was made to use TEX to
produce camera-ready copy of all of our documenta-
tion. Lower costs, faster typesetting time, and keep-
ing control of the entire production process in-house
were major factors in this decision. The conver-
sion to TEX was to occur within our normal delivery
schedule, necessitating very fast and concentrated
work to produce this large volume of material.

Work began immediately on the creation of a
suitable macro package that allows us to create
many of the complex layouts used in our books with
relative ease. Lynne Price, TFX wizard from our
Sunnyvale office, was (and is) instrumental in creat-
ing this package, as well as advising me on debug-
ging, creation of new macros and generally sooth-
ing frazsled nerves. We now have an excellent table
of contents generator, with an index generator just
around the corner. Most of our problems resulted
from trying to duplicate the current typeset layout
of the books, instead of simply redesigning them in
a way that’s easy for TEX. Happily, we have not
encountered anything that absolutely can’t be done
(somehow).

Our macro package was designed so that our
typists could easily insert control sequences in the
text of the manuals. I then review the manuals to
insert any complicated layouts, such as table align-
ments and the syntax descriptions of computer com-
mands, for example:

FPP 3
P var

VPA P ws
MAX Xs
MAX Ys
FOO{ MAX Zs
PIR Isarc,con

PP
\ DWN

(One book had nearly 400 such syntaxes.) Finally, I
debug and run the input file to generate the manual.

[[vec] [ADD] OTR lst] +
sC/R

J

23

In February of this year (two months before our
production deadline) we switched from the original
TEX to the mewer version (using TFM files). We
now run TEX on both our VAX-11/780 and 730 un-
der VMS, with output available on a Versatec V-80
(used for draft copy) and a Symbolics LGP-1 Laser
Graphics printer (for camera copy). As this is writ-
ten, we are pushing hard to meet the deadline, with
some 3500 pages completed in draft form and about
1700 in final, camera-ready copy.

As a tool for high-volume production, TEX has
proven itself to us at Calma R&D. It does require
quite a bit of familiarization and practice, but the
results go far have been worth it.

* %k % ¥ * *x % % % % *

TEX AT TEXAS A&M UNIVERSITY
Norman Naugle and Bart Childs

The best news about TEX at TAMU is the arrival
of a QMS Lasergrafix 1200 printer and the ability
to produce TEX82 dwi files successfully on a Data
General MV8000. Although we have been running
TEX using VAX/VMS systems, the lack of a reason-
able output device has hampered our progress. Until
now, our output devices have been Printronix and
Trilog printers-—suitable for overhead projectors.
These printers use a driver (modified) and 200 bpi
fonts obtained from Oregon Software.

Initially, the QMS printer will be used in the
graphics mode to paint pages, but development of
a driver is under way. The printer will have TEX82
fonts at 300bpi in ROM plus down-loadable fonts.
It is anticipated that the printer will digest dvs files
a page at a time, i.e., from bop to eop. This strategy
should allow the printer to approach its 12 page per
minute capacity. Hooks for embedded graphics are
possible and are being considered.

Our plan is to offer TEX82 on all major com-
puters on the TAMU campus. This includes VAX,
Prime, Amdahl, DG, and Cyber. Available output
devices will include Lasergrafix, Versatee, Trilog,
Printronix, Xerox 9700, and Linotron 202. We are
hoping for something like an Autologic APS-5 in
1984.

Although we can’t say TEX correctly since we’re
from TeXAS, we can say Thank you! to everyone
in the TEX community for their generous support to
an isolated outpost.

24

* % ok % %k * * x % % %

*small” M

* % % % % & & %k ok & &

Send submissions to:
Lance Carpes

163 Linden Lane

Mill Valley, CA 94941
(415) 388-8853

The number of :mat TEX implementations is grow-
ing by leaps and bounds. In addition to TYX’s
TEX-in-C, Tom Hickey’s Apollo implementation, and
my HP3000 version, there is an implementation on
the HP1000 and a possible Apple LISA version

The people at TYX inform me that they are
busy bringing up TEX82 in a C version which will
run on all of their machines (ONYX, PDP11-44,
PLEXUS) as well as on 68000-based systems. My
understanding is that this is not a WEB transport,
but a rewrite in C (as was their TEX80).

Tom Hickey has already transported TEX82 to
the Apollo, and reports that it was an easy task.
Tom. notes that the new version is faster, though this
may be partially due to the new Apollo processor.
He is using an Imagen printer, and a report on the
activities at OCLC appears elsewhere in this issue.

TEX82 is in the works for the HP3000. See the
site report below. (Again this issue, this page was
printed on the HP2680A Laser Printer.)

There is a new implementation of TEX82 for the
HP1000 from JDJ Wordware, Cupertino, CA. They
have a driver for the Epson MX-80, as well as for
the Imagen. See their report elsewhere in this issue.

Alas, there is still nothing for the 8-bit micros,
but there is good chance the Apple LISA will soon
support a version of TEX. See David Fuch’s article
in this issue.

HP3000 SITE REPORT
Lance Carnes
TEX82 is struggling to life on the HP3000! Trans-
porting the WEB system was unbelievably painless,
and bringing up TEX82 is still before me. What fol-
Jows is a brief glimpse of what has been done so far.
After unloading the WEB sources from tape, it
took me exactly three tries to successfully compile
and run TANGLE, and have it output itself in Pas-
cal! Stunned, I decided to press my luck and try
to bring up WEAVE. This came up the first time,
mostly because the change file is almost identical to

that for TANGLE.

Most of the problems encountered so far had

TUGDboat, Volume 4, No. 1

to do with the change files. After trying to create
them ad hoc based on the listings, it occurred to
me combine all of the system dependent modules
(identifiable by their index reference @ tsystem de-
pendencies) as a first approximation change file.
This works out well, since you need only read and
modify the lines in this file.

TX82 should be up in the next few weeks, and I
will be able to report on its performance at the July
meeting. '

TWO BUGS IN TEX80-in-Pascal
(or FLOGGING A DEAD HORSE)
Lance Carnes

For those of you still hacking away at TEX80 the
following bugs have been identified. Both are caused
by variables which contain uninitialized values.

The first bug occurs in the procedure byphenate
where exception lookup is done. In the August 1981
listing of TEX, section 470, the following appears:

for i:=j35+1tondo

truncword|i]:= shortAscisNull;

And then in section 472 there appears:

for i:= 1 to hashlength do
hash := hash*18 + truncword]i

The problem I experienced was that kash, which
is computed from the first kashlength characters, be-
came a negative number. It turned out this occurred
because for n < hashlength the last hashlength—n
places in the array truncword were not assigned a
value. Since truncword is a local array, its initial
value is just whatever garbage was left on the stack,
and if the garbage happened to be a negative 32-bit
integer, hash became negative also.

The fix for the bug is to replace n with max-
mumDisiinctionLength in the code from section 470
shown above.

The second bug turned up when a source file had
the following: \xdef\junkie{}. The symptom is an
array index violation in Pascal runtime. The bug
occurs in the procedure scantoks.

Refer to Section 194 in the August 1981 listing
of TEX. The array index violation occurred in the
third to last line:

link{q) := 0; { delimit token list }

It turns out ¢ is not set in the case of an empty
definition, i.e. {}, and since it is a local variable, it
just contains whatever garbage is on the stack.

The fix for this bug is to replace ¢ with p. A
workaround is to use \zdef\ junkie{{}}.

The moral of this story is: if you are going to
use a Pascal variable be sure you have previously
assigned it a value.

TUGboat, Volume 4, No. 1 25

¥ % ¥ % ¥ *x ¥ * % *x %

Fonts

* ¥ ¥ % ¥ * ¥ *x % * ¥

Pictures Are Just Big Letters

Scott B. Guthery

Schlumberger

‘We have found that a handy way to include pictures coming from raster graphics software in TEX reporis is to
transform the pictures into a characters in a TEX font. Using two excellent articles by David Fuchs we wrote
a program called TEXIZE that accepts rasterized pictures coming from graphics packages on our time-shared
system or from personal workstations and builds TFM and PXL files which contain the pictures. In the TEX
document one then simply switches to this font, calls out the character corresponding to the picture one wants
to display and places it where one wishes on the page.

The logo at the beginning of this article was prepared on one of our workstations as was the following diagram
which shows how we generate reports containing pictures from our LOGOS database system:

report.ana picture.bit
toces — ANALOG y{\
picture.tfm picture.pxl
l I r.m"’t
report.tex TEX TEXPRINT — picture

David Fuchs, T§X Font Metric Files, TUGBOAT, Volume 2, Number 1 (February, 1981).

David Fuchs, The Format of PXL Files, TUGROAT, Volume 2, Number 3 (November, 1981).

26 TUGboat, Volume 4, No. 1

Conpuirr Calipapty

Georgia K. M. Tobin
Office of Research, OCLC Online Computer Library Center, Ine.

