TUGboat, Volume 2, No. 2

There are two solutions: (1) Go back into
the input files and change all conflicting font
designators—this can get very messy; or (2) use
a version of TEX in which no fonts have been
preloaded; such a version, commonly known as
“VIRGIN'TEX", will start up much more slowly than
a preloaded version, owing to the greater number of
font metric files that must be loaded at run time.
The following convention has been adopted at many
installations: Preloaded fonts use no capital letters.
Thus you are always safe if you introduce a new font
called A, B, ..., Z. (Actually, the AMS requires an
extended set of fonts, including a full complement

of cyrillic fonts in 6 sizes; these are called 4, . . ., F,
but G through Z remain open for special use.)
Barbara Beeton
* * * * * * * * * *® *
MACRO
0
L
U
M
N
Send Submzssions to:
Lynne A. Price
TUG Macro Coordinator
Calma R&D
212 Gibraltar Dr.

Sunnyvale, CA 94086

The macro column is a new regular feature of
TUGboat. It is a forum where TEX users can ex-
change formatting problems (with or without solu-
tic 18), questions about writing macros, comments
on macros published in earlier issues of TUGboat,
ete. .

* ¥ X

Discussion of macros at the TEX Implementors’
Workshop in May included some simple suggestions
for increasing portability of macros across TEX sites.
First, the excellent suggestion was made that ASCII
sites attempt to standardize the characters chosen
to replace SAIL delimiters. The AMS-TEX conven-
tions are recommended: ampersand (&) for the tab
character, underscore (_) for the subscript indicator,
and caret (~) for the superseript delimiter. Second,
macro packages typically include several font dec-
larations. Incompatible assignment of font codes
makes it difficult for users to select an assortment
of macros from different packages. If font codes as-
signed in a macro file do not correspond to the fonts
preloaded by some versions of TEX, strange results
can be difficult to explain. There is no total solution
to this problem, but it can be minimized. Macro

43

packages should come with documentation deserib-
ing the fonts and font codes used. When sending files
to another installation, users should remember that
preloaded fonts differ from site to site. A helpful
convention in assigning font codes is to reserve up-
percase letters for user declarations and to let stan-
dard macro packages use other characters. Patrick
Milligan’s DefineFont macro described below can be
used to automatically assign available font codes.

* % * * * X %x *x ¥ ¥ X%

Macros on Microfiche

Editor’s note: In an effort to hold down expenses,
some of the more extensive macro packages in future
issues of TUGboat will be published on microfiche, with
a summary or introduction to each package included in
this column. Authors of macro packages who submit
their work for publication here are requested to supply
such an introduction adlong with the camera copy of the
package. Because fiche i3 not as easy to use as paper,
an aitempt will be made to arrange for the collection
and distribution of these macro packages in machine-
readoble form (probably on magnetic tape); details will
be published as soon as they are knoun. Fiche will
conjorm to the jollowing specifications: negative image
(white characters on black), 105mm X 148mm, 24-to-1
reduction ratio, containing 98 frames per fiche.

* ¥ *x x ¥ *x x ¥ * * %

ERRATUM:
NOFILL PROGRAM
Patrick Milligan
BNR Inc.

There was one subtle error in the program listing
of both the SAIL and Pascal versions of the NOFILL
program that appeared in TUGboat Vol 2, No. 1. In
both programs, the definitions of macros * and *
were reversed (see pages 90 and 96). As printed, the
definitions are correct, but the program source was
incorrect. Since the program source was run through
NOFILL for publication, the incorrect definitions
became correct, but all other uses of * (acute accent)
and " (grave accent) were incorrect.

Also, there was some confusion about the table
of contents entry on page 136 entitled NOFILL
Program with Pascal Source. When the two pro-
grams were submitted to TUGboat, it was not clear
if the SAIL version would be printed, or the Pascal
version, or both. The introduction to the SAIL ver-
sion was appropriate to both versions, but no intro-
duction was prepared for the Pascal code.

