10

REPORT ON THE ANSI X3J6 MEETING
Lynne A. Price

Supported by TUG, I spent January 25-29 in
Lancaster, Pennsylvania attending a meeting of the
ANSI X3J6 Text Processing Language Standards
Committee. The committee is defining a standard
language with facilities for text editing, text for-
matting, and generalized markup. For text edit-
ing, the object is to identify basic editing func-
tions and a macro facility so that an individual
user can take a personal macro file from system
to system and not need to learn a new editor for
each computer. For text formatting, the object is
to be able to produce readable output on different
systems from a single source file. It is under-
stood that line breaks, hyphenation, page breaks,
and so on cannot be preserved across different
facilities. The output devices considered include
daisy-wheel printers, word-processing equipment,
and high-resolution typesetters. Text markup refers
to labelling elements of a document—titles, chap-
ters, footnotes, etc. The goal for generalized markup
is to itemize the elements needed for common types
of documents, so that input for various document
formatters could be automatically prepared from a
source file containing the text to be formatted in-
terspersed with markup codes. Thus, preproces-
sors might exist to translate source files from the
standard markup language to TEX input form, to
SCRIBE input form, to APS-5 input form, ete.

Of the fifteen individuals in Lancaster, ap-
proximately half were committee members (to join,
an individual must attend two meetings and pay
$100). This attendance is fairly typical, although
the mailing list has about sixty names. The com-
mittee has been meeting four times a year, for week-
long sessions. The next meetings are scheduled
for Phoenix in April, Edmonton in August, New
Hampshire in October, and the Bay Area in January
or February. If the current schedule, which calls for
completion of the standard in 1983, can be met, only
three meetings will be required next year. Once the
standard is approved, the committee will continue
to have short meetings once or twice a year; activity
will then increase as the five-year review approaches.

I can forward a copy of the not-yet-completed
draft standard (dated just before the Lancaster
meeting) to any interested TUG member. The X3J6
formatting language has been greatly influenced by
the concepts of boxes and glue as used by TEX. It
is currently assumed that it will be easy to trans-
late, in both directions, between the eventual stan-
dard language and TEX. Several committee mem-

TUGboat, Volume 3, No. 1

bers also belong to TUG. However, none of the X3J6
members in Lancaster yet has access to TEX. As
a TEX user, I was repeatedly able to contribute to
the discussion. During the week, topics pertinent
to formatting ranged over paragraph justification,
word spacing, letter spacing, line spacing, leaders,
rules, and page layout. I learned quite a bit about
typesetting. Subtopica I found most interesting in-
volved generalizations of structures and algorithms
used by TEX.

It is very clear that X3J6 can benefit from in-
volvement by TUG. There are advantages to the
TEX community as well. X3J6 is formed of in-
dividuals knowledgeable in both typesetting and
automatic text processing. Until the TEX language
stabilizes, X3J6 can comment on its applicability
to general, non-mathematical typesetting. There
has always been interest within TUG in a possible
“Son of TEX"; X3J6 may be an outlet for future
generalizations. Finally, X3J6 and TUG have a
common interest in separating font sales from sales
of typesetting equipment. For the above reasons, I
recommend that TUG continue to finance a repre-
sentative at X3J6 meetings. Although we granted
the Finance Committee authority to make this deci-
sion in Cincinnati, we can all provide input to the
process through TUGboat, mail, and telephone.

¢ & ¥ ¥ x 2 &% 2 x ¥ 3

Software

® x & X ¥ £ %X B % X %

FIXED-POINT GLUE SETTING
AN EXAMPLE OF ¥EB
Donasld E. Knuth
Stanford University

The “definitive” version of TEX is being written
in a new language called WEB, which is a mixture
of TEX and PASCAL. I will soon be publishing a
complete manual about WEB, but in the meantime I
think it will be useful to have an example of a fairly
short piece of code written in “web” form. Therefore
I have prepared the accompanying program, which
also serves another function: It illustrates how to
remove the last vestiges of floating-point arithmetic
from the new TEX.

The eleven pages that follow this introduction
contain the example program in its “woven” form,
including the table of contents and the two indices
that are generated automatically. I hope the reader
can guess how WEB works just by looking at this
particular example. The PASCAL version of the TEX

TUGboat, Volume 3, No. 1

process or will eventually appear in the same format,
only it will be somewhat longer.

The twelfth page, which is page 23 of this issue
of TUGboat, is an example of the output generated
by the fixed-point routines. And the page after that
is the actual PASCAL program that was produced
from the “web”. (This PASCAL code isn’t very
readable, but it is intended to be read only by the
PASCAL compiler, except in rare emergencies. It
does contain cross-references that show where each
numbered part of the web has been inserted.)

Following the PASCAL code 1 have attached an
example page of the WEB file, which is what I ac-
tually typed into the computer. This file, GLUE . WEB,
was the source of everything else. A program
called TANGLE took GLUE.WEB as input and produced
the PASCAL code GLUE.PAS as output; I never
looked at that output, I just let PASCAL compile
it. Another program called WEAVE took GLUE.WEB as
input and produced GLUE. TEX as output. (A sample
page of GLUE. TEX appears after the sample page of
GLUE.WEB, so that you can see what WEAVE does.)
When TEX processed GLUE. TEX, the result was the
eleven pages that I mentioned first; you should read
these eleven pages first.