@.Y is a font | designed using Thom Hickey’s Pascal version of METRFONT on an Apollo micro-
computer. It is intended to capture the flavor of a type of calligraphy called Copperplate, a form of script-
originally engraved directly onto smooth copper plates using a stylus. This brief report will provide a gen-
eral description of the design and implementation in METAFONT of &.4%, focusing its attention on
the set-up of the pens and subroutines used in drawing the characters. In designing Gu%, 1 followed the
specifications for the letter forms set down in, “Calligraphy in the Copperplate Style,” by Herb Kaufman and
Geri Homelsky. According to them, Copperplate letters are characterized by thick downward strokes and
hairline-thin upward strokes, 2nd the characters’ axes have a uniform slant of 54 degrees from the baseline.

Cubase is the file that 8lls the same function for %242 that cmbase flls for cmr, i.e., it contains all the
assorted definitions and subroutines that take care of the nasty details that METAFONT needs to know.
Cubase began life as a clone of the base that Thom Hickey used in designing Chel (Computer Helvetica), and
only gradually developed its own character. The first and most obvious change was to adjust the grid upon
which characters are designed to account for the slant and proportions of Copperplate-style characters. The
first requirement is easily satisfied by setting trzy (one of METAFONT’s transformation parameters) to
0.75; this gives the designated slant of 54 degrees from the baseline. (Of course, other ¢rzys may be used.
While these do not give the canonical Copperplate look, they result in some interesting and useful fonts. For
instance, I used a trzy of 0 to produce a non-slanted variant called Tinplate (dm,@h) which can be used on

the Apollo video display.)

The second requirement entails setting up the proper heights for upper case characters (represented by
the value of A), and lower case characters (represented by the value of m) and the proper descender depth
(represented by the value of d). Kaufman and Homelsky specify that the baseline is three units above the
descender; the tops of lower case letters extend two units above the baseline; and the tops of upper case
characters extend three units above the tops of lower case letters. Total design size, then, equals eight units;
therefore, h must equal 5/8 of design size, m must equal 2/5 of h, and d must equal 3/8 of design size to get
the grid we want, namely:

z=0 y=h R4

The Copperplate Grid

Next, I defined a series of borizontal and vertical pens finer than those required by Chel. The horizontal
pens are called w;, we, w3, wy, Wy, we, and wy; the vertical pens are wyg;, wyos, and wygs. w7 is the thickest
pen required by @& and is used in most of the downward strokes of upper case characters. It gives a
stroke of about 4.5 points when drawing a character with a design size of 80 points. wg is the pen .Y
used for most of the downward strokes in lower case characters; it produces a stroke of about 3.5 points when
drawing a character with a design size of 80 points. wy and wyg; are hairline-thin “slow grows”; that is, pens
whose widths grow relatively slowly as boldness and/or expansion increases. These pens draw strokes wider
than one pixel only at the greatest boldness andfor expansion.

TUGboat, Volume 4, No. 1 27

A good deal of a font’s character depends upon the subroutines with which it is drawn. In developing the
@u5% subroutines, I took into account the fact that, according to Kaufman and Homelsky, there are nine
basic strokes which occur in almost all the lower case letters and some of the upper case letters. Not all of
these basic strokes became subroutines, and some subroutines were required for common shapes not described
by those strokes; but all subroutines are described in fairly tiresome detail below.

ttop

Baslc Stroke One

Basic Stroke One is simply a straight line, but, because one or both of its ends may or may not taper, it is
best produced by a call to either Strone or Ucstrone. Strone is used for lower case letters, i.e., it uses wg for
most of the length of the stroke. It requires four parameters: the top point on the stroke (ttop), the bottom
point on the stroke (bbot), the index of the pen used at the top and the index of the pen used at the bottom.
These last two are needed to control taper at the ends. For example, the call

call strone(l,2,3,3);

produces a vertical line from 1 to 2 which starts with a2 w3, gradually widens to a wg, and then tapers down
again to a2 wy. Uecstrone is used for upper case letters, i.e. it uses a w; for most of the stroke. It only
requires two parameters, the top point and the bottom point, because tapering of the stroke from a w;g is done

automatically at both ends.

ttop

bbot

Basic Stroke Two

Basic Stroke Two can be produced by defining the coordinates of the topmost point on the stroke (¢¢op),
the lowest point the rounded bottom reaches (bbot), the ending point on the stroke (t5p), and the index of the
pen used at the top (w3 for tapering lower case letters, wg for non-tapering lower case letters or tapering upper
case letters, wy for non-tapering upper case letters), and then passing those parameters to either Sertwo (for
lower case letters) or Ucstrtwo (for upper case letters).

ttop
tip
bbot

Baslc Stroke Three

Basic Stroke Three is the reverse of Basic Stroke Two. It can be produced with a call to either Strthree or
Ucstrthree for either lower or upper case, respectively. Strthree takes three parameters: the bottom point on

28 TUGboat, Volume 4, No. 1

the straight stem of the stroke (bbot), the highest point the rounded top reaches (tfop), and the ending point
on the stroke (¢ip). Ucstrthree requires those three parameters, as well as the index of the pen used at the
bottom of the straight stem; wg is used if the stroke is to taper at the bottom, wy if it does not.

Basic Stroke Four

Basic Stroke Four is a combination of strokes two and three, and may be produced with a call to Sirfour
for lower case; this stroke does not occur in any upper case letters. Sirfour requires four parameters: the
highest point of the rounded top {ttop), the lowest point of the rounded bottom (bbat), the leftmost point where
the stroke begins (#ip), and the rightmost point where it ends (r¢ip). All tapering required is handled by the
subroutine (which is a nice way of saying that you have no control over the pens used.)

Basic Stroke Five

Basic Stroke Five is an oval which is thick on the left hand side and thin on the right. This stroke does
not occur in any upper case letter. It may be produced by calling Strfive. The parameters required are: the
highest point (t¢op), the lowest point (bbot), the rightmost point (right), and the leftmost point (left). All

tapering is handled by the subroutine.

Basic Stroke Six Baslc Stroke Seven Basic Stroke Eight Halrare

Basic Stroke Six does not occur often enough to merit its own subroutine, and is produced on an ad koc
basis. Basic Strokes Seven and Eight are adequately handled by, respectively, one or two calls to the subroutine
Hairarc, which produces a concave arc from the first point it receives (strt) to the second point it receives

(stop) using a hairline thin pen.
p
) 4

Basic Stroke Nine Dotloop

TUGboat, Volume 4, No. 1 29

Basic Stroke Nine is produced by a call to Strnine. This subroutine requires two parameters: the point
at which the dot appears (dat), and the ending point of the hairline tail (¢ip). A similar stroke is produced by
Dotloop, which takes the same two parameters, but produces a tail with a shallower curve.

In addition to the basic strokes that Kaufman and Homelsky describe, there are a number of strokes which
occur more or less frequently ir Copperplate letters which are also handled by subroutines in cubase. These
are described below.

“strt
P
Arc Groware

Arc is used to produce a tapering arc. It requires three parameters: the thinnest point on the arc (drawn
with a w,) (sfrt), the thickest point on the arc (stop), and the index of the pen used at the thickest point.
Growarc also produces an arc given two points, strt and stop, but allows the user to specify both the pen with
which we are to start drawing at stré and the pen with which we finish drawing at stop.

-y
Y/

‘,

Dotstroke

A curving stroke, which tapers at one end and concludes with a dot at the other, is produced by the
subroutine Datstroke. Datstroke requires three parameters: the highest and rightmost point on the stroke
(srt), the nadir of the stroke’s rounded bottom (%m), and the end point where the dot appears {dot).

Flounce :

This decorative stroke, which appears in several upper case letters, is produced by a call to Flounce. Four
parameters are required: the leftmost point (sins), the rightmost point (dezt), the highest point (topp) and the
lowest point {bott). All required tapering is handled automatically within the subroutine.

Several subroutines are used to produce smooth, symmetrical waves. Those which have a crest followed
by a trough are produced by Zhair, Zsquigl, or Qagquigl.

30 TUGboat, Volume 4, No. 1

Zsquigl, Qsquigl and Zhair all take the following parameters: the wave’s starting point (start), the y-
value of the turning point at the top of the crest (crest), the mid-point of the wave (midpt), the y-value of the
turning point at the bottom of the crest (trough), the wave’s ending point (finish), and a variable equal to the
reciprocal of the ending slope. Zhair draws the entire wave thus defined with a hairline thin ¢pen, and so does
not require any pen width parameters. Qeguigl and Zsquigl are passed two pen width parameters before the
slope variable is given: the index of the pen with which we start drawing and the index of the pen with which
we conclude. Qsquigl differs from Zeguigl in that Zsquigl is designod for waves with a horizontal orientation
(i.e., it draws with a vpen), whereas Qsquigl is designed for waves with a vertical orientation (i.e., it draws
with an hpen). Moreover, the Qsguigl wave tapers only at its ending point, whereas Zsguigl tapers at both the
starting and ending points. All three are variations of Zdraw used in Don Knuth's embase, and they rely on a
subroutine Zcomp (which is pilfered wholesale from cmbase) to handle the trigonometric nitty-gritty involved.

