TUGboat, Volume 3, No. 2

SOME TgX PROGRAMMING HACKS

Leslie Lamport
SRI International

When writing a complicated TEX macro, one is essentially writing a program.
Since TEX is a macro substitution language, writing programs in it can be a bit
tricky. This note describes how to implement some ordinary programming language
features in TEX. This allows you to write a macro by first writing it as an ordinary
program, then translating it into TEX. [find this to be quite helpful.

For program control structures - in particular, while and if statements - | refer
you to Brendan D. McKay's macros that appeared in TUGBOAT. | will concentrate on
assignment statements and data structures. First, let me define some terms.

text: Apy TEX input containing balanced braces.

variable: A TEX macro name, beginning with \ - e.g., \foo. I will use \var as
a generic variable.

val(\var): A piece of text that is the value of the variable \var.

eval(lezt): The result of evaluating tezt by recursively replacing all nonprimitive
macro names and all \counter expressions by their values. For example,
if \counts == 13, val(\foo) = \bar yz and val{\bar) = xx, then

eval(\hbox to \counats pt{\foo})= \hbox to 13pt{xxyz}
Note that eval is idempotent, so

eval(cval(iczt)) = eval(test)

The first thing to note is that TEX provides a block-structured Ianguagé, so each
variable can nested definitions as in Algol. In TEX, a block is begun by a { and ended
by a }. This means that there are two kinds of assignments:

\var :==...: Changes the the value of \var in the local block.

\var :=...: Changes the the value of \var in the local block and all enclosing
blocks.

lere are some kinds of assignment statements that you can construct.

\var := test. it is implemented in TEX as:

\det\var{tezt}

TUGboat, Volume 3, No. 2

Note that if tezt consists of a single variable name, this makes \var synonymous with
that variable.

\var ;= tezt. It is implemented as:

\gdet\var{tezt}

\var := eval(tezt). Implemented as:

\xdef\var{tezt}

\var := val(\varx), where \varx is another variable. It is implemented as:

\lot\nr=\v.arx

There are two data structures that 1 bave figured out how to implement: a push-
down stack and an array. The macros are the following.

\vpush\stk{tezt}) - pushes eval(tezt) onto stack \stk.

\vpop\var\stk - performs the assignment
\var :== head(\stk)
and pops stack \stk.
\rdarray\var\array{i} - performs the assignment
\var := \array(eval(s)) ,
where ¢ should evaluate.to an integer.
\wrarray\array{i}{tezt} performs the assignment

\array(eval(s)) = tezt

For these array operations, \array must be defincd to have the form
\ti\var \U\var,.. \$s\var,
where the \var, are variables not used elsewhere.

These macros are defined as follows.

TUGboat, Volume 3, No. 2

\def\vpush#1#2{\xdet #1{\xdef \$i{#2}\xdef #1{#1}}}
\def\vpop#182{82\xdef #1{\i!}}
\def\rdarray#1#2#3{\det\$i321{\ifpos9{\gdef\tap{\lot#1=4¢1}\advcountOby~1}\else

{}\setccunt92382\tmp) ,
\def\vrarray#1£2#3{\def\ii##1{\advcountOby-1\ifzero9{\gdet#21{83}}\olse
{}}\setcount98281)

........

Editor’s note: The preceding item is reproduced from Canon copy supplied by the author. He
provided the editor with several other documents which were not able to be processed satisfactorily
in time for the deadline (the editor’s fault, not Les’). Les 18 using o DEC 10-compatible system,
and has developed a macro package (FaCSL TEX based on Max Diaz’ Fdcil TEX) with an EMACS
preprocessor (PRETEX) capable of performing syntax checks and expanding bibliographic citations
from references stored separately from the root file. One particularly interesting feature permits a
user to create “yust about any kind of picture you want that doesn't contain curved lines”, such
as:

sender transmission medium seceiver

— — — — /| e = = /| . - = ™ ™

| | MTMT ! | MRCV | !
MXMIT R
s | | | I E
B ——fe SENDER || | | I X | | RECEIVER t— E

b |

ARcV | ATMT | v
AXMIT E

| | } | I I

| R | S |

This feature requires jords not yet aveilable at AMS. We will try to install them and present
the detadls in the next issue.

¥ * ¥ % ¥ * % % % %k %

UNBLOCKING AN AMS-TEX TAPE

Barbara Beeton
American Math Society

Several recipients of AMS-TEX tapes written for computers other than DEC 10/20s have
complained that the tape format does not conform to the description supplied with the tape.
The description specifies fixed records, fixed blocks, with the implicatién that no carriage
return or line-feed codes are present. In fact, these tapes contain variable-length records,
blocked, with each record terminated by a CR/LF.

Donald C. Wells, of the National Radio Astronomy Observatory, was kind enough to send
a listing of a VAX/VMS Fortran program which “reads entire blocks, of arbitrary length, and
scans them character by character to build up the proper lines of text. {The] program produces
an auxiliary file which tabulates the lengths of all the blocks in the 20 files on the tape. ...
It might be of assistance to someone else who is using a VAX under VMS.”

