
66 TUGboat, Vofume 2, No. 3

* * * * L * * * + * * mind would d o w any maths office typist (or per-

Letters et alia
haps any other) easily to set the most complex
material and automatically generate and edit

* * * * * * * * * * * -code, for example.

To the Editor:
I wonder how much serious interest there is

amongst TUGboat readers in radically simplify-
ing and speeding up the capture and presen-
tation of complex mathematical text. I have
designed an unexpected 'mutation' of the stan-
dard Qwerty keyboard which, in mock-up form,
allowed-with generous allowance for making and
correcting mistakes-simulating the capture of a
standard book page full of equations with double
levels sub/super-scripts, fractions, differentials and
integrals, etc., in a few seconds over twelve minutes.
Commercial typesetters estimate at leaat thirty
minutes would be needed even on the most sophis-
ticated equipment presently available. I have
also found new and unexpected principles for dis-
playing several typesizes and typefaces in an im-
mediately and exactly recognisable way (without
using graphics) that help increase error awareness.
The speed of the keyboard comes from its physical
design, rather than other 'tricks'; people quite in-
experienced in types&ting have remarked how easy
it is to use and set complex work that would have
completely puzzled them beforehand-it is good for
use by relatively unskilled people.

I would like to set up production for several
kinds of units if there is sufficient interest of a
serious nature. However, until the advent of
the worldwide interest in special maths terminals
has been minuscule; it is now uncertain, but prob-
ably greater. That is why I would like to hear of
interest from TUGboat readers.

There are several useful units in mind. An "Idiot
Keyboardn for those well versed in TJ& that merely
generates editable code and/or '&$ code as a direct
output; a "Semi-Intelligent Keyboardn, basically an
'Idiot Keyboard' with a video output and able to in-
teract with a host; an "Intelligent Keyboardn, with a
monitor and two floppy discs, able to read editable
code and generate code from that; and assis-
tance facilities (e-g., spelling as well), also interacting
with a host; a "Realistic Display Maths Terminaln,
having the performance of an 'Intelligent Keyboard',
but giving realistic display of maths, that is also
fully editable on screen (no coding shown) and show-
ing typefaces and sizes in an immediately recognis-
able way, also assistance facilities and interaction
with a host; a "T&M Host" also having'a "Realistic
Position Maths Display" (graphics) and a proofing
printer. A 'Realistic Poeition Math Display' ter-

I would very much like to hear from people who
have a real interest in such units and/or systems.
The nature of the response to this enquiry will very
much determine whether there is significant interest.
Items would be expected to give substantial savings
in salaries of dedicated programmers, and compare
well with currently available equipment.

J. M. Cole
17 St Mary's Mount
Leyburn
North Yorkshire DL8 SJB, England

FORMATTING A BOOK WITH w:
JZXE!ElUENCES AND OBSEKVATONS

Michael Sannella
MIT Laboratory for Computer Science

In January of 1980 I was hired by Professors
Harold Abelson and Andrea diSessa of MIT to for-
mat a book they had written: firtle Geometry,
The Computer as a Medium for Exploring Mathe-
matics. They had used a computer to write and edit
the book-the text was stored on-lineand they
wanted me to use 'Q$ to produce the final formatted
copy. In part, they hoped that using a computer for-
matter would be cheaper than traditional typeseb
ting. However, they were also interested in the ex-
periment of publishing a computer-formatted book,
and curious about the ways that computer format-
ting systems could change the relationship between
authors and publishers, giving an author more con-
trol over a book.

When 1 was hired, I didn't know anything about
'QjX, or about book publishing. In the process
of formatting the book (which took more than a
year) I learned a lot about m, about the prob-
lems associated with book-quality formatting, and
about the interaction of computer formatters with
the world of book publishing. This .article is an at-
tempt to record my experiences formatting Zhrtle
Geometry and some thoughts I have had concerning
computer formatters in general. I hope that infor-
mation will be uwful to other people who are try-
ing to format large documents, such as books, u s
ing computer forrnatters. I will try to tallc about
general problems I encountered rather than about
the details of how I fixed each problem. Also, I will
try to be as simple as possible-you won't need to

know anything about to read this article.