How much computer time did this all take? I
didn’t gather exact data, which is not easy to ob-
tain on our time-shared DEC-10 computer, but
the following approximate times are fairly accurate:
TANGLE took two seconds to convert the WEB file to
the PAS file, PASCAL took two seconds to convert
that to a REL file, the system loader took two seconds
to get the program in memory, and the program
produced its output in a small fraction of a second.
Furthermore WEAVE took four seconds to convert the
WEB file to the TEX file, TEX took 40 seconds to con-
vert that to an output file (in this case a PRESS
file for the Dover printer), and the hardcopy output
was printed by the time I walked down one flight of
stairs to the printer room. You have to multiply the
TANGLE-PASCAL-load-run time by about 5, since
I went through five passes while debugging; and you
have to multiply the WEAVE-TEX-print time by 2,
since this is my second draft.

How much human time did it take? I spent a full
day considering various ways to do the necessary
fixed-point computations, until deciding that this
scheme was preferable to another that was based
on two 16-bit integers instead of powers of 2. I

11

spent about three hours writing the WEB code, about
two hours typing it into the computer and editing
it as I went, and about two hours proofreading and
debugging.

The bugs turned out to be mostly typographical
or related to fussy details, since the web structure
made my program so clear (to me at least) that I
was pretty sure it was correct as I wrote it. Here are
the bugs I remember making:

1) I forgot that WEB doesn't allow me to use its
special notation for octal constants in a com-
ment, unless the constant appears in “PASCAL
mode”.

2) In one place I typed ‘global’ instead of
‘Global’, so WEB could not mateh the two
names.

3) I left a dollar sign off at the end of a formula.
(This later caused TEX to give an error message
that I had an extra right brace; then it said
I couldn’t do something-or-other in restricted
horizontal mode.)

4) I forgot that PASCAL doesn’t allow a function
to return a structured type.

5) I forgot to declare the variables a, b, and ¢ in
one procedure.

6) I used ‘write’ instead of ‘writeln’ in one place.

7)1 left off the begin and end that now sur-
round the module called (Compute ¢ by long
division).

8) I used s instead of ss in the go-called “easy
case”.

Note that there are bugs in my use of WEB, in my
use of PASCAL, in my use of TEX, and in my algo-
rithm. But I believe the total numbep of bugs would
have been a lot more if I had programmed separately
in PASCAL and written a separate description in
TEX. And the final documentation is not only better
than I know how to make by any other method, it
also is guaranteed to be a documentation of exactly
the program as it describes, since the docurnentation
and the program were generated by the same WEB
source file.

As I gain more experience with WEB, I am finding
that it significantly improves my ability to write reli-
able programs quickly. This is a pleasant surprise,

" since I had designed WEB mainly as a documentation

tool.

12) TUGboet, Volume 3, No. 1

Fixed-point Glue Setting

IntI‘OdUCﬁon 000 0060006000080 0800000800080 0080000060000 08P0CCINPRTIRRINOINRLINIIEPLIERAIBLIOETS l

The problem and 2 30JutioRc.oicriverserrrssrresorsssassorssscssestvesssasosesocaacse 4
Glue miultiplicationccvnvviritcieinorereerostsorsiosrerseorscaacesscarearssrcsasases 8
Glue SCLUINE «.vvvvrrvncroonnsrecsvsssatssocarsosssossssossrssoscocsascssscascanassosrs 13
Gluc-set PrDUNE ... 0vcerervrvecrarressstrorsarsonssososssrssssosssscnssrssssosscnas 18
The Ariver PrOBIAM «.ecosetoruororroessesrerrsnssenssssascsssssnsssscsssassscccssssse 20
Index PN cesesonseenss . 27

This research was supported in part by the National Science Foundation under grants
1ST-7921977 and MCS-7723738; by Oflice of Naval Rescarch grant N00014-81-K-0330;
and by the IBM Corporation.

§

[-X- B N X NN

TUGboat, Volume 3, No. 1 13

2 INTRODUCTION CLUE §1

1. Imntroduction. If TEX is being implemented on a microcomputer that does 32-bit addition and
subtraction, but with multiplication and division restricted to 16-bit multiplicrs and divisors, it can still
do the computations associated with the sciling of gluc in a suitable way. Tliis program illustrates one
solution (o the problem.

Another purpose of this program is to provide the first “short” example of the use of WEB.

2. The program itsell is written in standard PASCAL. It begins with a normal program header, most of
which will be filled in with other parts of this “web” as we are ready to introduce them. ‘
program GLUE((input, output);
type (Types in the outer block 6)
var {Globals in the outer block 8)
procedure initialize; { this procedure gets things started }
var (Local variables for initialization 9)
begin (Set initial values 10)
end;

8. Here are two macros for common programming idioms.

define incr(#) = # — #+1 {increase a variable by unity }
define decr(#) = # ~— # —1 {decrease a variable by unity }

14 ’ TUGboat, Volume 3, No. 1

§4 GLUE THE PROBLEM AND A SOLUTION 3

4. -The problem and a solution. - We are concerned here with the “sctting of glue” that occurs when a
TEX box is being packaged. Let 2, ..., T, be integers whose sum a = z) + - - - + z, is positive, and let ¢ be
another positive integer. These z; represent scaled amounts of glue in units of spt {scaled points), where one
spt is 276 of a printer’s point. The other quantity t represents the total by which the glue should stretch
or shrink. Following the conventions of TEX82, we will assume thal the integers we decal with are less than
23! in absolute value.