Mequigl Tsquigl

Strokes which have a trough followed by a crest are produced by Maquigl or Tsgquigl. Maquigl uses slightly
thinner pens. Both subroutines require the following eight parameters: the wave’s starting point (start), the
x-coordinate of the turning point at the bottom of the trough (trough), the wave's midpoint (midpt), the x-
coordinate of the turning point at the top of the crest (crest), the wave's ending point (finish), the index of
the pen with which we start drawing, the index of the pen with which we conclude, and the slope at mid-wave.
These subroutines are also adapted from cmbase. They call Scomp for computing values.

At one point, Kaufman and Homelsky remark, “The joining of letters into words is as important as the
forming of the letters themselves”. This nicely sums up another problem in designing @ud?, i.e., contriving
to make discrete characters appear to join like flowing script. This is relatively simple for the lower case letters.
I simply designed each so that the “beginning” of the character (that is, its left side) included the point with
coordinates (0,2/54), and the “ending” of the character (that is, its right side) was precisely at the point with
coordinates (r, 2/5h). Occasionally, this produces a small bit of overlap:

cocls

The finishing upswing on the ‘v’ runs into the left side of the ‘¢’, the finishing upswing on the ‘r’ runs into
the left side of the ‘I, and so on. Normally, this isn’t apparent (I hope):

-~

TUGboat, Volume 4, No. 1 31

No single rule for beginning and ending points applies to the upper case letters, but then, none needs to:
the upper case letters never need to be connected in sequence. What the precise value of an upper case letter's
smallest x-coordinate is doesn’t matter (as long, of course, as it is greater than zero). Some upper case letters
(viz., H, J, K, M\, R, U, X and Z) end in a hairline upswing that must connect to minuscules; for these, the
right side must end at the point with coordinates (r, 2/5Ak). The other upper case letters stand independently,
and their right hand sides need only end at some point with an x-coordinate less than r.

/W

Non-Connecting Upper Case Connecting Upper Case

There are still 2 number of rough spots in @ud2. One problem is tied to the convention that the
beginning of lower case letters include the point with coordinates (0,2/54). In certain cases, viz., b, h, i, j, k,
P, 1, 6 and ¢, the letter form which connects nicely is not always the most desirable form. When these letters
do not follow another lower case letter, a form which begins with a lead-in hairline stroke from the baseline
looks better than the usual combining form. That is, I claim that:

s s prcty

As of this writing, I have not found a way to put the information that (for instance) ‘001 is to replace ‘b
after a blank, or afier certain upper case letters, or after certain punctuation marks. I am able to print these

ligatures by manually inserting a dummy character () in front of letters to be replaced and including ‘# in the
ligature table; but this approach is far too cumbersome and I hardly ever insert an * every place 1 need one.

At present, all upper and lower case letters, all digits and about a dozen punctuation marks are designed,
and look acceptably good in most design sizes for most boldnesses and most expansions. I hope to carry out
exhaustive testing to determine specific problems and to correct those, so that the same can be said of all
design sizes at ell boldnesses and expansioas.

Meanwhile, here’s a sample:

32 TUGboat, Volume 4, No. 1

ﬁw ; W%gaﬁ
To' Googin HH. Toktn
P of Rscnot
OGLG Crbons' Conpaton Lbny Gonto,
b565 Franty Fipad
Zitttn, %./30/7

Bibliography

Hickey, Thomas B. “The Status of METAFONT at OCLC". TUGboat, Volume 2, No. 2, July 1981,
Pp- 35-38.

Hickey, Thomas B.; Tobin, Georgia K.M., The Book of Chels. Privately produced limited edition. 1982.

Kaufman, Herb; Homelsky, Geri. Calligraphy in the Copperplate Style. Dover Publications, Inc. New
York, 1980,

Knuth, Donald E. The Computer Modern Family of Typefaces. Computer Science Department Report
No. STAN-CS-80-780. January, 1980. ‘

Knuth, Donald E. TEX and METRFONT: New Directions in Typesetting. Ametrican Mathematical
Society /Digita.l Press. 1979. ’

TUGDboat, Volume 4, No. 1

The Fifth ATypl Working Seminar
The Computer and the Hand in Type Design:
The Aesthetics and Technology
of Digital Letterforms

During the week of July 31-August 7, at
Stanford University, the Committee for Education
and Research in Letterforms of the Association
Typographique Internationale (ATypl) is sponsor-
ing an International Working Seminar on electronic
and traditional methods of letter design. The pro-
gram includes workshops, seminars and illustrated
lectures, and it will conclude with a typographical
excursion to San Francisco.

The Seminar will begin on Monday morning,
August 1, with the keynote address, “A Turning
Point in Type Design”, by John Dreyfus, Honorary
President of ATypl. Other speakers include the type
designers Hermann Zapf, Matthew Carter, Andre
Guertler, Christian Mengelt, Gerard Unger and
Bram de Does; typographers Jack Stauffacher and
Charles Bigelow; lettering artists David Kindersley
and John Benson; type punch-cutter Henk Drost;
designer Veronika Elsher; and computer scien-
tists Donald Knuth, Patrick Baudelaire and Neil
Wiseman.

The theme and purpose of the Seminar are:

— To acquaint educators and designers with the
new computerized methods of type produe-
tion and to review certain traditional letter-
ing crafts, including punch-cutting and stone-
cutting.

- To provide practical experience with computer-
aided design systems.

— To bring designers and engineers together for
future cooperation and creation in type design.

Working installations of the IKARUS, META-
FONT, ALTO, CAMEX, and other systems will be
available for use during the Seminar. Demonstra-
tions and assistance in using the computers will be
provided. Morning seminar sessions will be devoted
to working with computer systems, and the systems
will be available at other times of the day and night
for further exploration.

Prior to the Seminar, information materials on
each computer-aided design system, with samples
of selected design problems, will be sent to each
registered participant. This is to acquaint partici-
pants with the systems before their arrival at the
Seminar.

The Seminar is intended for design research,
not scientific research. Participants do not need
scientific training. The emphasis will be on the prac-

.33

tice of design with the new computer technology,
and with traditional hand technology.

The Seminar langusge is English, with translators
for German and French.

Fees of $950 per person include Seminar, shared
double room, meals, reception, and excursion. The
rooms and meals are in a Stanford Residence Hall
on the Stanford Campus. For a private, single room,
the total Seminar fee is $1025 per person. [For par-
tial bookings, e.g. seminar without room and meals,
or a stay of less than the full week, send inquiries to
the address below.]

To reserve a position at the Seminar, or for addi-
tional information, write to

Charles Bigelow
President, ATYPI Committee on
Education and Research in Letterforms
Department of Computer Science
Stanford University
Stanford, California 94305 USA
Reservations must be accompanied by the full fee.

Send Submissions to:
Lynne A. Price

TUG Macro Coordinator
Calmae R&D

527 Lakestide Drive
Sunnyvale, CA 94086

TUGBOAT MACRO INDEX

The following list catalogues macros that have
appeared in TUGboat. Entries are listed by volume,
number, and page as well as author’s name. Items
that could not be categorized by an obvious head-
word have been listed under “miscellaneous”. Many
items refer to parts of large macro packages; users of
other packages may find them valuable models for
macros of their own.

Readers’ comments on the format as well as the
contents of this index are welcome.

34

ACM style
Addresses

Appendices .

Array operations -

Bessine, set to top of box .

Bibliography .

Bowss T T
Bmmpmbm,.mmﬁealloaﬁnn
Bnneiaing,mﬂ‘ i
Capital letters

large ~ st beginning of peragraph

Roman numerals
Centering a sequence of lines
Chapters and Sections

Character width determination
Characters, macros to producs
special
Chemical notation
Columns
balanced
multiple

Comparison of integral valuss
Counters
automatic aliocation
paoudo o

Cross references
Deferred output
Division

Equaity of integral values

Graphics

Hashsize

Headings, page

Hidden Text

¥
comperison of integral values
groupless \W
nutl string, see Null string

tosting math-style (diopby un'pt or
scriptscript) . .