TUGboat, Volume 2, No. 3

The first part of this article deals with the ex-
periences I had formatting Thrtle Geometry. Inter-
acting with the people at MIT Press, learning %&
and using Q?C to format the book all p~eeented
problems. Many problems stemmed from the fact
that I was using 'I$$, an extremely complex format-
ting program. However, all of my problems couldn't
be blamed on w. 'lhrtle Geometry waa a very
large, very complex document, with innumerable
difficult figures, equations, etc. It would have been
difficult to format this book using any method.
Eventually, I dealt with all of these difficulties, and
produced an extremely good-looking book. (Zbrtle
Geometry, The Computer as a Medium for Explor-
ing Mathematics, MIT Press, June 1981)

Since I finished formatting Zbrtle Geometry I
have been thinking about computer text formattera.
In the second part of this article, I discuse some of
my ideas on the design of text formatting systems.
My experiences formatting Turtle Geometry give me
an interesting perspective for looking at this area.
First, I talk about the problem of designing format
tmg languages which give the user the correct level
of control aver the formatting proceas. Then, I dis-
cuss the problem of integrating high-level aesthetic
formatting goals into a computer formatting ey~tem.
I don't claim to have any great answers to these
problems-I just want to point out some problem
that future text formatters will have to deal with.

I would appreciate receiving any cornmenta that
anyone may have concerning this article. I can be
contacted be sending U.S. mail to:

Michael Sannella
Xerox PARC
3333 Coyote Hill Road
P d o Alto, CA 94304

Or (for those of you with accese to the ARPAnet) by
aending computer mail to MJS at net site MIT-AI.

Formatting Turtle Geometry

I worked on this project part-time from January,
1980, through March, 1981. My job was d e b &
very simply: to produce a camera-ready copy of the
book, using 'I)$L Aside from that, nothing wae
specified. I waa confident that this goal was achiev-
able, since Knuth had designed specifically to
format his books. However, I knew that I had a lot
to learn about producing book-quality copy. During
the fifteen months I worked on this project, I had a
good opportunity to observe the interaction between
the two worlds of computer text formatting and
book publishiug. Computer formatters are being
used increasingly for large commercial formatting
projects, so it is necessary to investigate how they

can be wed mod effkctiwly. I hope that this record
of my experience8 formatting M e Geometry will
be useful to those people actively investigating this -
DEALING WITH MlT PRESS

One of the first things I did after being hired
to format Zhrtle Geometry was to talk with the
people at MIT Press (the publishers of the book)
and hear their views on the project. The book
editor and the book designer were not computer
scientiets-they were mainly interested in produc-
ing a book. However, they were intrigued by the
idea of using a computer formatting system, instead
of traditional typesetting, and were willing to par-
ticipate in the experiment of formatting the whole
book by computer. They made a few things clear:
hit, the quality of Turtle Geometry must not suffer
acr a result of doing the formatting by computer. In
the past, a few people have published books (d y
computer science textbooks) formatted using primi-
tive text formatters and low quality printere, which
looked horrible, and were impossible to read. The
NIT Prese was not willing to publish a book of such
low quality. I was expected to produce computer-
generated output fine enough so that, when i t was
photographed and printed, the book it would be
virtually indistinguishable from a book typeset ue-
ing the normal methods. They were not willing to
sacrifice quality for the sake of our experiment. A
~econd condition was that they did not want to put
more work into this book then they would have if it
waa typeset normally. There would be little reason
to use the computer if it took more work on their
part. Within these restrictions, however, they were
willing to be flexible. They were interested in what
we could do using a computer formatting system.

The book designer gave me a set of
specifications, w-ritten on a standard form. This in-
cluded such information as the page dimensions, the
placement of headings and page numbers, the fonts
to be used with different t q p a of text, etc. These
speciiications had been chosen ao as to make the
book as beautiful and readable as possible. Book
deeigners use their experience with book formatting,
and a long-cultivated sense of aesthetics, to choose
a combination of design specifications such that the
total effect is pleasing to the eye, as well ae a p
propriate for the type of book being published. This
is the art of book designing.

W l e Geometry is a textbook dealing with
mathematics, physics, and compter science. It con-
tains mathematical equations, computer program
lietings, snd figures, interspersed with paragraphs
of text. The book designer decided how each

of thew objects should be formatted, ru, that the
book would be readable, and would have the right
"style." Each of these objects seemed to have fairly
simple formatting-there were no fancy footnotes or
other objects requiring complicated formatting-ao
I didn't anticipate any problems with the formatting
of individual objects. However, the book as a whole
was sure to present some problems, because there
were literally hundreds of figures and equations that
had to be formatted. I hoped that using a computer
formatting system would allow me to cope with this
problem better. In retrospect, formatting individual
equations and figures didn't present many problems.
The hard problems arose when I had to deal with
the formatting of the book as a whole. In part this
is because T@ can handle low-level details beauti-
fully, but cannot deal directly with higher-level for-
matting concepts. I will discuss this problem more
thoroughly later.