After the glue has been set, the actual amounts of incremental glue space (in spt) will be the integers
J(z1), - .-, f(zn), where [is a function that we wish to compute. We want f(z) to be nearly proportional
to z, and we also want the sum f(z1) + -+ + f(za) to be nearly equal to t. If we were using floating-point
arithmetic, we would simply compute f(z) = (¢t/s)-z and hope for the best; but the goal here is to compute
a suitable f using only the fixed-point arithmetic operations of a typical “16-bit microcomputer.”

The solution adopted here is to determine integers a, b, ¢ such that

J(z) = |27"|27"|

if z is positive. Thus, we take z and shift it right by a bits, then multiply by ¢ (which is 2'5 or less), and
shift the product right by b bits. The quantities a, b, and ¢ are to be chosen so that this ealculation docsn’t
cause overflow and so that f(z;)+ --- + f(zn) is reasonably close to 2.

The following method is used to calculate @ and b: Suppose

y= !'S“‘?galzs"

Let d and ¢ be the smallest integers such that ¢ < 2%s and y < 2°. Since s and t are less than 23!, we
hve =30 < d < 31and 1 € ¢ < 31. An error message is given if d + ¢ > 31; in such a case some z,,
has |z,,| = 2°! and we are trying to change |z,,| to |(t/s) zm| > 2¢+¢~2 > 230 gpt, which TEX does not
permit. (Consider, for example, the “worst case” situation z; = 230 + 1, z5 = —230, ¢t = 231 — I; surely
we need not bother trying to accommodate such anomajous combinations of values.) On the other hand if
d+e¢ < 31, we set a = e~ 16 and b = 31 —d—e. Notice that this choice of a guarantces that |{27%z] < 216,
We will choose ¢ Lo be at most 2!%, so that the product will be less than 23!,

The computation of ¢ is the tricky part. The “ideal” value for ¢ would be p = 22+3¢ /s, since f(z) should
be approximately (t/s) - z. Furthermore it is better to have c slightly larger than p, instead of slightly
smaller, since the other operations in f(z) have a downward bias. Therefore we shall compute ¢ = [p]. Since
20+b4 /s < 20tb+d = 215 ye have ¢ < 2!% as desired.

We want to compute ¢ = [p] exactly in all cases. There is no difficulty if s < 2!3, since ¢ can be computed
directly using the formula ¢ = [(22+% + s — 1)/s]; we have 2°+%t < 2155 < 230,

Otherwise let 8 = 8,2' + s, where 214 < &; < 2'% and 0 < 39 < 2'. We will essentially carry out a
long division. Let ¢t be “normalized” so that 23° < 2"t < 23! for some h. Then we form the quoticnt and
remainder of 2t divided by s,

' oht = gs; +r. .
It follows that 2A+t — gs = 2/r — 499 = R, say. If 0 > R > —s we have ¢ = [2%+/t/s]; otherwise
we can replace (¢, R) by (g + 1, R F s) un.il R is in the correct range. It is not diflicult to prove:that ¢
needs to be increased at most once and decreased at most scven times, since 2'r — agg < 2's; < s and
s0q9/s < (27t/3,)s0/2's1) < 23'/s? < 8. Finally ¢ = [22+b~h~lg); and we havea + b~ h — 1 = —1 or =2,
since 228+! S 9y — ga+btd—1, < 9a-+by < Qo+btd, . 9i5, < 930+ 444 230 S 2hy < 29,

An crror analysis shows that these values of a, b, and ¢ work satislactorily, excepl in unusual cascs where
we wouldn’t expect them to. We have

J(z) = 2742+ ¢ s + 0p)(27 %z — 0,) — 62
= (t/a)z + 002‘0-52 - 012‘t/a - 2-&0001 — 6,
where 0 < 0p,0,,0; < 1. Now 0 < 0272 bz < 25798 = 24+¢—13 apd 0 < 4,29 /s < 2°+9 = 24416,
and the other two terms are negligible. Thercfore f(z;)+- - -+ f(Z=) differs from ¢ by at most about 24+¢~13¢,
Since 29+¢ spt is larger than the Jargest stretching or shrinking of glue after expansion, the error is at worst

about /32000 times as much as this, so it is quite rcasonable. For example, even if fill glue is being used to
stretch 20 inches, the error will still be less than g5 of an inch.

TUGboat, Volume 3, No. 1 15

4 THE PROBLEM AND A SOLUTION . GLUE §5

B. Tosum up: Given the positive integers s, ¢, and y as above, weset a — [lg ¥)-15, b — 28—|lgyj-igt/s},
and ¢ «— [2°*%t/s]. The 1mplemcntatron below shows how to do the job in PASCAL without using large
numbers.