A1 6], 82-83

I:1 54
12 A

n2 A2
m:2 34-3
11 60,77
02 A2

1 5,73
H1 3

i1 60, 78
I3 62

:2 A-16
o1 120-122

02 A13

M1 60-61, 79-81
1 112128

U2 A-8-9,2022

vt 38

11 57, 67-70
I3 57-58

3 58-59
:2 A-38-40
ILS 24-25
=2 33

1 119120

mi1 3

it 60, 17
1 120

m:2 30

I3 4

111 60, 68-86
w2 4

11 119-120
02 AB-27

Iv:i 38

I:1 56-57, 65-88
12 All
1119

11:2 448

ma%
m2 2

Il 58, N-72
n:2 AA-25

n2 A2
I:2 48-49
I3 63
vl 36

02 A-23-24
I3 81

1 119120
o2 4

I:2 46

A. Koller

B. Boston
M, Disz

M. Diasz

L. Lamport
A. Kallor
M. Ofaz

A. Keller
M. Plass

A. Kellor
TeXarcans Class
M, Dlaz

P. Miligan, L. Prics

A, Keller
L. Price
M. Disz

R. McClure

A, Koltor
M. Nichols, B. Beston

L. Price
M. Dfaz
B. Beston
9. Beston

P. Milligan, L. Price

M..Plass
A. Keller

P. Mitligan, L. Price
B. Beston

B. Beston
A. Keller
0. McKay

© P, Miliigen, L. Price

M. Déez

R. McClure

A Kellor
M. Disz
P. Millgen, L. Pric

P. Miligan
R. Besman

€. Jackson

A, Keller
M. Disz

M, Diaz

B. McKay
TeXercane Class
8. Beston

M. Olez
TeXercana Cless

P. Milligan, L. Prics
8. McKey

B. McKay

TUGboat, Volume 4, No. 1

Index production I1 Appendix A T. Winogred,
W. Paxton
Coe n2 A-28 M. Diaz
Justification
of reviewer’s names 03 & Telarcana Class
right ~ I3 63 TeXarcana Class
Layout macros w1 A. Mohr
Lettwrs . 12 A-32-35 M. binz
Lotterhend . 12 A-33 M. Diaz
Line numbering m:1 43 TiXarcana Class
Lists It 59,72-12 A Keller
. H:1 98-110 L. Price
. B2 A-15 M. Diaz
Margias 2 A19 M. Digz
Matrices 2 A30 M. Disz
Memos . 12 A-32-35 M. Diez
Miscollaneous
svtomatic printing of mecro nemes 1.3 60-61 L. Price
svoiding “Argument of
{control sequence) hes
an extra }.* . n2 50 M. Spivek
conditiona! eveluation of macros 12 S0 M. Spivak
input-dependent macro redefinition [1:3 59-60 L. Price
\input within \if .. 12 50 M. Spivak
single tokens, identifying 2 52 M. Spivek
Multiphication n2 & B. McKey
Nofil ,
macros 1 53-80, T4-76 A. Keller
e e 12 A-16-18, 36 M. Ofaz
program {SAIL) m 87-93 L. Prics, P. Milligan
program {Pascal) . . . Bl 997 L. Price, P. Milligan
program errate (SAIL and Pascal) 112 43-44
Notes
outwt to the writer on & separate
. Il 60,76,85 A, Koller
mmnmumm 2 A5 M. Disz
Nul stnng, mfor . 11 60,77 A. Keller
R, I:2 51-52 M. Spivak
Numb-nng, m- R I 57,70-T1 A, Koler
line . e e .. m a TeXarcana Class
Outputrouhm 111 57-58, 60-62, A. Keller
11, 82-85
B2 A-18,40 M. Dfez
.. . m:2 33 B. Baston
Overlining . . 2 A-13 M. Diaz
Page layout ... V1 31 A. Mohr
Page numbering e e i1 51, 70-11 A. Kefler
e e e e e 112 A18,23 M. Dfaz
Paragraphs
thmmm 11 60, 78 A. Keller
. 2 A18 M. Diez
in Mh m:2 38 Probless colume
indented . 1 58,72 A. Koller
e e e e . 2 A-13-15 M. Dfaz
numbered, see Lists
Parentheses, assorted sizes 2 a1l M. Disz
Pictures, plotting . 2 4849 B. McKay
Point, ddamgfwtf-muliuohpm
ticulsr ~ size . . 11 56-57, 65-66 A. Keller
e e e 2 A1 M. Diaz
Proofs . . . 2 A-31-32 M. Diez
Punctustion, ‘hanging’ m:2 38 Problems column
e e v 3 Problems column
Push-down stacks M2 34-36 L. Lamport
Recursion 2 48-48 B. McKsy
.. n2 53 M. Spivak

TUGboat, Volume 4, No. 1

References . . 2 A5 M. Disz
Registration marks m:2 0 B. Beeton
Roman numerals, uppercase 1 120-121 P. Miligan, L. Price
Seeting charts m: 3 R. Beeman
Spanish . . H2 A-12 M. Dfsz
Strings .
testing for ~ equivalence 3 6 L. Price
testing for the mull ~ . 11 60, 77 A. Koller
e e e e e n:2 51-61 M. Spivak
Strus v:1 35-36 B. Beeton
Syntex charts n:3 39.58 M. Plass
Table of Contents f:1 60,62,86 A. Keller
. 1 111-118 L. Price
1:2 A-27-28 M. Diaz
. I3 4 B. Beston
Tables . . . 2 A-5-21 M. Dfaz
peragraphs in ~ Im:2 38 Problems column
Testi
intagral vales 1 119-120 P. Milligan, L. Price
math-style (display, script or
scriptscript) . . . 2 46 B. McKay
for string equivalence 3 61 L. Price
for the null string It 60,77 A. Keller
e e 12 5182 M. Spivak
Theorsms [B2 A-31-32 M. Diaz
Top, baseline set to ~ of box 1 60, 77 A. Keller
TUGDoat submissions 1 53-54 B. Beston
ce e n3 B. Beston
Underlining Il 59,73 A. Keller
e . 2 A13 M. Disz
Uppercase letters
largs ~ st beginning of paragraph 1I:1 60, 78 A. Keller
e e e e e 2 A-16 M. Disz
Roman numerals 1 120-121 P. Milligen, L. Price
Verbatim
mode 1I:1 59-60, 74-76 A. Keller
e e I:2 A-16-18,36 M. Disz
progrem (SAIL) i1 87-93 L. Price, P. Mitiigan
program (Pascal) 1 9497 L. Price, P. Milligan
Vertical text . IE3 64 TeXarcana Class
* % * % * * %x ¥ ¥ ¥ *
HOW TO BUILD A \STRUT
Barbara N. Beeton
American Mathematical Society

Struts are things that keep objects a fixed dis-
tance apart, like the wings of a biplane. Because
of the way that TEX puts boxes together verti-
cally, struts are sometimes needed to maintain the
desired distance. The concept was introduced in the
definition and explanation of \| on pp. 108-109 of
the TEX manual [TEX and Metafont]: “TEX doesn’t
use \baselineskip and \lineskip before and after
horizontal rules.” The failure of \baselineskip to
apply the desired spacing also affects adjacent \hbox
pars which contain more than one line, but in that
case, a visible vertical rule would not be a satisfac-
tory remedy. As it happens, an invisible vertical rule

35

is just the thing, but first let us look at the problem
in more detail.

In text, \baselineskip is typically set at 2 points
greater than the text body size: 10-on-12, 9-on-
11, 8-on-10. For some special work, though, it
may be desirable to set material more densely, even
“golid” —10-on-10, etc. Only rarely are lines of
text set any closer than that, and struts won’t help
with that problem in any case, so it will be ig-
nored here. A strut for solid text should be the
same height and depth as the tallest and deepest
characters in the font; in METAFONT text fonts,
a parenthesis () or square bracket | | qualifies, so
adjacent vertical boxes containing one of these on
the last and first lines respectively will be separated
by the desired distance. Consider the following ex-
ample, which consists of three \hbox pars: the first
junction lacks sufficient ascenders and descenders to
force the baselines apart to the \baselineskip dis-
tance (this is \tenpoint\rm \baselineskip 10pt),
but the second junction looks no different from two
lines in the middle of a paragraph.

This paragraph has no
descegdors,ip the last g,
answer to this (let’s cheat).

(This example may be
contrived, but it works.)

Now, define a strut with the maximum height and
depth of any character in the font, and insert it at
the beginning of the first and end of the last line in
each paragraph:

This paragraph has no
descenders in the last line.

one can scarce see an
answer to this (let’s cheat).

(This example may be
contrived, but it works.)

Finally, reset \baselineskip 12pt and apply a
strut that is 2 points longer:

This paragraph has no
descenders in the last line.

one can scarce see an
answer to this (let’s cheat).

(This example may be
contrived, but it works.)

There are probably many ways actually to define
struts, but only two will be shown here. In one
approach, strut is defined within the range of each
“gize” definition (this is Knuth’s approach):

\def \tenpoint{\baselineskip 12pt ...
\def\strut{\lower 3.5pt\vbox to 12pt{}}
R |

The following is equivalent for \tenpoint, but

more efficient (because rules take less memory space

36

than boxes):

\def \strut{\vrule
height 8.5pt depth 3.5pt width Opt}

The preceding defined a strut of the “second”
kind, which at AMS we call a \strutt. We also
use “throwaway” definitions, in which the size of
the strut is calculated on the basis of the current
text font, so that only two definitions are necessary,
rather than one for each size (some applications in-
clude as many as 6 “text” sizes, including titles,
footnotes, et al.). These probably run less efficiently,
but permit more generality in the construction of
\tenpoint and its friends, & memory-saver when
there are frequent size changes.

.\def \strut{\save7\hbox{(}\vrule
height 1ht7 depth 1dp7 width Opt
\saveT7\hbox{}}

\def \strutt{\save7\hbox
{(\lower2pt\hbox{ (}}\vrule
height 1ht7 depth 1dp7 width Opt
\save7\hbox{}}

Just because \hbox pars go away in TEXS82
doesn’t mean that the need for struts will vanish;
it won't. But there will be a more efficient way
to define them. See item 137 in the current list of
differences between TEXS80 and TEXS82.

¥ * *x * *x % %x * Xk ¥ %X

DETERMINING HASHTABLE SIZE
AND OTHER QUANTITIES

Barbara N. Beeton
American Mathematical Society

The hashtable, in which names of control se-
quences are recorded, is limited in size. In TEXS0,
a common size is 1009 (= MIX); it will be larger in
TEX82, but the number of primitives and names in
PLAIN.TEX is also larger than the basic set. And
once a name is loaded, it is never removed. So it’s
not too hard to run out of space for new names.