LEARNING
After talking with the book designer, I had to

learn about I knew that Donald Knuth a t
Stanford University had developed T)ijX in order to
format his series of books, The Art of Computer
ProgrBLnming. Supposedly, l&X was a book-quality
typesetting system particularly optimized for for-
matting mathematics. So I picked up a copy of
Kmth's manual and proceeded to read it.

My first impression was that 'QX was very com-
plicated. Knuth's manual tries to present the lan-
guage "gently," a little a t a time, so that the reader
is not overwhelmed, but it only succeeds in being
confusing. This style only served to make it difficult
to use the manual as a quick reference. Eventually,
1 wound up reading the manual cover-tecwer three
times, until I had a good idea about how the whole

system worked.
can be used to produce very high-qudity

formatted output on a high-resolution printer.
However, this comes a t a price. The l&X user has
to specify exactly haw he wants to format his docu-
ment using a complicated formatting language. ?E]C
is an improvement over many other formatters in
that it uses some of the vocabulary and concepts
of printing and typesetting, but it still requires the
user to specify the formatting in excruciating detail.
In general, I would characteriae TjjX by saying that
ite "output" is good, but its "input" is bad. It is
possible to produce beautifully-formatted copy, but
the specifications necessary to achieve this are very
complex.

Rather than explicitly specifying the exact
formatting for every object in a document,

pddecr a macro facility which allows one to en-

TUGboat, Volume 2, No. 3

capsulate and name a sequence of commonly-used
formatting specifications, and to refer to them by
wing the macro name. TQC's m r o s are imple-
mented using simple text substitution-when you
reference a macro, acts as if the macro text
were substituted for the macro reference. Macros
can be defined to take arguments, which are in-
serted into the text of the macro in the same way
that the macro is inserted into the text file. It
was obvious that I should use macros to specify
all of the different objects that would appear in
nrt le Geometry. I began creating a file of mac-

ros. Initially, they were very simple, and I was
able to get them working very quickly. I gradually
refined them, changing the macro definitions until
they fulfilled the specifications for the book.

I had a lot of problems using macros because
of the way that they are implemented in "QjX. In
most cases, simple text-substitution worked well,
but sometimes I wished that it were possibie to
write "smarter" macros. One problem was that
the exact effect of a set of formatting commands
depends on where they occur. A macro has
no way of detecting where it hm been placed, so
you can get very strange results by putting a macro
in the wrong place. A similar problem occurred
because the arguments to a macro are blindly in-
serted into the macro text, and there is no way to
check whether they are appropriate. If the argu-
ments are not of the correct. form, the macro may
do something quite unexpected. (I give an example
of this second problem below, in the section on for-
matting figures.) Both of these problems happen as
a result of people making mistakes--using macros
incorrectly-so i t could be claimed that this is not a
deficiency of w. However, this situation influences
the way that people use '&X. In order to use a
macro correctly, you need to know exactly where i t
can be used, and the precise form of all of its argu-
ments. Therefore, all macros need to be supplied
with extensive documentation concerning their use.
This is the same documentation problem that people
have to deal with when maintaining programs wrib
ten in computer languages, raised to a higher de-
gree. Most computer languages allow programs to be
somewhat isolated from each other, with only min-
imd communication between them-this allows one
to consider the effects of one program apart from the
others. Macros in 'QjX get much of their meaning
from the context within which they are inserted. A
macro is meaningless by itself. Consequently, this
makes the tough problem of documentation even
tougher. While 1 was developing the macros for
W l e Geometry, I found that I had to write exten-

TUGboat, Volume 2, No. 3

sive notes to remind myself exactly where and haw
to use my macros. In spite of this, I made a lot of
mistakes which were difficult to discover and to fix.
Luckily, the macroo would not have to be used by
anyone else. It would not have been essy to write
macros that anyone could use. In general, I would
not want anyone else to use my macros Unless they
understood them completely, it would just be too
easy to make a mistake. Because of this problem, I
predict that it will be difficult to set up "librariesn of
commonly-used QJC macros, in an effort to prevent
duplication of effort. Instead, most people using '&$
will have to start from scratch, and write their own
macros.

One unfortunate characteristic of QJC is that it
is difficult to debug your formatting specifications
if there is some type of error. has a large set
of error messages, but these only signal when you
specify formatting illegally. Most of the time, QjX
formats your document without complaining, and
there is something strange in the output. What can
you do? Usually you can figure out where something
went wrong, but sometimes this is very ditEcult.
?'his problem is compounded by the use of macros,
which may do unpredictable things if you use them
incorrectly. This makes QJC very hard to use.