8. TEX wants to have the glue-setling information in a 32-bit data type called glue.ratio. The PASCAL
implementation of TEX82 has glue_ratio = real, but allernative definitions of glue.ratio are explicitly allowed.
For our purposcs we shall et glue_ratio be a record that is packed with three ficlds: The a.part will hold
the positive integer a + 18, the b_part will hold the nonnegative integer b, and the c.part will hold the
nonncgative integer ¢. Note that we have only about 25 bits of information in all, so it should it in 32 bits
with ease.
{ Types in the outer block 6} =
glue.ratio = packed record a_part: 0. 31, { the quaatity ¢ + 18 in our derivation}
bpart: 0 ..31; {the quantity b in our derivation }
c.part: 0 .. “100000; {the quantity ¢ in our derivation }
end;
scaled = integer; {this data type is used for quantities in spt units }
This code is used in section 2.

7. The real problem is to define the procedures that TEX needs to deal with such glue.ratio valucs: (a) Given
scaled numbers s, ¢, and y as above, to compute the corresponding glue_ratio. (b) Given a scaled pumber =
and a glue_ralio g, to compute the scaled number f(z). (c) Given a glue_ratio g, to print out a decimal
equivalent of g for diagnostic purposes.

16 _ ‘ TUGboat, Volume 3, No. 1

§8 GLUE GLUE MULTIPLICATION 5

8. Glue multiplication. The casiest procedure of the three just mentioned is the one that is needed
most often, namely, the computation of f{z).

PASCAL doesn't have built-in binary shift commands or built-in exponentiation, although many computers
do have this capability. Thercfore our arithmetic routines use an array called ‘two_to.the’, containing powers
of two. Divisions by powers of two are never done in the programs below when the dividend is negative,
so thc operations can safely be replaced by right shifts on machines for which this is most appropriate.
{Contrary to popular opinion, the PASCAL operation ‘z div 2’ is not the same as shifting z right one bunry
place, when z is a ncgative odd inleger, if the computer uses two's complement arithmetic. But division s
equivalent to shifting when z is nonnegative.)

(Globals in the outer block 8) =

two_to_the: array [0.. 30] of integer; {two.to_the[k] =2}
See also sections 15 and 20.

This code is used in section 2.

8. (Local variables for initialization 9) =
1..30; {an index for initialising two_to_the }
This code is used in section 2.

10. (Set initial values 10) =

two_to_the[0] «— 1;

for k «— 1 to 30 do two_to_the[k] « two.to_the[k ~ 1] + two_to_the [k — 1);
This code is used in section 2.

11. The glue-multiplication function f can now be written:

define ga == g.a_part { convenient abbreviations }
define gb == g.b_part {as alternatives to }
define gc == g.c.part {PASCAL's with statement }

function glue_mult(z : scaled; g : glue_ratio): integer; {returns f(z) as above, assuming that z > 0}
begin if ga > 16 then z + z div two_to.the[ga — 18] {right shift by a pluu}
else z — z « two_to_the(16 — ga); {left shift by —a places }
glue_mult « (z ¢ gc) div two_to_the[gb]; {right shift cz by b places)
end; .

TUGboat, Volume 3, No. 1 17

8 GLUE SETTING GLUE §12

12. Glue sctting. Thbe glue fiz procedure computes a, b, and ¢ by the method explained above. TEX
docs not normally compute the quantity y, but it would not be dificult to make it do so.

This procedure would be a function that retums a glue.ratio, if PASCAL would alJow functions to produce
records as values.

procedure glue_fiz(s,t,y : scaled; var g : glue-ﬂmo),
var a,d,c¢: integer; {components of the desired ratio }
k,h: intcger; {30—|lgs}, 30 - |igt]}
ss: integer; {original (unnormalized) value of s }
q,r,v: integer; {quotient, remainder, divisor }
w: integer; {2'}
begin { Normalize s, ¢, and p, computing a, k, and h 13Y)
ift<sthen b—15—~a—k+helsebe—l—a—-Lk+h;
il ¥ <O then
begin write_in(’ | [Excessiveliglue. °); {error message }
b=0; c —1; {make f(z)=|2"*z]}
end
else begin if k > 18 then {easy case, s < 21%)
¢ « (t div two_to_the[h — a — b] + ss — 1) div 20
else { Compute ¢ by long division 14);
end;
ga ~— a +16; gb «— b; gc «~ ¢;
end;

18. (Normalize s, t, and y, computing a, &, and & 13) =
begin ¢ « 15; k — 0; h «— 0; 88 — »;
while y < 10000000000 do { y is known to be positive }
begin decr(a); y «~ v + v; '
end; ’
while s < "10000000000 do { s is known to be positive }
begin incr(k); s — s + s;
end;
while ¢ < 10000000000 do { ¢ is known to be positive }
begin sncr(h); t «—t+t;
end;
end
This code is used in section 12.

14. (Compute ¢ by long division 14) =
begin w « two_to_the[l6 ~ k}; v « 80 divw; ¢ « tdivy; r « ((t mod v) e w)~{(se mdw)‘q)'
if r > 0 then
begin incr(g); r «— r — 89
end
else while r < —ss do
begin decr(g); r « r + 2s;
end;
ifa+b+k—hx=-17then ¢ (g+1)div2 {I=16+k~h)
else ¢ — (¢ 4+ 3) div 4;
end
This code is used in section 12.