At AMS, a file called HOWNANY . MAC (a shortened
version is shown below) is used to help determine
how much space is left after all the header file \dets
for a job have been installed. To use it, load in
the header(s), then \input howmany.mac; this will
rapidly fill the hashtable and blow up when there’s
1o more room, returning with the error message the
number of control sequence names that were able to
be loaded before space ran out.

TUGboat, Volume 4, No. 1

\chcode176=11 % ~ - make it a letter
\det *~~{0 }

\def \"AA{1 }
\def \"AB{2 }
\def \"AC{3 }

\def \"AS{19 }
\def \"AT{20 }
\def \"BA{2t }
\def \"BB{22 }

\def \"0S{299 }
\de? \“0T{300 }

The control sequence names used in such a file
must be unique. In HOWMANY.MAC, only 20 letters
of the alphabet were used, so that the file is easily
extensible with the help of a few commands to an
editor. This also made checking the count easier. If
the count is wrong, or a name in this file duplicates
that of an existing control sequence, results will be
unreliable.

The following test ran on a SAIL version of TEX80
on a DEC 2060.

Otex header.fil

{input from: notices)

AMS TeX varsize of 11500 created
Wednesday, August 18, 1982 16:07:51

this run of TeX begun: .
Tuesday, March 1, 1983 23:00:32

*
(PS: <BNB>HEADER.FIL.1)
»\input howmany.mac

(PS: <AMSTEX>HOWMANY .MAC.3 1
! TEX capacity exceeded, sorry [hashsize=1009].
p-1,1.67 \def \"DC

{63}

-No output file.

It is useful to run a new set of header files through
this test before putting them into production, and
some other useful checks can be performed at the
same time. Use a ‘slow’ version of TEX (one com-
piled in such a way that statistics are saved for such
things as memory size), and insert \ddt (for TEX80)
before \input howmany.mac. This will report the
location on the page and the current nesting level,
all of which should ordinarily be 0 if there aren’t
any braces missing in the header. It will also tell
you how much memory the header requires—if to-
tal available memory is 22,000 words, and the header
alone occupies 19,000, some pruning is in order.

* % % * * * x Xx ¥ ¥ %

TUGboat, Volume 4, No. 1

SOME LAYOUT MACROS
August Mohr

Editor’s note: The author of this note is the editor of
CommUNIXations, an elaborately laid-out newsletter
for the UNIX commaunity. His original plan was to
use his layout macros to describe themselves. But the
deadline arrived bejore the maruscript

So, for better or worse, here’s a few macros that
you might find interesting. This one has a structure
that has been useful in several variations.

\def \by #1\\ {\def \OF{}\gde? \of ##1::{\gdet
\OF{\unskip, {\it ##1\/}}}
{\ragged 1000\hbox par size
{\unskip\b? By #1\OF\par}}}

This one can be used as either
\by Author N. Ame\\
or as
\by Arthur N. Ames\of Groupth, Imc.::\\

to produce a paragraph-form author-credit.

Note that the macro \of will redefine \OF when
it is used. Otherwise, \OF remains {}. \by is closed
with \\, and \of is closed with ::. (I'm not very
pleased with the ::\\ construction; at the time I
tried to do without braces & la Mike Spivak.)

The same general pattern is used in \cont and
\cont?, which produce the “Continuedon... " and
“Continued from ... " references at the tops and
bottoms of columns. Of course, to get them at the
top or bottom, they have to be referenced by the
\output routine, but that’s another subject. The
special thing about them, like \by above, is that they
have optional parts. They may be used in simple or
complex ways such as,

\cont{page 12}
or

\contf{previous page\col3\ti{A Simple Title}}

The key to making the pieces optional, such as \col
and \ti, is that they are always given one argument,
which may have more than one part.

Here are the macros:

% \contfont is a font, 9pt italic.
% \strut is a vrule of width 0 and
% height. and depth to match the font.

% Article continuation macros
\def \cont#1{\def\COL{}\def \col##i{\gdef
\COL{\unskip, Column ##1}}
\vekip2pt\hbox to size{\hfil
\contfont Continued on #1\COL\hfil}}

37

% Usage: \contf{ {Page #} <\col{column#}>
% <\ti{title}> } (<...> is optional)

\def \contf#1{\def\TI{}\det

\COL{}\def \col##1i{\gdet
\COL{\unskip, Column ##1}}

\def \ti##1{\gdef\TI{\kbox to size{\hfil
\contfont ##1\strut\hfil}}}

\xdef\PG{#1}

\TI\hbox to size{\hfil\contfont

Continued from \PG\COL\strut\hfil)})}

Both \col and \ti are optional, and their order
is not important, but the page number should come
before them. If \ti is used, the result is two lines,
the first containing the “Title”.

The really tricky part is \xdef\PG, which is given
the entire input parameter string, and allows \col
and \ti, if they are present, to do their work of
redefining \COL and \TI.

These macros are most useful in output routines
or inside other macros, since it would be rare in -
straight text to know when and where the page will
break. The structure, however, is useful in many
cases.

| header |
| [|
= TITLEA (1) : : text I
I @ |
| [(| !
| text | | text | | {
| | [|
@ 1@
: : : | | continued
]]
| |
| T |
| b TITLEB () |
| [|
{ |
I | I I |
| I | text | | text |
! [1 |
| It ® 1 1 M i
| | [|
| | { 1 {end) |
| It [N i
) footer |

In another issue, I'd like to describe how I get TEX
to do some of the trickier kinds of 3-column layout.
In a page like this, pieces 3 and 4 must balance,
allowing for title (1) and the continuation line, and
their sizes also depend on the length of article B.

In my solution, the output routine keeps chang-
ing the \vsize, and saving the pages in successive
\boxes. When the proper number of boxes have been
filled, it puts out the completely assembled page.

If there are other TUGboat readers who have
tried similar constructions, I'd like to hear from

38

them. I'm also interested in corresponding with
people who'd like to use a layout schema like this
to help me get the macros to be less idiosyncratic.

¥ ¥ * ¥ ¥ x *x ¥ * * X

TESTING THE WIDTHS OF A FONT

Robert, M. McClure
Unidot, Inc.
Communicated by August Mohr

This macro takes the characters of a font and
makes a string of 10 of them, then draws a box
around the string. The box’s size is determined
by TEX, from the font-metric file. The character
string is generated by the typesetter. When the
width is right, the box will match the characters,
but when the width is off, the box will show the
difference. Using 10 characters in a row multiplies
the difference by 10, which makes it much easier to
be very accurate about the width.

The width file is based on a “design size” of 18pt,
8o testing with a 9pt font means the error is only
multiplied by 5, relative to the width file.

Here’s the file “fontest.x”:

\chcode "175=2
\checode "100=4
\chcode“43=6

\chcode "137=8

\chcode “173=1
\chcode “44=3
\checode "45=5
\chcode-136=7

\dez\null{\hbox{}}

\def\boxit#1{\vbox{\hrule

\hbox{\vrule #1\vrulel}\hrule)}}
\def\vboxit#1i{\bbox{\vrule

\vbox{\hrule\hbox{#1}\hrule}\vrule}}
\def\need#1{\vskip #1 minus 1£il

\penalty O\vskip -#1 minue -1£1l}

\output{ \vskip .1in \page \vskip .iin }

\hsize 7in

\vsize 9in
\maxdepth 2pt
\topbaseline 10pt
\lineskip Opt
\parskip Opt \parindent Opt
\setcount0 1

\chparo0=2

TUGbost, Volume 4, No. 1

% --- Standard TeX fonts ---

\font A=life at 9pt X *++ Font under test
\font H=helv at 10pt

\font I=helv at Spt

\font J=helv at 6pt

\font K=helv at Spt

\font L=helv at 9pt

\def\x#1{\hbox{\:K#1}\bskip .1in
\bbox to 3in{\hbox to .26in{\bhbox{\char #1}\hss}
\bbox to .26in{\vdoxit{\char #i}\hse}
\vboxit{\char ‘#1\char “#1\char "#1\char “#1\char ‘#1
\char ‘#1\char ‘#1\char “#1\char “#1\char ‘#1)}\hss}}
\def\vsk{\vskip .in plus .1in}