FORMATTING THE TEXT OF n r t l e Geometry
Once I learned how to use and developed

the formatting macros, I began to edit the text of
the book, inserting the macro invocatione where a p
propriate. The book wae first written and printed
using a primitive text formatter called TJ6, so the
text files (one per chapter) contained text inter-
s~ med with TJ6 commands. All of the TJ6 com-
mands had to be removed, and l')?J commands
had to be inserted. I eventually deleted all of the
TJ6 commands using a text editor, then scanned
the straight text which remained, and inserted QjX
commands as needed.

Most of the time formatting the text was no
problem-the job was tedious, but not dif6cult. Oc-
casionally I came across an object that had to be
formatted somewhat strangely, and I had to do a
lot of thinking and experimentation to make QjX
do what I wanted. However, with most objects all
1 had to do was to insert the appropriate macro in-
vocations, and 7JjX would format them correctly.

Ueing W s macro facility to apecify formatting
turned out to be very useful when I was not ex-
actly sure how something should be formatted. For
example, nrtle Geometry contained many vector
equations. The authors and the book designer were
not exactly sure how they wanted to represent vec-

tor variables. So I defined a macro called \vect,

and uaed i t to specify all vector variables. Then,
I printed out a section of the book several times,
defining \vect a different way each time. By chang-
ing that single macro definition, I could represent all
vectom in sn entire section by letters with arrows
on top of them, or by boldface characters. The only
way to judge which notation waa better waa to see
how i t looked in print. Using macros allowed me to
experiment with very little effort.

FORMATTING FIGURES
Of all of the objects in Turtle Geometry, the

hardest to format were the figures. MIT Press md
the authors had decided that the figures would be
drawn by a technical illustrator, and pasted onto
the camera-ready copy of the formatted document.
Therefore, spaces had to be left. for the drawings.
Formatting a figure proved more complicated than
simply leaving a specified amount of space on a page,
however. The book designer had specified that a
single figure should contain a caption, and an ar-
bitrary number of subfigures, each with an optional
label, organized one or two or three in a row across
the page. I had to develop macros to allow me to
construct complex figure boxes.

One problem I ran into was determining exactly
haw much space to leave for a particular figure. If
I put in too much space, the drawing would look
strange surrounded by emptiness. If I didn't leave
enough space, on the other hand, it would be im-
possible to paste the drawing into the final copy of
the document. Given a drawing, I measured it, and
give its height as an argument to a figure-generating
macro. In most caw, this produced a good-looking
figure, with just enough blank space to paste in the
appropriate drawing. However, there were a fair
number of figures which didn't have labels for the
rrubfigures. Because of the way that l$$ macros are
implemented, there is no way for a macro to detect
when it is given a null argument. When given a null
label argument, my figure formatting macros still al-
located space for a label, which resulted ic a figure
with too much space. Eventually, I solved this prob-
lem by subtracting an appropriate amount from the
size I gave as an argument to the figure macro, to
compensate for the extra space added for the non-
existent label. This was a rather inelegant solution.
In retrospect, it would have been better for me to
have defined separate macros for figures with labels
and figures without labels. The best solution, if
had had the capability, would have been to define
a figure macro that could detect when it is given a
null label, and format the figure accordingly. l&X
could be greatly improved by extending its macro
facility so that a macro could test its arguments.

TUGboat, Volume 2, No. 3

PAGE BREAKING AND HIGH-LEVEL
FORMATTING
Aa I have mentioned before, I didn't encounter

many problems with formatting most of the in-
dividual objects in the book. To format a figure,
or a program listing, or an equation, I just had to
use the appropriate macro from the set I developed.
Admittedly, constructing and debugging that set of
macros was a slow and painful process, but I only
had to do that once. The red problems began after
I had formatted the individual objects and waa try-
ing to bring them all together. The book designer
a t MIT Press had given me certain aesthetic rules
to follow when formatting pages. Unfortunately,

was not designed to deal with such high-level
formatting concepts. As an example, consider the
placement of figures within a document. Each figure
is referred to at a specific point within the text. The
readability of a document is improved if figures are
placed so as to minimize the amount of page-flipping
a reader haa to go through to asmiate references
with figures. For this reason, the book designer at
MIT Press specified that a figure should be placed a t
the top of the page containing its reference, if pos-
sible. If that was not possible, the next best choice
would be to have the figure on the facing page, to the
left or to the right. If that too was not possible, then
the figure should be on the next possible page later
on in the document. Unfortunately, cannot
deal with figure placement in these terms. For one
thing, there is no notion of "facing pages" in TjjX.
This is a serious failing, since commercial publishers
design document formatting in terms of how each
"spreadn (facing left and right pages) looks. More
generaliy, does not give the user very much con-
trol over which page a figure is placed upon.