18 ' o TUGboat, Volume 3, No. 1

§15 GLUB GLUE-SET PRINTING 7

16. Glue-set printing. The last of the three proccdures we need is print_glue, which displays a glue_ratio
in symbolic decimal form. Before constructing such a procedure, we shall consider some simpler routines,
copying them from TEX.

define unity = '200000 {2'¢, represents 1.0000 }

{Globals in the outer block 8) += ‘
dig: array [0..15] of 0..9; {for storing digits}

16. An array of digits is printed out by print_digs.
procedure print.digs(k : integer); {prints digfk —1] ... dig|0}}
begin while £ > 0 do
begin decr(k); write(chr{ord(°0°) + dig|k]));
end;
end;

17. A nonnegative integer is printed out by print_int.

procedure prini_int(n : integer); {prints an integer in decimal form }
var k:0..12; {index to current digit; we assume that 0 < n < 10!%}
begin k +~ 0;
repeat dig|k] « n mod 10; n «— n div 10; incr(k);
until n = 0;
print.digs(k);
end;

18. And here is a procedure to print a nonnegative scaled number.

procedure print_scaled(s : scaled); { prints a scaled real, truncated to four digits }
var k:0..3; {index to current digit of the fraction part}
begin print.int(s div unity); { print the integer part }
s — {{s mod unity) + 10000) div unity;
for k — 0to 3 do
begin dig [k] — s mod 10; s « s div 10;
end;
write(*. °); print_digs(4);
end;

19. Now we’re ready to print a glue_ratio. Since the effective multiplier is 27*%¢, we will display the
scaled integer 2!6-%=3¢, taking care to print something special if this quantity is terribly large.
procedure print.glue(g : glue_ratio); {prints a glue multiplier }
var d: —32 ..31; {the quantity 16 —a—15}
begin d «— 32— ga — gb; {the amount to shift ¢ }
while d > 15 do
begin write(°2x°); decr(d); {indicate multiples of 2 for BIG cases}
end;
if d < 0 then print_scaled(gc div two_to_the[—d]) {shift right}
else print_scaled(gc o two_to_the[d]) {shift left)
end; :

TUGboat, Volume 3, No. 1 B 19

8 TIE DRIVER PROGRAM . GLUE §20

20. The driver program. In order lo test these routincs, we will assume that the snput file contains
a sequence of test cases, where each test case consists of the integer numbers ¢, 24, ..., Zn, 0; the final test
case should be followed by an additional sero.

{Globals in the outer block 8) +3=

z: array |1 .. 1000] of scaled; {the z;}
t: scaled; {the desired total }

m: integer; {the test case number}

21. Each case will be processed by the following routine, which assumes that ¢ has already been read.

procedure test; {proccsses the next data set, given £ and m }
var n: 0..1000; {the number of items }
k:0..1000; {runs through the items}
y: scaled; {max;ci<alZ1]}
¢: glue_ratio; {the computed glue multiplier }
a: scaled; {thesum zy +---+2,}
ts: scaled; {thesum f(z;)+ -+ f(2za)})
begin write_in("Testl/datalisetinumbert)”,m : 0, *:°);
{Read zy, ..., za 22);
{Compute s and y 23);
if + < 0 then writc_in("Invalididatai)(nonpositiveljsun) ;{ithisisetiirejected, *)
else begin (Compute g and print it 2);
{Print the values of z;, f(z;), and the totals 25);
end;
end;

22. (Read z;,..., 2, 22) ==
begin n « 0;
repeat incr(r); read(z[n]);
until z([n] = 0;
decr(n);
end

This code is used in section 21.

23. {Compute s and y 23) =
begin s «~ 0; y — 0;
for k — 1ton do
begin s «— # + z[k);
if y < abs(z[k]) then y ~ abs(z|k]);
end;
end
This code is used in section 21.

24. (Compute’g and print it 2¢) =
begin gluc_fiz(s,t,y,g); {set g, perhaps print an error m
write(Gl ueliratiolisy’); print_glue(g); write.n("U(’,9e ~16:0,°,°,¢6:0,°,°,9¢:0,) ");
end '

This code is used in section 31.

2 |) TUGboat, Volume 3, No. 1

§25 GLUB THE DRIVER PROGRAM

25. (Print the values of z;, f(2;), and the totals 25) ==
begin &5 « 0; B .
for k «— 1ton do
begin write(z[k] : 20);
if z[k] > O then y « glue.mult(z [k}, g) else y — —gluc.mult(—3z{k}, 9);
write_in(y : 15); ts « to + y;
end;
write_In{|JTotals”, s : 13, ts : 15, ‘YCversusy’,t : 0, °) °);
end
This code is ysed in section 21.

26. Here is the main program.
begin initialize; m « 1; read(t);
while t > O0do

begin test; incr(m); read(t);
end;
end.

