
TUGboat, Voiume 3, No. 2

Leslie Lamport
SRI International

\$%en writ.ing a compticatcd TEX macro, one is essentially writing a propam.

Since TEX is a macro substitution language, writing programs in it can be a bit

tricky. This note describes how to implement some ordinary programming hnguage

features in I'EX. This allows you to write a macro by first writing it as an ordinary

program, then translating it into TEX. I find this to be quite helpful.

For program control structures - in particular, while and if statements - 1 refer

you to Brendon D. McKy 's macros that appewed in TUGBOAT. 1 will concentrate on

wignment stat.ements and data structures. First, let me define some terms.

te t t : Any TEX input containing balanced braces.

variable: A TEX macro name, beginning with \ - e.g., \loo. 1 will use \tar as

a generic variable.

val(\vu): A piece of text that ig the value of the variable \war.

cud(tezt): The result of evaluating tezt by recursively replacing all nonprimitive

macro names and all \counter expressions by their values. For.example,

if \couat~ - 13, val(\f oo) = \bar and val(\bar) = n, then

Note that eval is idempotent, so

The l r s t thing t o note is that TEX provides a block-structured language, so each

variable can nested definitions as in Algol. In TEX, a block is begun by a { and ended

by a). This means that there are two kinds of assignments:

\var := . . .: Changes the the value of \tar in the local block.

\war := .. .: Changes the the value of \ r u in the local block and all enclosing

blocks.

IIere are some kinds of assignmcnb statements that you can construct.

\rar := text. I t is implemenleri in TEX as:

TUGboat, Volume 3, No. 2 35

Note that if iczt consists of a single variable name, this makes \ r u synonymous with

that variable.

\var : s a ~ iczt. I t is implemented as:

\gdef \var{tczt}

\ r u := cvd(tezt). Implemented as:

\ n r := vol(\vux), where \ram is another variable. It is implemented as:

There are two data structures that 1 have figured out how t o implement: a push-

down stack and an array. The macros are the following.

\vpueb\etk { tezt) - pushes eval(tezt) onto stack \rtk.

\rpop\var\rtk - performs the assignment

and pops stack \rtk.

\rdarraY\vu\array{i} - performs the assignment

\var := \array(eval(i)) ,

where i should evaluate to an integer.

\.rarray\array {i) { tcrt) performs the assignment

\array (eval (i)) - - tezt

For these array operations, \array must be defincd ta have the form

\&&\warl \ ~ ~ \ v a r ~ . . . \ ~ \ r a r , ,

where the \tart are variables not used elsewhere.

These macros are defined as follows.

36 TUGboat, Volume 3, No. 2

wader transmission mediam receiver r - - -
1 t - - - - - 1 r - - - 1

UNBU)CIUNG AN &S-m TAPE

Barbara Beeton
American Math Society

Several recipients of &S-T@C tapes written for computers other than DEC 10/208 have
aomplained that the tape format doee not conform to the description supplied with the tape.
The description specifies W records, fixed blocks, with the implicati6n thst no canhge
return or line-feed codes are present. In fact, theae tapes contain variable-length records,
blocked, with each record terminated by a CR/LF.

Donald C. Wells, of the National Radio Astronomy Observatory, was kind enough to send
a 1- of a VPX/VMS Fortran program which "reads entire blocke, of arbitrary length, and
scsns them character by character to build up the proper linee of text. [The] program produces
an auxilisry & which tabulates the lengths of sll the blocks in the 20 81- on the tape. .. .
k might be of assistance to aomeone else who is wing a VPX under VMS."