\baselineskip Opt
\:A

\bbox{\:H 1ife- 115)}

% *¢+ Name and number of font being tested

\vsk)
\hbox{\x{000}\x{001}} \vsk \hbox{\x{002}\x{003}} \vsk
\kbox{\x{004}\x{005}} \vsk \hbox{\x{006}\x{007}} \vsk
\hbox{\x{010}\x{011}} \vsk \hbox{\x{012}\x{013}} \vsk
\hbox{\x{014}\x{015}} \vsk \hbox{\x{018}\x{017}} \vsk
\hbox{\x{020}\x{021})} \vsk \hbox{\x{022}\x{023}} \vsk .
\hbox{\x{024}\2{025}} \vsk \hbox{\x{026)}\x{027}} \vsk
\hbox{\x{030}\x{031}} \vsk \hbox{\x{032}\x{033}} \vsk
\hbox{\x{034}\x{035}} \vsk \hbox{\x{036}\x{037}} \vsk
\hbox{\x{040}\x{041}} \vsk \hbox{\x{042}\x{043})} \vsk
\hbox{\z{044}\x{045}} \vsk \hbox{\x{046}\x{047}} \vsk
\bhbox{\x{0503\x{051}} \vsk \hbox{\x{052>\x{053}} \vek
\hbox{\x{054}\x{055}} \vsk \hbox{\x{056}\x{057}} \vsk
\bbox{\x{060}\x{061}} \vsk \hbox{\x{062}\x{083}} \vsk
\hbox{\x{064}\x{065}} \vsk \hbox{\x{066}\x{087}} \vsk
\hbox{\x{070}\x{071}} \vek \hbox{\x{072}\x{073}} \vsk
\bbox{\x{074}\x{075}} \vsk \hbox{\x{076)}\x{077}} \vsk
\bbox{\x{100}\x{101}} \vsk \hbox{\x{102}\x{103}} \vsk
\hbox{\x{104)X\x{105}} \vsk \hbox{\x{106)}\x{107}} \vwsk
\hbox{\x{110}\x{111}} \vsk \hbox{\x{112}\xz{113}} \vsk
\bbox{\x{114}\x{115}} \vsk \hbox{\x{116}\x{117}} \vsk
\bbox{\x{1207\x{121}> \vsk \hbox{\x{122}\x{123}} \vsk
\bbox{\x{124}\x{125}} \vsk \hbox{\x{126}\x{127}} \vsk
\hbox{\x{130}\x{131}} \vsk \bhbox{\x{132}\x{133}} \wsk
\hbox{\x{134}\x{135}} \vsk \hbox{\x{136)}\x{137}} \vsk
\hbox{\x{140>\x{141}} \vsk \hbox{\x{142}\x{143)) \vsk
\hbox{\x{144}\x{145}} \vsk \hbox{\x{146}\x{147}} \vsk
\bbox{\x{150}\x{151}} \vsk \hbox{\x{152)}\x{153}} \vsk
\bbox{\z{154}\x{155}} \vsk \bhbox{\x{156}\x{157}} \vsk
\hbox{\x{160}\x{161)} \vsk \hbox{\x{(162}\x{163}} \vsk
\hbox{\x{164)\x{165}} \vsk \hbox{\x{166}\x{167}} \vsk
\hbox{\x{170}\x{171}} \vsk \hdox{\x{172}\x{173)}} \vsk
\hbox{\x{174}\x{175}} \vsk \hbox{\x{176}\z{177}}
\vtill

\eject

\end

TUGboat, Volume 4, No. 1

* * & % % * ¥ ¥ ¥ * #

Problems

* % % % * *x ¥ *x & Xk %
Send Submissions to:

Lynne A. Price

TUG Macro Coordinator

Calma R&D

527 Lakestde Drive

Sunnyvale, CA 94086

Hanging punctuation

In the last issue, Problem #2 gave this example of
a paragraph in which (nearly) all line-initial and line-
final punctuation symbols extended into the margin,
so that the text itself is aligned:

‘Now is the time for all good men to come
to the aid of their party.’ ‘I hope this
works.” “Do you also? “Hope it works,
I mean.” ‘In quotes.’ ‘In single quotes.’
“In double quotes.” How now brown cow?
“The rain in spain stays mainly on the
plain.” This is a sentence. I should take
the time to look for a nicely typeset book
that has paragraphs, paragraphs, and
paragraphs with hanging punectuation, so
that I will have examples of characters,
such as periods, commas, and quotation
marks, that “protrude” into the margin.
If I am lucky, this rather short, and very
disjointed, paragraph will illustrate what
I need to use to debug these macros.

The problem: prepare a file PUNCTUATION. TEX
containing definitions necessary to make punctua-
tion characters behave as shown. The following set
of definitions is one possible solution.

\spaceskip .3em plus .4em minus .lem

\def\,#1{{\def\"{"}
\xdef\blah{#1}
\def\sgpace{ }
\ifx \blah\space{\comma}
\else{,}
w1}

\def\comma{\saveO\hbox
{,\hskip .3em}\hbox to Opt{,\hes}\hskip
1wd0 plus .S5em minus .0Bem}

\def\ .#1{{\det\"{"}
\xdef\blah{#1}
\def\space{ }
\ifx \blab\space{\period}
\else{.}
Y1}

39

\det\period{\saveO\hbox
{.\hskip .3em}\hbox to Opt{.\hss}\hekip
1wd0 plus 1.2em minus .033em}

\def\ “#1{{\dez\ "{test for double quote}
\xdef\blah{#1}
\ifx \blah\-{\rightgquote{"‘}}
\else{\rightquote{)}#1}
3

\def\ " #1{{\def\ {test for double guote}
\xdef\blah{#1}
\ifx \blah\ " {\leftquote{ "}}
\else{\leftquote{ }#1}
3}

\def\leftquote#1{\saveO\hbox
{#1)X\itvmode{$ $\hskip -1wd0}\else{}
\hskip 1wd0\null\penalty1000\hskip -1wd0 #1}

\def\rightquote#t{\saveO\hbox
: {#1\hskip .3em}\hboz to
Oopt{#1\hss}\hskip 1wd0 plus .4em minus .lem}

\ckcode"54=13 % Make , automatically invoke \,
\chcode 39=13 % Make ° automatically invoke \°
\chcode~140=13 % Make ° automatically invoke \"
\chcode-46=13 % Make . automatically invoke \.

When a comma or period is encountered, the
macros check whether the next character is a space
(macros \, and \.). If so, appropriate glue is in-
serted (macros \comma and \period) to produce the
desired effect if the character should occur at the
end of a line.

When a single left or right quotation mark is
encountered, macros * and \° test to see if the
next character is another occurrence of the same
symbol and then call respectively \leftquote or
\rightquote to insert the symbol and appropriate
glue. The \leftquote macro must also test to see
if the open quote symbol is the first character in
a new paragraph. This approach is not completely
general, because it assumes that the closing quota-
tion marks will be followed by white space. This
does not account for apostrophes, for example, or
quotation marks followed by parentheses. To solve
this problem, the quotation mark macros can be ex-
tended, by analogy to the comma and period mac-
ros, to test whether they are followed by spaces.

Users of versions of TEX that do not provide the
\ifx control sequence may want to modify the in-
put slightly, by inserting backslash characters before
punctuation symbols, or by using the “long form”
(\comma) directly, as was necessary for preparing
this copy. (At the AMS, the version of TEX being
used is an antique-—a SAIL version current as of
March 1981. We hope the next issue of TUGboat
will be a demonstration of TEX82.)

40
* %X % * *x * % * ¥ % %
Letters et alia
* % % % * % % *x *x * %
To the Editor:

New releases of TEX82 have been made since the
last announcement in TUGboat, and I thought your
readers would like to know about this.

The present release is number .96. There have
been five releases in the past year.

The entire Stanford font library is now available
for distribution. It is broken into 6 tapes according
to the pixel densities.

METAFONT is also available, but it is written in
SAIL and recorded with the non-standard version of
ASCII used at the Stanford AT center.

I am enclosing an order form for your conven-
ience. Please get rid of any old forms you may have.

It is our wish and that of the TEX group at
Stanford to make these materials available at a
reasonable price to all interested persons. We hope
that those who have ordered tapes from us have been
satisfied with our service in the past and will con-
tinue to deal with us in the future.

Maria Code

DP Services

1371 Sydney Drive
Sunnyvale, CA 94087

Editor’s note: Tapes containing TEX82 source code
ond fonts are not available from TUG. The “standard”
files are being distributed by DP Services as described
above. Versions already tailored for various computer
architectures may be available as well; check with, the
relevant Site Coordinator. For the convenience of
those wishing to obtain the official Stanford versions,
an order form is bound into the back of this issue.

* % % % ¥ * % %k %x ¥ ¥

MANIPULATION DE DOCUMENTS
JOURNEES FRANCOPHONES

Rennes, 4-6 Mai 1983

Editor’s note: Although the deadline has passed to
submit o paper for presentation at this conference, it
may still be possible to attend or to arrange to recetve
copies of the proceedings.

Objectifs

Le but de ces journées est de faire le point sur

les systémes informatisés de manipulation de docu-

ments (textes au sens large du terme). Ces journées
viennent aprés celles de Lausanne (Février 1981) et

TUGboat, Volume 4, No. 1

de Portland (Juin 1981), et s’adressent & un public
francophone. L'accent sera plus particulitrement
mis sur I'impact des nouvelles technologies logicielles
(systémes experts, etc.) et matérielles (disques op-
tiques numériques, imprimantes & laser, etc.) sur
le traitement des textes contenant des informa-
tions graphiques (formules, dessins, schémas ete.).
L’utilisation de tels systémes par les professionels
des arts graphiques et de !’édition sera aussi
considérée.