TUGboat:, Volume 3, No. 1

10 INDEX

27. Index. llere are the scction numbers where various identifiers are uled in tln program, and where

various topics are discussed.

a: 12.

a.part: §,11.

abs: 23.

b: 12.

b.part: §, 11.

e: 12.

c.part: §, 11,

chr: 16.

d: 19.)
decr: 3,13, 14, 16, 19, 22.
dig: 15, 18, 17, 18.
div: §.

error analysis: 4.
g: 11,12 21.

ga: 11,12, 19, 24.
gb: 11, 12,19, 24.
ge: 11, 12, 19, 24.
GLUE: 2.

glue fiz: 12, 24.
glue_mult: 11, 25.

glue_ratio: §, 7, 11, 12, 15, 19, 21.

h:]12.

hairy mathematics: 4.
sner: 3, 13, 14, 17, 22, 28.
snitialize: 2, 26.

input: 2, 20.

integer: 6, 8, 11, 12, 16, 17, 20.

k: 12, 17, 18.

m: 20.

n: 2].

ord: 18.

output: 2.
print_digs: 18, 17, 18.
print_glue: 15, 19, 24.
print.int: 17, 18.
print_scaled: 18, 19.
program header: 2.
g 12.

r: 12.

read: 22, 28.

real: 6.

s: 12,21

scaled: §, 11, 12, 18, 20, 21.

shifting: 8.
ss: 12,13, 14.
12, 20.
test: 21, 26.
ts: 21, 25.

two.to.the: 8,9, 10, 11,12, 14, 19.

unity: 15, 18.

with: 1l.
write: 16, 18, 19, 24, 28.
writein: 12, 21, 24, 25.

§27 GLUE

{Compute ¢ by long division 14)

(Compute g and print it 24)

{Compute s and y 23)

(Globals in the outer block 8}

{Local variables for initialization 9)

{ Normalise s, ¢, and y, computing a, k, and A 13)

(Print the valucs of z;, f(z:), and thée totals 38.) .

{Read 24, ..., 25 22)
(Set initial values 10)
{ Types in the outer block ¢)

TUGboat, Volume 3, No. 1

MODULE NAMES

1

TUGboat, Volume 3, No. 1

17 Dec 1981 18:2§ GLUE . OUT(PAS,DEK] Page 1
Test data set number 1:

Gluve ratio is 1.1111 (0,.14,18205)

30000 33334
40000 44445
50000 65557
60000 66668
Totals 180000 200004 (versus 200000)

Test data set number 2:

Glue ratio is 0.0111 (0,21,23302)

30000 333
40000 444
50000 1.1
: 60000 (-].].]
Totals 180000 1998 (versus 2000)

Test data set number 3:

Glue ratio is 71.4101 (8,0,18281)

8000000 571281250

-9000000 -642686836

8000000 §71281250

4000 274218

. 7000000 499857383
Totals 14004000 1000007262 (versus 1000000000)

Test data set number 4:

Glue ratio is 0.0000 (8,24, 15335)

8000000
-9000000 -32
8000000 28
4000 0
7000000 24
Totals 14004000 48 (versus 100)

Test data set number §:
Glue ratio s 2x2x2x2x2x2x8681.0000 (-8.1,17362)

800 444467200
~-900 -500025800
80¢ 444467200
400 222233600
700 388908800
Totals 1800 1000051200 (versus 1000000000)

Test data set number 6:

1 Excessive glue.

Glue ratio s 2x2x2x2x2x2x2x0.5000 (~6,0,1)

800 51200
-900 -57500
800 51200
400 25600
-700 -44800
Totals 400 25600 {versus 1000000000)

Test data set number 7:
Invalid data (nonpositive sum); this set tojoctld.
Test data set number 8:

Glue ratio s 0.0000 (1,30, 11931)

60000
-59999 0
80000 0
Totals 90001 0 (versus 1)

24 ' TUGboat, Volume 3, No. 1

17 Dec 19981 18:26 GLUE . PAS{ PAS ,DEX] Page 1

{2)}PROGRAM GLUE(INPUT,OQUTPUT):

TYPE{6)}GLUERATIO=PACKED RECORD APART:0..31:BPART:0..31;CPAAT:0..32768;
END:SCALED=INTEGER ; VAR{B) TWOTOTHE {ARRAY[0..30]OF INTEGER;
{15)DIG:ARRAY[0..15]0F 0..9;{20}X:ARRAY[1..1000]JOF SCALED;T:SCALED;
M:INTEGER;PROCEDURE INITIALIZE;VAR{9)}K:1..30:BEGIN{10)} TWOTOTRE[0]):~1;
FOR X:=1 TO 30 DO TWOTOTHE[K):=TWOTOTHE[K-1]+TWOTOTHE[K-17];:END;
{11}FUNCTION GLUEMULT(X:SCALED;G:GLUERATIO): INTEGER;

BEGIN IF G.APART>16 THEN X:=X DIV TWOTOTHE[G.APART-16JELSE X:=X*TWOTOTHE
(16-G.APART] ; GLUEMULT: =(X*G.CPART)DIV TWOTOTHE[G.BPART];END:
{32)}PROCEDURE GLUEFIX(S,T,Y:SCALED;VAR G:GLUERATIO);VAR A,B,C:INTEGER;
K H:INTEGER:;SS:INTEGER;Q,R,V:INTEGER :W: INTEGER ;BEGIN{13)BEGIN A:=15;
K:s0;H:=0;5S:=S:WHILE Y<1073741824 DO BEGIN A:=A-1;Y:=Y+Y;END;

WHILE $<1073741824 DO BEGIN K:=K+1:S:=S+S;:END;

WHILE T<1073741824 DO BEGIN H:=H+1:T:=T+T;END;END;

IF T<S THEN B:=15-A-K+H ELSE B:=14-A-K+H;

IF B<0 THEN BEGIN WRITELN('! Excessive glue.');B:=0;C:=1;