Another formatting rule I was given was that the
pages should all be of the same length, if possible,
but a page could be a line short or a line long, if that
would.help the formatting of the page. In m, the
height of a page is set to a specific distance using
a \vsize command. Page breaks are generated to
fit as cloaely as possible to that limit, without going
aver. There is no provision in for changing
this number dynamically, on a page by page basis,
subservient to other formatting needs. Within 'I&jX
all formatting decisions have equal weight, which
sometimes unnecessarily restricts the possibilities for
formatting something, and reduces m s power.

If I only had to deal with a small, simple docu-
ment, the aesthetic goals mentioned above would
not be very important. It is not difiicult to place a
figure in a small document comisting of a few pages,

and W would probably position it correctly, u 5

ing its simple figure-piscement algorithms. However,
Turtle Geometry was a very large document, with
many figures and equations. Whea you have a
large number of figures in a document, placing these
figures becomes a much more complicated problem,
and it is harder for to place them wrrectly.
It can't deal with the aesthetic concepts that come
into play with large documents. The first time I
formatted Turtle Geometry using ?)EX, it formatted
the individual figures and equations correctly but
the total effect wss horrendous. The book wae
unreadabk-of much lower quality than you would
get using traditional human typesetting.

I had to find some way to correct this situation.
First, I tried coercing TE;X into doing the correct
page formatting by adding formatting commands at
places where it broke pages and placed figures incor-
rectly.' This proved to be very difficult. The problem
waa that I could easily prevent QX from breaking a
page a t a particular bad place, but it was harder to
ensure that i t would break it a t a good place. I was
never sure of the effect of adding any particular for-
matting command until I saw the text reformatted.
Coercing "QX involved endless experimentation, just
to get around the inadequacies of T@'s page format-
ting algorithm. I realized quickly that this method
was unsuitable. I was spending my time fighting
m, trying to merge its page formatting with my
aesthetics, rather than worrying about the formatr
ting of the book.

Rather than having both 'QX and myself handle
the page breaking and figure placement, I decided
to simplify things by doing all of the page breaking
by myself. To be exact, I inserted an \e j e c t com-
mand every place that I wanted a page break, and
specified to 'QX that it shouldn't do any page breaks
itself. So that I would not have to figure out by
myself where all of the page breaks should go, I de-
veloped a macro called \bookmark which I inserted
into each file containing a chapter of the book. The
\bookmark macro told 'T&X that all page breaks be
fore the point where it occurs will be handled by
explicit \ e j ec t commands, but that 'QjX should
attempt to generate page breaks from that point
on. I eventually developed a routine for handling
the page breaks in a chapter: I would insert a few
\e j a c t commands, move the \bookmark macro call
forward to the end of my \ejects, and run the tile
through 'QjX. Seeing how would forrnat the
next few pages helped me decide where3 wanted to
insert page breaks. Often, I didn't have to do any-
thing more than i n ~ r t \ e j ec t macros where T@C
had broken the page before, but most of the time
I wanted to move figures around, and change the

TUGboat, Volume 2, No. 3

exact placement of the page breaks. It was n-
sary to do this work a few pages a t a time, because
each formatting change I made could send dects
percolating through the rest of the document in un-
predictable ways.

By doing the page breaking and figure p l e
ment myaelf, I was able to optimize the page for-
matting with respect to aesthetic rules that I could
not express with m. Consequently, I produced a
book of very high quality.

LOOKING BACK
Formatting W l e Geometry was a long,

difficult job. Everything did not go as smoothly as it
may seem from what I have said above. One p m k
lem was that the macro development, the figure for-
matting, and the editing of the actual text of the
book were all happening at the same time. It was
very difficult to coordinate these separate activities.
Another problem, which is sure to occur whenever
a document is available on a computer system, was
that of "freezing" the text of the document. When it
is easy to change the text, authors are very reluctsnt
to finish editing. There is always a great temptation
t.3 fix one more error. At some point, however, it is
necessary to decide that the text will not change any
more.

A typical example of the organizational prob
lems I had to deal with was that associated with
putting the figures in the book. It took a long time
to get the figures drawn and checked. Until the
drawings were in final form, I couldn't measure them
and give these measurements to the figure macros.
Therefore I couldn't do the page formatting, since
the sires of the figures critically affected the location
of page breaks. To cope with this situation, I worked
on each chapter separately, so that at any one time
different chapters could be at different stages of
production-the authors might still be editing the
text of chapter 5 whiie I was sizing the &urea for
chapter 1, and formatting its pages.