1 s’agira de “Journées” s’addressant aux techni-
ciens déja spécialistes du sujet (concepteurs, implé-
menteurs, utilisateurs ayant acquis une expérience
dans ce domaine). L’auditoire sera limité & une
centaine de personnes. Ces Journées se dérouleront
sur deux modes:

- Exposés et table rondes

— Démonstrations, non commerciales, de
prototypes

Thémes des journées

- Typographie

- Systémes interactifs de manipulation de
documents

- Manipulation dans un texte des diverses infor-
mations graphiques (formules mathématiques
ou chimiques, schémas, dessins, photos ete.)

- Mise en page de textes illustrés

~ Mise en page spécifique aux terminaux vidéotex

— Manipulation de documents vocaux

- Structuration et codage des documents illustrés

— Emploi de bases d’informations généralisées

~ Utilisation des nouvelles technologies
(imprimantes sans impact, disques optiques
numeériques, etc.)

— Editeurs intelligents et systémes experts

- Ergonomie des matériels et des interactivités
homme-machine

- Normes (CCITT, ISO, etc.)

—~ Reproduction et diffusion d’ouvrages réalisés
par des systémes informatisés de manipulation
de documents

- Expériences de réalisations informatiques dans
les milieux professionels des arts graphiques et
de I’édition.

Renseignement et soumission des communications
Jacques André
IRISA/INRIA -Rennes
Campus Universitaire de Beaulieu

35042 Rennes Cédex, France
tel. {99)36 20 00; télex: 950 473F

TUGDboat, Volume 4, No. 1 41
‘ * % % ¥ * £ %k % ¥ * X

Dreamboat

* %k % * *x Xx * Xk *x ¥ %

TEX AS A PROGRAMMING LANGUAGE?

A. E. Siegman
Professor of Electrical Engineering and
Director of the Edward L. Ginzton Laboratory, Stanford University

Many of the future users of TEX will not be computer professionals. The majority of
future users, in fact, will be “knowledge workers”— scientists and engineers, editors and
writers, humanities scholars, university faculty members, secretaries, and even business
professionals.

Many of these users will want to do all their text composition, communication, docu--
ment preparations, and (very important) their record-keeping using only a local screen
editor, an electronic mail system, and TEX— nothing else. One reason for keeping this list
of computer tools as short as possible is that the working user of a computer system — in
contrast to a computer professional — usually wishes to learn as few systems or languages
as possible. This also minimizes the number of file formats to be concerned with, and the
number of programs that must be provided on the system.

An important implication of this is that it would be very desirable to develop a TEX
programming language, separate and distinct from the TEX typesetting program. That is,
one would like to have a programming language which would retain essentially the same
syntax and the same programming capabilities as TEX (plus additional capabilities), but
which would work only with ASCII characters and produce only ASCII output. What's
important of course is not so much the ASCH aspect, but retaining {and even supplement-
ing) most of the programming language and macro capabilities of TEX, while eliminating
everything related to the more sophisticated typesetting and printing aspects.

As one illustration of what this implies, consider a TEX user who keeps bibliographies,

address lists, and other sets of records with each record stored in a format like

\author{J. Jones}

\title{History of TEX}
\date{December 1982}

42 TUGboat, Volume 4, No. 1

By defining suitable macros for \title, \author and so forth, it is possible at present not
only to introduce these records into documents to be typeset, but also to use TEX to
manipulate, rearrange, and reformat these records in a variety of ways, i.e. to use TEX as
a programming and record-manipulating language.

Suppose however that the user only needs to manipulate these records, and then
output a reordered subset of each record in ASCH lineprinter format, not as typeset output.
Reasons for doing this might be to get output on a local hardcopy terminal; or perhaps not
printed output at all, just reformatted output to be sent to another file or electronically
transferred to a non-TEX-using colleague. This can be done at present by using \send to
transfer the formatted output to another file and discarding the pages that TgX produces;
but this solution is inelegant, incomplete, and expensive.

A supplementary TEX-like language, which did not require learning an entire new syn-
tax, and which might offer added arithmetic and logical capabilities, would be extremely
useful in this situation. It’s not necessary here to explore just which capabilities should be
retained or added and which should be discarded in such a TEX programming language.
Clearly the line-breaking and page-making capabilities of TEX might go; the entire con-
cept of glue might be eliminated; and so forth. A side benefit is that a simplified TEX
programming language might be a much less expensive program to run. (This may not
seem important to computer professionals in working environments where extensive com-
puter resources are readily available. In environments where users must pay for CPU cycles
on a fully costed basis, however, TEX is in fact an expensive program to run).

All this is obviously not something that has much connection with Don Knuth’s
original objectives in writing TEX. If however TEX is to become a widely used language —
as I believe it is — for people who work with words and ideas, then the concept that TEX
and its derivatives should meet essentially all the needs for those people becomes important.
The importance of minimizing the number of languages that a lay computer user has to
learn should not be minimized. This note is to suggest to the Tugboat community that an
offshoot of TEX, which uses the same notation and syntax to manipulate strings, numbers,

and files, without doing any typesetting at all, is well worth thinking about.

TUGboat, Volume 4, No. 1

* % %

* ¥ % %k x %

43

* &

Advertisements

* .k »x &k ok

L I R I e

TEXTSET, INC. — A SERVICE FOR TgX USERS

Paul Grosso
David Rodgers
James Sterken

Textset, Inc. can offer TEX Users:

¢ Final-quality phototypesetting from DVI files

using a variety of font styles.

¢ Consulting assistance with installation of

TEX82, with developing DVI-to-printer driver
programs, and with developing specialized
TEX applications.

Textset, Inc. is 2 newly formed company offering
direct-typesetting to customers who have documents
stored on a computer system or word processor and
need a path to highest-quality photocomposition.
We have adopted TEXS82 as our typesetting language
and use an Autologic APS-5 phototypesetter for final
pages.

Manuscripts can be transmitted by telephone or
standard magnetic tape. Ordinarily, 72-hour turn-
around is available for production typesetting. In
special cases, 24-hour turnaround is possible.

Textset’s production system can support existing
Autologic fonts and Computer Modern Fonts as soon
as they become available. Stanford and Autologic
have reached an agreement that will make Computer
Modern fonts available as soon as Autologic makes
the necessary packaging and pricing decisions.

Advertisement

Textset, Inc. will distribute a WEB DVI-to-
printer driver program for the APS-5 family of
phototypesetters that was jointly developed with
Dave Fuchs and for which Textset will provide sup-
port and maintenance. We have experience install-
ing TEX under four different operating system en-
vironments (MVS, VM/CMS, UNIX, and MTS) and
experience supporting several printing devices.

Textset’s computer system is a Motorola 68000~
based SUN workstation with Berkeley UNIX(4.2).
We have dial-in and dial-out communications
capability at 300 and 1200 baud and can process
standard magnetic tape at 800, 1600, and 6250 bpi.
Proof-quality galleys are produced on a Florida Data
OSP-130 printer. We have access to TEX capabilities
that are available at the University of Michigan
Computing Center: TEX82, a WEB DVI-to-printer
driver program for the Xerox 9700 page printer,
and 2 Fortran implementation of METAFONT. The
Computing Center will acquire a phototypesetter
later in 1983.

Inquiries can be directed to Textset, Ine. at 1612
Anderson, Ann Arbor, MI 48104 {Telephone: (313)
996-3566).

Advertisement

44 Advertisement, TUGDboat, Volume 4, No. 1

THE NEED...
QUIET, FLEXIBLE WORD PROCESSING AND

GRAPHICS APPLICATIONS

THE SOLUTION... ~n®
QMS LASERGRAFIX 1200™ M‘,gvﬁ

QMS LASERGRAFIX 1200...a totally new
concept in electronic page printing! We've
merged laser printing with the most
sophisticated intelligent controller on the
market. The result—a compact laser printer
that offers easy to program graphics and letter
quality output with a resolution of 300 dots
per inch...and all at a whisper quiet level.

OUR APPLICATIONS FIRMWARE PACKAGE WILL SAVE YOU TIME AND MONEY!

O INDUSTRIAL GRAPHICS O BUSINESS GRAPHICS O LETTER QUALITY WORD PROCESSING
O MULTIPLE FONTS O OCR O CRT HARDCOPY 0O FORMS CREATION O EDP LINE PRINTING
O GRAPHIC PRINTING/PLOTTING for scientific, analytical and CAD/CAM... and our list goes on
and on. AND QUR CONTROLLERS DO THE PLOTTING FOR YOU! All you do is supply simple
print instructions to the printer in your normal data stream. AND OUR INTERFACES COVER
ALMOST ANY COMPUTER SYSTEM YOU CAN THINK OE...Burroughs, DEC, IBM, NCR,

Sperry Univac, Wang, and others.

QMS LASERGRAFIX 1200...“A PICTURE IS WORTH A THOUSAND WORDS.”

Lasergrafix 1200 Features
Firmware Support For TEX Output

GM QUALITY IVICRO SYSTEIVIS ..
RO.Box 81250 Mobie, AL36689 - (2051633-4300 ¢+

Advertisement Advertisement

TUGboat, Volume 4, No. 1

D A R IR R

RO

N N N N N N NN N N NN NN AN NN NN NN NN IN NN NN OO AN OO N OO ONNDOONNNINNY

N

X

X

SEOEES

-

CESEEEREEEEES

TEX82 ORDER FORM

The latest official versions of TEX software and documents are awvail-
sble from Maria Code by special arrangement with the Computer Science
Department of Stanford University.