END ELSE BEGIN IF K>=16 THEN C:=(T7 DIV TWOTOTHE[H-A-B}+SS-1)DIV SS ELSE(
14)}BEGIN W:=TWOTOTHE[16~X]:V:=SS D1V W;Q:=T DIV V;

R:=((T MOD V)*W)-((SS MOD W)*Q):IF R>0 THEN BEGIN Q:=Q+1:R:=R-§S;

END ELSE WHILE R<=-SS DO BEGIN Q:=Q-1;R:=R+SS:END:

IF A+B+K~-H=~17 THEN C:=(Q+1)DIV 2 ELSE C:=(Q+3)DIV 4;END;:END;
G.APART:=A+168;G.BPART:=B;G.CPART:=C:END;

{16)}PROCEDURE PRINTDIGS(K:INTEGER);BEGIN WHILE K>0 DO BEGIN K:=K-1:
WRITE(CHR(ORD('0")+DIG[K])):END:END: {17}PROCEDURE PRINTINT(N:INTEGER);
VAR K:0..12:BEGIN K:=0;REPEAT DIG[K]}:=N MOD 10:N:=N DIV 10:K:=K+1;
UNTIL N=0;PRINTDIGS(K):END:{18)}PROCEDURE PRINTSCALED(S:SCALED);

VAR K:0..3;BEGIN PRINTINT(S DIV 65636);

S:=((S MOD 65536)*10000)DIV 65536;

FOR K:=0 TO 3 DO BEGIN DIG[K]:=S MOD 10:S:=S DIV 10;EMD;WRITE(".°):
PRINTOIGS(4) :END; {19} PROCEDURE PRINTGLUE(G:GLUERATIO);:VAR D:-32..3%;
BEGIN D:=32-G.APART-G.BPART;WHILE D>15 DO BEGIN WRITE{'2x°);D:=D-1;END;
IF D<0 THEN PRINTSCALED(G.CPART OIV TWOTOTHE[-D])ELSE PRINTSCALED(G.
CPART*TWOTOTHE[D])END: {21}PROCEDURE TEST;VAR N:0..1000:K:0..1000;
Y:SCALED;G:GLUERATIO;S:SCALED; TS:SCALED;

BEGIN WRITELN('Test data set number °,M:0,°:'):{22)BEGIN N:=0:

REPEAT N:=N+1;READ(X[N]):UNTIL X[NJ]=0;N:=N-1;END;{23)BEGIN $:=0;Y:0;
FOR K:=1 TO N DO BEGIN S:=S+X[K]:IF Y<ABS(X[K])THEN Y:=ABS(X[K]):END:
END;IF S<=0 THEN WRITELN('

*Invalid data (nonpositive sum); this set rejected.')ELSE BEGIN{24)BEGIN
GLUEFIX(S,T,Y,G):WRITE(® Glue ratio is '):PRINTGLUE(G):

WRITELN(® ('.G.APART-16:0,°,',G.BPART:0,',',G.CPART:0,")");:END;
{25)}BEGIN TS:20:FOR K:=1 TO N DO BEGIN WRITE(X[K]:20);

IF X[K]>=0 THEN Y:=GLUEMULT(X[K].G)ELSE Y:=~GLUEMULT(-X[K].G):
WRITELN(Y:15);:TS:=TS+Y;END;

WRITELN(® Totals®,$:13,T7S:15,° (versus °,T:0,')°):END;END;END;
{26)BEGIN INITIALIZE:M:+1;:READ(T);WHILE T>0 DO BEGIN TEST:M:a=M+t:;
READ(T):END; END.

TUGDboat, Volume 3, No. 1

47 Dec 1981 18:28 GLUE.TEX[PAS,DEK] L Page 6

\N12. Glue setting.

The \\{glue_fix} procedure computes a, $bS, snd c by the method explained
above. \TEX\ does not normally conmpute the quantity Sys but

it would not be difficult to make it do so.

This procedure would be a function that returns a \\{glue_ratio), 4f \PASCAL\
would allow functions to produce records as values.

\YAPNAE{procedure}\IN \378\\{glue_Ffix}(\\s,\39\\¢,\39\\y:\\{scsled}:\.\3
s\mathop{\&{var}}\\g:\\{glue_rati0})$;:\6

\3\&{var} \378\\a,\39\\b,\39\\c$: \37\\{integer};\C{components of the desired
ratio}\é

S\\k.{se\\hS: \37\\{integer)};\C{330-\1f1oor\1g s\rfloorS, $30-\1T1c0r\ig
t\rfloor$}\é

\\{ss}: \37\\{integer);\C{original (unnormalized) value of s}\8

$\\G. 3O\ \30\\E: \37\\{integer}:\C{quotient, remainder, divisor)\8

\\w: \37\\{integer} \C{S2118}\2\6

\&{begin} \37\X13:Normalize s, $tS, and Sy$, computing a, $kS., and ShS\X:\8
A&{if) S\\t<\\s$ \1\&{then)\5

$AADAK15-\\a=\\k+\\h$\ \&{else} $\\b\K14-\\a~\\k+\\N$;\2\6

\&{if} $\\b<0$ \1\&{then}\é

\&{begin} \37S\\{write_1a}(\.{\ !\ Excessive\ glue.\"})S$:\C{error message}\6
S\\D\KOS:\5