I made many mistakes, and had to do some
things several times. I was learning what to do, and
developing new methods for doing things, while I
was formatting the book. Everything would have
been much better if all of the people working on
Turtle Geometry had sat down before the work w a ~
started, and developed a routine for producing the
book. We could have avoided a lot of problems, and
produced a better book with less effort, if we had
been more organized.

Thoughts on Text Formattern

Current computer text formatting systems
suffer from many deficiencies, which become increas-

ingly apparent ae people attempt to use them in
more and more situations. Some of theae prob-
lems are due to formatting languages that cannot
cope with the aesthetic ideas that book designers
have developed from long experience with document
production. Other problems result because format-
ters are designed with small documents in mind, and
cannot deal with the formatting concerns of large
documents. I don't claim to have "the solution" for
all of these formatting problems. Hawever, I have
come up with a few ideas about how text formatters
could be improved.

FORMATTING LANGUAGES AND CONTROL
Computer-controlled printers deal with docu-

ments at a very low level. To a graphics-oriented
printer, a document is a set of commands which
specify the exact positions of individual dote, hes,
and characters on a page. Obviously, people do
not want to have to specify the formatting of
their documents in such excruciating detail. In-
stead, they use a computer text formatter, which
could be conaidered as a translator between an
abstmt, high-level formatting language and the
specific detailed language of a printer. A forrnatr
ter allows ite user to specify document formatting
in terms which are more abstract and general, such
as words and paragraphs and lines of text. Us-
ing these specifications, the formatter decides where
each character of the document should be placed on
each page.

An important characteristic of a formatting lan-
guage h the level of detail with which the user haa to
specify the formatting of a document. Suppose that
a formatting language deals only with high-level for-
matting concepts, and the user wishes to specify the
formatting of a particular object a little more ex-
plicitly. This could happen if the formatter doesn't
format something exactly right automatically, and
the ueer wants to fix this. Another possibility is that
the user may wish to create a onetime special-case
object, which needs to be formatted strangely, and
the user is willing to take the extra time to specify it
in detail. (As an example of this, in W e Geometry
there were only two or three tables, and it was easier
to specify them in detail, rather than developing
general macros for formatting tables.) In this case,

the only solution is for the user to try to coerce
the syatem into formatting correctly. This may in-
volve tricking the formatter, making it treat some
objects l i e other objects, and trying to second-guess
the formatting algorithm. This is very difficult to
do, it requires an intimate knowledge of the inter-
nal workings of the formatting syatem which not all
users may have, and it is extremely inelegant. The

TUGboat, Volume 2, No. 3

problem is d l y that the way such formatters are
designed, there are simply some documents which
cannot be produced. In the interest of making a for-
matter easier to use, the set of possible documents
that could have been formatted with it has been
constrained.

Now, let us consider the opposite extreme,
where you have a very low-level formatting lan-
guage, and you wish to do high-level formatting. In
other words, you don't w e exactly how your docu-
ment looks, as long as it conforms to certain high-
level formatting gods, such as having lines filled to
a constant length, etc. Using a low-level formatting
language, i t should be possible to produce a docu-
ment conforming to thew high-level constraints, but
you will be required to specify a lot of low-level
details that you are not really interested in. Aside
from the inconvenience of specifying the formatting
in this much detail, this makes things very difficult if
you wish to change your document later. The more
detailed your specifications, the more work'has to
be done in order to change them. When you work
with specifications a t a low level of detail, you es-
sentially have to calculate the formatting yourself,
rather than letting a computer do it.

There is another, rather subtle, problem as-
sociated with formatting languages which use
descriptions at a lower level than you need for a par-
ticular document. The greater the detail in which
you specify the formatting of a document, the more
you constrain the possible ways that it could be for-
matted. If you have to use a law-level language, you
wind up making a lot of fairly arbitrary decisions
about how something should be formatted a t a low
level, since you have to specify something. However,
d l of the formatting specifications are heeded by
a computer formatting system, whether they are
important to the user, or whether they were just
specified arbitrarily. The more constrained a for-
matter is, the smaller the space of possible ways a
document could be formatted, and the more likely
that there will be no formatting which is accept-
abb. When a user is specifying how his document
should be formatted, he should use the least possible
amount of detail, while still mentioning those things
important to him. In this way, the possibility is in-
creased that the formatter can find an acceptable
way to format his document.