Eight different tapes are available. The standard distribution tape con-
tains the source of TEX82 and WEB, the test program, a few “change” files,
the collection of fonts in TFM format, and other miscellaneous materials.
Six tapes are PXL font collections, recorded in magnifications of 1000, 1100,
1200, 1300, 1400 and 1500 respectively (there is too much to fit on a single
tape). The last tape contains the SAIL source for METAFONT and associated
materials, including .MF source files.

Each tape will be a separate 1200 foot reel which you may send in advance
or purchase (for the tape media) at $10.00 each. Should you send a tape, you
will receive back a different tape. Tapes may be ordered in ASCII or EBCDIC
characters. You may request densities of 6250, 1600 or 800 (800 is discouraged
since it is more trouble to make).

The tape price of $82.00 for the first tape and $62.00 for each additional
tape (ordered at the same time) covers the cost of duplication, order process-
ing, domestic postage and some of the costs at Stanford University. Extra
postage is required for first class or export.

Manuals are available at the approximate cost of duplication and mailing.
Prices for manuals are subject to change as revisions and additions are made.
It is assumed that one set of manuals will suffice you. If you require more
than two sets, please write for prices since we must ask for more money for
postage and handling.

Please send a check or money order (payable on a US bank) along with
your order if possible. Your purchase order will be accepted, as long as you
are able to make payment within 30 days of shipment. Please check this out
before sending a purchase order since many large firms seem to be unable to
make prompt payment (or don’t worry about it).

The order form contains a place to record the name and address of the
person who should be notified of new TEX releases. This should be the TEX
user, not someone in the purchasing department.

Your order will be filled with the most recent versions of software and
manuals available from Stanford at the time your order is received. If you are
waiting for some future release, please indicate this. Orders are normally filled
within 48 hours. There may be periods (like short vacations) when it will take
longer. You will be notified of any serious delays. if you want to inquire about
your order you may call Maria Code at (408) 735-8006 preferably between 9:30
a.m. and 2:30 p.m. West Coast time.

If you have questions regarding the implementation of TEX or the like,
you must take these to Stanford University or some other friendly TEX user.

Now, please complete the order form on the reverse side.

RLLRELLL,

LR
Y S e S S e S R e e R R R %

AN N e\

45

46 TUGboat, Volume 4, No. 1

TEX82 ORDER FORM

++ TAPES *+ density (6250, 1600 or 800) =

characters (ASCII or EBCDIC) =
TEX standard distribution tape.
Font library (1000PXL.)
Font library (1100PXL) (1000 = 200 pixels/inch,
Font library (1200PXL) 1100 = 220 pixels/inch, etc.)
Font library (1300PXL)
Font library (1400PXL)
Font library (1500PXL)
METAFONT (available only in SAIL, ASCII)
Total number of tapes.
Tape costs: $82.00 for first tape; $62.00 for each additional.
. Tapecost = §
Media costs: $10.00 for each tape required.
Media cost = §
*+ MANUALS *»
TEX82-$2000 _ Test Manual - $8.00
WEB - $10.00 —_— TgXware - $8.00

Manuals cost = $
California orders only: add sales tax =

Domestic book rate: no charge.

Domestic first class: $2.50 for each tape and each manual.
Export surface mail: $2.50 for each tape and each manual.
Export air mail to North America: $4.00 each.

Export air mail to Europe: $7.00 each.

Export air mail to other areas: $10.00 each.

Postage cost =
(make checks payable to Maria Code) Total order =
Name and address for shipment: Person to contact (if different):
Telephone

Send to: Maria Code, DP Services, 1371 Sydney Dr., Sunnyvale, CA 94087

3/83

TEX Users Group

Membership/Order Form

Request for Information

The TgX Users Group publishes 8 membership list
containing information about the types of equip-
ment on which members’ organizations plan to or
have installed TEX, and about the applications for
which TEX would be used. It is important that this
information be complete and up-to-date.

Please answer the questions below, and also those
on the other side of this form, obtaining informa-
tion from the most knowledgeable person at your
installation if necessary. Some sites have more than
one computer system on which TEX has been or
might be installed. Please list all such machines
below. Output device information should be given
on the other side.

If you need more space than is provided here,
feel free to use additional paper. Your cooperation
is appreciated.

e Send completed form with remittance
(checks, money orders, UNESCO coupons) to:
TEX Users Group
¢/o American Mathematical Society
P.O. Box 1571, Annex Station
Providence, Rhode Island 02901, U.S.A,

e For foreign bank transfers
the name and address of the AMS bank is:
Rhode Island Hospital Trust National Bank
One Hospital Trust Plaza
Providence, Rhode Island 02903, U.8.A.

e General correspondence
about TUG should be addressed to:
TEX Users Group
c/o American Mathematical Society
P.O. Box 6248
Providence, Rhode Island 02940, U.S.A.

Name:

Mail to (if different):

Address:

QTY ITEM

AMOUNT

TUG Membership — 1983 (includes TUGboat subscription) @ $20.00 each *

TUGboat Library Subscription — 1983 @ $20.00 each*

TUGboat Foreign Air Mail Postage Option @ $12.00 each * (see page 3, Vol. 4, No. 1)

TUGboat Back Issues 1980 #1(1 copy, no charge) 1981@8$10.00/issue 19820 $15.00/issue
circle issue(s) desired: additional @ $10.00/copy #1, #2, #3 #1, #2

The Joy of TEX (revized preliminary edition, 1982) @ $10.00 each

TEX Lectures on Tape (see cover 3, Vol. 4, No. 1)

Max Diaz’s Fcil TEX (macro package supplement; revised 10/81) @ $8.00 each

* Foreign air mail postage option is available for members/subscribers

outside North America. (Surface mail postage is included.}

TOTAL ENCLOSED:

* * *

Membership List Information

Institution (if not part of address): Date:
] Status of TEX: [] Being installed
Title: {] Up and running since
Phone: [] Under consideration
Specific applications or reason for interest in TgX: Version of TEX: |] SAIL
N . Pascal: [] TEX82
My installation can offer the following software or [] Other (describe)
technical support to TUG:
From whom obtained:
Please list high-level TEX users at your site who would not

mind being contacted for information; give name, address, and
telephone.

Approximate number of users:
Computer system(s):

Revised 4/83

(Prepayment in U.S. dollars required)

[] TEXs0

TEX Users Group

Membership Form

Page 2

Please answer the following questions regarding output devices used with TEX
unless this form has already been filled out by someone else at your installation.
Use a separate form for each output device.

Name

A. Output device information
Device name
Model
1. Knowledgeable contact at your site
Name
Telephone
Device resolution (dots/inch)
3. Print speed (average feet/minute in graphics
mode)
4. Physical size of device (height, width, depth)

L

5. Purchase price

6. Device type
|) photographic [] electrostatic
[] impact [] other (describe)

7. Paper feed [| tractor feed
{] friction, continuous form ‘
(] friction, sheet feed [] other (describe)

8. Paper characteristics
a. Paper type required by device
[] plain [] electrostatic
[] photographic [| other (describe)

b. Special forms that can be used |] none
[) preprinted one-part [] multi-part

[]} card stock |] other (describe)
¢. Paper dimensions (width, length)
maxamuin
usable
9. Print mode
[] Character: () Ascii () Other
[] Graphics {[] Both char/graphics
10. Reliability of device
[] Good [| Fair [] Poor
11. Maintenance required
[) Heavy [] Medium [] Light
12. Recommended usage level
[] Heavy [] Medium [] Light

13. Manufacturer information
8. Manufacturer name
Contact person

Address

Telephone
b. Delivery time
¢. Service [] Reliable [| Unreliable
B. Computer to which this device is interfaced

1. Computer name
2. Model
3. Type of architecture*
4. Operating system

*If your computer is “software compatible” with another type
(e.g. Amdahl with IBM 370), indicate the type here.

Institution

C. Output device driver software
[] Obtained from Stanford
[] Written in-house
[] Other (explain)

D. Separate interface hardware (if any) between host
computer and output device (e.g. Z80)
1. Separate interface hardware not needed because:
[] Output device is run off-line
[] O/D contains user-programmable micro
[] Decided to drive O/D direct from host
2. Name of interface device (if more than one,
specify for each)

3. Manufacturer information
a. Manufacturer name
Contact person

Address

Telephone
b. Delivery time
¢. Purchage price
4. Modifications
[] Specified by Stanford
| Designed/built in-house
[] Other (explain)

5. Software for interface device
I] Obtained from Stanford
[] Written in-house
{] Other (explain)

E. Fonts being used
[] Computer Modern: (}.tfm () .tfx
[] Fonts supplied by manufacturer
[] Other (explain)

1. From whom were fonts obtained?

2. Are you using Metafont? [| Yes [] No
F. What are the strong points of your output device?

G. What are its drawbacks and how have you dealt
with them?

H. Comments — overview of output device

4/83