44 TUGboat, Volume 2, No. 1

19 TX/PASCAI, SYSDEP Procedure Specifications

. e ottt i b i v =t

READFONTINFO

This is an integer function that has the following parameters:

Var.? Name Type
FYL INTEGER

Var FONTINFO FNTINFOARRAY
Var FMEM FMEMARRAY
Var WDBASE FBASEARRAY
Var HTBASE FBASEARRAY
Var DPBASE IFBASEARRAY
Var ICBASE FBASEARRAY
Var LGBASE FBASEARRAY
Var KRBASHE FBASEARRAY

Var EXTBASIE FBASEARRAY
Var PARBASE FBASEARRAY

Var FCKSUM I'BASEARRAY
Var FPFB FRASEARRAY
Var FSIZE FSIZEARRAY
Var FPF1 FPIARRAY
Var FMEMPTR INTEGER

Var PSIZE REAL

Var ATCLAUSE BOOLEAN

Reads font information from file FONTFIL. The integr FYL is used us au index iu the various array
parameters to establish the destination of this information.

RELEASE

Procedure with one parameter.
Name Type
'YL INTECER

The integer FYL must be in the range [1..6]. It selects one of ICHAN1 through ICHANG and executes
RESET(ICHANX) followed by FILPTR:=FILPTR-1. :

This closes and rcleases the iudicated file and frces the entry in FILENAME.

RSETFLE

Procedure with (our parameters.

Name Type
1)) INTEGER
FNAME CHARS
FDIRECTORY INTEGER
FDEVICE CHARS

The integer 1D must be in the range [i..6]). It sclects onc of ICHANI throngh ICHANG to be opened
for input and associates it with FNAME, FDIRECTORY, and FDEVICE.

TUGboat, Volum_t_a 2, No. 2 ' 45

% Examples:

% \DefineFont{cmtt}{\tt} % typewriter font

% \DefineFont{mflogo}{\mflogo} % METAFONT logo font
\def\DefineFont#1#2{

\if !'\UserFonts!{
\xdef#2{)}\send9{Error: No font codes available for font #1}}

\else{
\Apply {\First} to {\UserFonts!} -> {\FontCode} % Get font code
\font\FontCode=#1 % Load font
\xdef#2{\curfont \FontCode} % Define macro to use font

\Apply {\Rest} to {\UserFonts!} -> {\UserFonts} % Remove code from list

}

% The \Apply macro is used to apply a macro to its argument, when the
% argument is a macro also. The trick is to fool \TEX into expanding
% the argument before the macro is applied. If a better way exists to
% perform this feat, please send your solution to TUGBoat.

%
% Usage:
% \Apply {<function>} to {<argument>} -> {<result>}
%
% where:
% <function> is the macro to apply
% <argument> is the macro containing the argument to <£unct1on>
% <result> is the macro used to save the result -
%
\def\Apply #1 to #2 -> #3{
\let\Func=\let % Setup dummy function
\xdef\Eval{\xdef#3{\Func #2}} % Expand argument
\let\Func=#i % Redefine function to use macro
.Eval % Apply macro to its argument

X

% The \First and \Rest macros are used to manipulate strings terminated with
% an exclamation mark (!).

\def\First#1#2!{#1} % Returns first character of string
\def\Rest#1#2! {#2} % Returns string with first character removed

% The macro \UserFonts describes the set of font codes available to

% \DefineFont. The list of font codes should not contain an exclamation
% mark (!) since this is used to terminate strings passed to the \First
% and \Rest macros (and it isn’t a valid font code anyway). A reasonable
% convention for font codes is to have all upper case letters available’
% for user fonts:

\def\UserFonts{ABCDEFGHI JKLMNOPQRSTUVWXYZ}

% If \DefineFont is used to allocate all fonts used (including those in
% BASIC) , then all 64 possible font codes should declared.