Early text formatters were designed around the
idea that documents were fairly simple, consisting of
text organized into paragraphs, with an occasional
heading or footnote. These programs would take
the user's specifications, and format a document us

ing rules internal t o the formatter. It was possible

to modify exactly how the formatting was done by
specifying the values of certain parameters, but the
formatting was essentially done by one "smart" p r e
gram. These early formatitters present a good ex-
ample of formatting languages which work at too
high a level for many formatting tasks. As long
as the shape of your document conformed to the
ideas explicit in the formatter's abstract paragraphs
and words, it would be easy to to format your docu-
ment. However, if your document contained some-
thing out of the ordinary that the program was not
equipped to handle, there was little that you could
do. No matter how much effort you were willing to
expend to specify the detail, these early formatting
languages wouldn't allow you to. The user simply
had very little control over the formatting process.
The shape of a document had to be specified in terms
of the objects the formatter was built to deal with,
then the user would just have to "throw it to the
winds," and hope the formatter produced something
acceptable.

'I@ is similar to these early formatters, in that
it deals with abstract ideas such as paragraphs and
pages, and the user only has indirect control over
how these objects are formatted. However,
also can deal with the idea of "boxes and glue,"
which allow a user to specify an object a t a very
low, but manageable, level. This facility is very
useful for handling "special case" objects, such as
complex figures, which would be too complicated
for 7&X to deal with as builtin objects. In essence,
'QX allows the user to deal with formatting at two
distinct levels of detail, or control. Either you can
"throw your formatting to the wind" and let 'I)$
take care of i t all, or you can specify the format
ting of the object in low-level detail. This is an im-
provement over the earlier text formatters, which
gave you no choice, but it still proves inadequate in
many situations. The problem is, a user sometimes
want to have control over the formatting, without
having to specify all of the formatting explicitly.
For example, consider the problem I had while for-
matting the Turtle Geometry book with breaking
pages, and placing figures. When I let T@X do all
of the formatting by itself, it would do i t incor-
rectly, in part because it doesn't consider some of
the aesthetic considerations I am concerned with.
For a while, I tried tricking 'QX's formatting algo-
rithms into doing the correct thing, but this involved
going through all sorts of complicated contortions.
Finally, I was forced to deal with the problem a t a
very low level, by specifying all of the page breaks
and figure placements myself, explicitl~~. I was able
to get what I wanted, but it required a bt of work

TUGboat, volume 2, No. 3

on my part. Another issue in this situation that
once I had done the page breaking by hand, that e s
sentially 'Troze" that part of the document. If any
changes had needed to be made to the document
after I had done the page breaks, it would have been
necessary for me to do all of that work over again.
It would have been better if I had the ability in 'll$
to specify formatting at a higher level, while dill
retaining control over the formatting.

People who design text formatting system! need
to worry about this issue. One way that format-
ters could be improved is by giving more control
to the user, at different levels of detail, so that
it is not necessary to specify document formatting
a t more than the minimum amount of specificity.
Looking a t in particular, one way to improve
it would be to introduce "smartern boxee-objects
that are not quite as explicit and low-level as boxes
are in l$jX. For example, you could have an object
called a "paragraph box," which containa text that
ebould be formatted aa a paragraph. Eventually,
this may not be formatted as a single rectangular
box-the paragraph may eventually extend across
several pages. Without explicitly specifying the ex-
act formatting of every character in the paragraph,
you could expms parameters appropriate to the
level of abstraction of a paragraph, such as line
length, degree of raggedness, whether the paragraph
can be broken, etc. To format any particular object
in a document, simply express it in terms of a for-
matter object which deals with the correct level of
abstraction.

One problem with implementing this acheme is
that it could lead to a complicated formatting lan-
guage with an unmanageably large number of ob-
jects defined. A way to deal with this is to only
define a few objects, which can be used to specify
formatting at differing levels of detail. For example,
consider a "box" object that acts in the following
way: given a set of objects as arguments, it for-
mats them like a paragraph, using default width,
raggedness, etc. values. If these values are given as
parameters to the box, it will use them instead. You
can imagine a whole set of parameters and defaults
set up so that a single box object could be used for
formatting a paragraph (at the most abstract level)
or used exactly like a box in 'QJC (if everything, in-
cluding vertical and horizontal sizes, are specifled).
A single object, with many parameters and defaults,
could be used at many different levels of abetraction.

HIGH-LEVEL FORMATTING GOALS
One problem I have mentioned regarding cur-

rent text formatters is that they do not deal with

some of the aesthetic rules that book designers have

developed after yesrr! of experience with formatted
documents. I had to explicitly specify page break-
ing for Zhrtle Geometry, because TjjX could not
deal with some of these concepts. Let ur, examine
this problem more cloaely. When breaking paga by
hand, I had to keep in mind m r a l aesthetic con-
siderations. First, figures had to be positioned to
be aa near to their references in the text as possible
(on the same page, or on the facing page, or on the
next page). Second, I didn't want a page break in
the middle of a computer program listing, if at all
possible. Third, the length of each page should be
nearly conetant, plus or minus a line. In certain

special situations, I had to worry about other aea-

thetic considerations, mch as not having an equation
directly under a figure, but this didn't come up too
often. Mainly, I waa concerned with choosing page
breaks, and positioning figures, so as to produce a
document optimized with respect to those three aes-
thetic rules given a h .