$\\c\K1$:\C{make $f(x)=\1T1oor2¢{-a)}x\rfloor$}\6

\&{end}\6

\4\&{else} \&{begin} \37\&{1f} $\\k\G16$ \i\&{then)}\C{easy case, Ss<27(16)$)\$
S\AeAK(\MtAmathbin{\&{div}]\\{twor_to_the}[\\h-\\a-\\b]+\\{s5}~1)\mathbin{\&
{div})}\\{ss}$\6

\4\&{e1se} \X14:Compute \\c by long division\X;\2\8

\&{end} ;\2\6

$\\{ga)}\K\\a+185;\56

S\\{gb}\K\\bS$:\5

$\\{gc}\K\\c$;\6

\&{end}:\par

\M13, \P$\X13:Normalize s, t, and Sy$. computing a, $kS, and ShS\X\S3\@
\&{begin} \378\\a\K15$;\§

$\\K\K0S;\5

$\\h\K0S$;:\8

S\\{ss}I\K\\s$:\6

\&{while} $\\y<\010000000000S \1\&{do}\C{\\y is known to be positive)}\6
\&{begin} \37$\\{decr}(\\a8)$;\8

S\AYVKANy+\ \y$;:\6

\&{end};:\2\&6

\&{while} $\\5<\010000000000$ \1\&{do}\C{\\s is known to be positive}\6
\&{begin} \3728\\{incr}(\\k)$;\5.

S\NSAKANS+\\$sS:\8

\&{end}:\2\6

\&{while} $\\t<\0100000000005 \1\&{do}\C{\\t 15 known to be positive)}\8
\&{begin} \37$\\{incr}(\\h)$;\§

SAVEAKANEFAN LS\

\&{end};\2\6

\&{end}\par

\U section 12,

\M14. \P$\X14:Compute \\c by long divisiona\X\S3\8
\&{begin} \37$\\wA\K\\{two_to_the}[16-\\k]$;\5
$\AVAKA\{ss} \mathbin{\&{div}}\\w§ ;\§

S\ t\mathbin{\&{div)}}\\vE:\5
s;;r\x((\\t\mathb1n{\&{mcd)}\\v)\ast\\w) {{(\\{ss}\mathdin{\&{mpd)}}\\w)\ast\\
9 \6

\&{if} $\\r>08 \I\&{then}\é

\&{begin} \37$\\{incr}{\\q)$;:\8
S\APAKMP-A\{55)8;\6

\&{end}\é

Va\E{else} \&{while} S\\r\L-\\{ss5}$ \1\&{do}\6
\&{begin} \373\\{decr}{\\q)$;:\5

26 : ' TUGboet, Volume 3, No. 1

17 Dec 1981 18:28 GLUE . TEX[PAS , DEX) Page §-2

SAAPAKAAPH\\{53)8:\6

\&{end};\2\2\8

AL} S\\a#\\b+\\k-\\h==178 \1\&{then)\§
S\AK(\\g+1)\mathbin{\&{div)})}2S\C{$1=18+k-hS)\&
\a\E(else) S$\\c\K(\\g+3)\mathdin{\&{div}}4$:\2\6
\&{end)}\par

W section 12.

TUGboat, Volume 3, No. 1

17 Dec 1981 18:26 GLUE .WEB{ PAS,DEXK) Page &

#* Glue setting.

The [glve_fix] procedure computes Sa$, sos. and c by the method oxplainod
above. \TEX\ does not normally computs the guantity y, but

it would not be difficult to maks it do so.

This procedure would be a function that returns a |glue_ratio|, if \PASCAL\
would allow functions to produce records as values.

@p procedure glue_fix(8is, @it @ly:scaled;varlig:glue_ratio):
var@la, @ib,@lc:integer;: {components of the desired ratio)
@!k.8th:integer; {$30-\1floor\1g s\rfloor$, $30-\1f100r\lg t\rflcors)
@1ss:integer;: {original (unnormalized) value of s}
@1q.0!r .@tv:integer; {quotient, remainder, divisor)
@lw:integer: (32118}
begin @<Normalize $sS. $tS, and $yS, computing Sa. SSk. and h®>;
if t<s then b+15-a-k+h@+elise b+ 14-a~-k+h;
if b<0 then :
begin write_In('! Excessive glue.’): {error message)}

be0;: c+l; {make $f(x)=\1floor2+{-a}x\rfloors)

end
else begin if k216 then {easy case, $5<2t{15)$}

c~(t div two_to_the[h~a~-b]+ss-1) div ss

else 8<Compute [c| by long division®>;

end;
gaca+ib; gbh+bd; gcec:
end;

@ f<Normalize $s3...8>

begin a~15; k«0; he0; s3+3;

while y<@'10000000000 do {|y) is knowa to be positive)
begin decr(a): y+y+y:
and;

while s<8°10000000000 do {|s| is known to bz positive)
begin incr{k): ses+s:
end;

while t<2°10000000000 do {|t| is known to be positive)
begin incr{h); tet+t;
end;

end

@ @e<Compute |c]...0>s)
begin wetwo_to_the[16-k]; vess div w; qet div v;
re((t mod v)*w)-((ss mod w)*q);
if >0 then

begin incr(g): rer-ss:

end
else while rs-ss do

begin decr(g): reress;

end;
T a+tb+k-h=-17 then c+{q+1) div 2 {$'518+k-hS}
else c~{q+d) div 4;
end