Certain problems ark. when dealing with high-
level aesthetic formatting goals. It is difticult to
explicitly specify mch goals in a form that a com-
puter can work with. Consider what a human has
to go through to format a document while consider-
ing these goals. It is seldom the case, given a tricky
formatting situation with a lot of figures, that all

of these formatting go& are compatible. Often,
they are contradictoty. For example, suppose you
have a page with a computer program lieting in the
middle, and a figure reference near the top of the
page. Suppose that if you place the figure a t the
top of the page, this pushes the text on the page
down far enough so that the computer program has
to be broken between this page and the next one.
Here you have a conflict between the rule that wants
figures on the same page aa their references and the
rule that doean't want computer program listinga
to be broken. Exactly what I would do depends
on the exact situation. If the page in question waa
a left-hand one, it might be possible to move the
figure to the facing right-hand page. Alternately, if
the place where the program was to be broken was
only a few line8 into the program, I might just break
that page short. (notice that in this second case I
may be breaking the third aesthetic rule.) Making
an aesthetic decision of this sort involves finding a
compromise between several contradictory goals.

The problem of formatting a document with
respect to certain aesthetic formatting goals can be
reduced to the problem of considering two sit=
tions, where a part of a document is formatted in
two different ways, and deciding which is "better."

Uaually there are only a few possibilities to consider

in any formatting problem, and a computer could
afford to try the various possibilities, and pick the
"beat" one. The key to this problem is obviously
determining what the word "better" means with
respect to a aet of high-level aesthetic formatting
goals. I t is instructive to examine a mechanism that
l)g has for dealiig with this problem on a lower
level. In order to optimally generate line breaks and
page breaks within a paragraph, associates an
integer with each paragraph known as its "badness."
Every line break generates a certain "penalty,"
mother integer, which indicates how "bad" that
break is. Line breaks have large penalties associated
with them if the break requirea hyphenating a word,
or if a line is too long, among other things. Page
breaks in a paragraph have large penalties aesociated
with them if they generate widows (the first or last
line in the paragraph alone on a separate page). The
badness of a paragraph is calculated as the sum of
all of the penalties in the paragraph. The formatting
algorithms inside '&X are designed to make line and
page breaks eo as to minimhe the total badness of
a paragraph. This is a fairly flexible system-users
can specify penalties explicitly at certain points to
indicate places that are particularly good or bad to
break at-and i t formats individual paragraphs very
well. However, this type of system would not be
suitable for dealing with more complex formattini
constraints. "EkuLn~adnesa" is a simple, one-dimensional
 core* which can be easily calculated and used for
comparisons, but it ie not powerful enough to ex-
press some of the more complex combinations of
higher-level formatting g d s . Consider the aesthetic
goals given above, dealing with figure placement and
computer program listings. You can't simply take a

TUGboat, Volume 2, No. 3

badnee8 more with respect to one goal, and a bad-
ness score with respect to another, and sum them
to get total badness. This is like adding apples
and oranges. Aesthetic formatting goals combine
in more complex ways than that. In a particular
situation, it might be possible to represent a situa-
tion in terms of carefully-adjusted penalties, but this
wouldn't work in general. You need a more complex,
multidimensional, way of comparing two situations.

The fundamental problem with' implementing
high-level abstract formatting goals in a text for-
matting system is the problem of achieving a goal.
Supposing that you have a way of unambiiously
stating fairly complex aesthetic rules, how is the
computer to make sure that they are achieved? Ex-
actly what can the formatter do if the formatting it
chooses disobeys one of the aesthetic rules? Consider
the low-level decisions that a formatter makes when
formatting a document. The decisions about exactly
which word to break a line at, or exactly how much
to stretch a line, are fairly arbitrary. Unless the
user specifically specifies it, the formatter has a fair
amount of leeway aa to exactly how the document is
formatted. Ideally, the low-level arbitrary decisions
could be infiuenced by the high-level aesthetic rules.
I admit that I don't know how this could be ac-

complished, but this is obviously what text format-
ters should work towards. As an intermediate step,
formatting systems should be designed that can ex-
press the concepts of high-level aesthetic goals. Even
if they couldn't use these goals to influence the for-
matting process, it would be worthwhile simply to
flag violations of these rules, pointing out to the user
places in the document where one or another of the
rules are broken. This by itself would lead to better
formattem, producing better-looking documents.

