
Your input is needed to amwer thew questiozu.
Feedback from those of you who have been actively
working on porting P a d to new architectures
ia especially welcome. Please respond!

Software

TEE FORMAT OF ZEg'S DVI FILE8
VERSION 1
David h c h s

Z&$K Pmjec t, Staz~ford Univerai ty
April 18, 1 981

When 'I)E3C compiles a document, it produces
an output file that contains specifications of how
'IjiJC has decided the formatted text should a p
pear in hard copy. These output files are known
as ' .DVI' files, which stands for 'device indepen-
dent'. For instance, running '@C and telling it to
\Input dviinf will cause '&X to look for a file
called DVIINF. TM, read it, and produce an output
file called DVIINF. DVI, which is a . DVI file. This
document describes the format of . DVI files in detail,
giving d the specifications along with examples.

A .Dm fUe contains information about where
characters go on pages. The format is such that
there are those who say that almost any reason-
able device can be driven by a program that takes
.DVI 6lea as input. In particular, a .DVI me can be
printed on the Xerox Dover, Xerox Graphics Printer
(XGP), V ' , Versatec, Canon and Alphatype at
the Stanford CS Dept., depending on what spooler
it is passed to.

The . DVI file is a stream of &bit bytea, packed
in computer words high-order byte first. If the com-
puter word length is not evenly divisible by 8, then
the extra bits at the low-order end of each word will
be unwed. The first byte in a . D V I file is byte num-
ber zero, the next is number one, etc. For example,
on Stanford's 36-bit word machines, byte number 0
is in the higheat order eight bib of the lint word
in a .DVI Be, while byte number 7 is in the twelfth
through fifth least signiilcant bite of the second word
in the file; and the least significant four bits in every
word are zero.

A .DVI file is a c t d y a series of commands.
A cammand consists of one byte containing the
command's unique number, followed by a number
(poeeibly zero) of paramafars to the command. A
given command always hae the ssme number of

-. Theae parameters may take from one
to four bytes each, but a given parameter of a given

TUGboat, Volume 2, No. 2

c o d alwsye takes the same number of bytes.
Some psrameters may sometimes be negative, in
which case two's complement representation is used.
The complete list of commands, with a description
of alI the .DVI commands and their parametem, is
below. The reader is encouraged to refer to the com-
m s ~ ~ d list while reading the various examples in thie
document.

In the command descriptions, a lower case letter
with a [bracketed] number following it means that
the command baa a parameter that is that number
of bytes long. An X3 command, for instance, is 3
bytes long, the first byte of which has the decimal
value 144, the second and third of which give the
distance to move to the right. If the second byte =
S and the third = T, then the distance to move in
2$S + T (but if the high order bit of S is a one, then
the distance to move is 2*S + T - 216, conaidering
S and T as being in the range [0..255]).

The .DVI 6le contains a number of pages fol-
lowed by a posfamble. A page consists of a BOP
command, followed by lob of other commands that
tell where the characters on the page go, followed
by an EOP command. Each EOP command is im-
mediately followed by another BOP command, or
by the PST command, which means that there are
no more pages in the file, and the remaining bytes
in the . DVI file are the potamble. Remember that
l)jX really doesn't have an offlcial knowledge of page
numbers (although it does print the value of \count0
on your terminal as it outputs each page on the as-
sumption that some meaningful number is there),
so the only thing that can be said about the order-
ing of pages in a .DVI file is: The order in which
pages come in a . DVI file is the same order in which

constructed them, which is the same order in
which the l@C user specified them. Any blank or
nonexistent page from a 'QjX job might not be in
the . DVI file at all. If we consider the page number
to be the value of \countO, then the page following
page number 34 in a .DVI file might well be page
number -5.

Some parametem of . DVI commands are poinfcrs.
A pointer is simply a byte number as discussed
above. A pointex itself is 4 bytes long. For example,
a BOP c o ~ d ' s last parameter (p[4]) is the BOP'a
previous page pointer. This parameter is the num-
ber of the byte in which the previous page's BOP
command begins. In particular, the second page's
BOP command's previous page pointer parameter
@[4]) is always nem, since the h t page's BOP ie
always in byte zero in a .Dm file. If the firat page
in a .DVI me had only a BOP and EOP command,
then the third page's BOP'e previow page poiuter

TUGboat, Volume 2, No. 2

would be 46, since the first page's BOP command
takes bytes mro through 44, the Arst page's EOP is
byte 45, ao the second page's BOP is in byte 46.

W e n a .DVI-reading program reads the
commands for a page, it should keep track of the
currenf font. This can be done with a single in-
teger variable, the value of which will always lie in
the range [0 . . 2~~ - 21. The value of the current
font ia changed only by FONT and FONTNUM
mmm*nds. Whenever a command occurs in the
.DVI file that causes a character to be set on the
page, the charater is implicitly from the current
font.

Likewise, the program should keep track of the
c m n t padtion on the page. The current posi-
tion on the page is like a cursor on the page;
whenever a character or rule is set, it gets put
at the current position on the page. The current
position on the page is just two numbers-which
are called horirontal cooldinate and vertical coop
dinate. Moving to the right on a page is rep
resented by an increase in horimntal coordinate,
while moving down is an increase in vertical COOP

dinate. The upper-lefbhand corner of the page is
horioontal coordinate = vertical coordinate = 0
(i.e., our system is slightly non-cartesian). Both
coordinafee are given in rsu's (ridiculously small
units), where lrsu = 10-'meter. This is so that
accumulated errors will be insignificant even in the
worst imaginable carre (a "boxn many feet long).
The current position on $he page is moved about
by the commands WO, W2, W3, W4, XO, X2, X3,
X4, YO, Y2, Y3, Y4, ZO, Z2,23 and 24: The vertical
coodinate is changed by Y and Z commands, while
the horisontal coordinate is changed by W and X
commands. (The value of horiaontd coordinate can
also change as a side effect of setting a character or
rule (VERTCHAR and VERTRULE commands)-
the current position on the page moves right the
natural width of the character or rule set. The POP
commlnd may also change current position on the

page.
So, whoever or whatever reads a . D V I file might

have three variables, F, H and V, to keep track
of the current font and the current position on the

gage. Four more variables are also called for: w-
amount, x-amount, y-amount, and 8-amount. These
variables hold not locations, but distances (in rsu'a).
The amount variables are used in .DVI files to
move the current position on the page around: The
commands XO and WO add x-amount and w-amount
to hodson&l coordinate, respectively, while YO and
20 add y-amount or s-amount to verfical coordinate,
respectively. There are also a number of commands

that change the value of w-amount, samounf, y-
amount or lcamount (W2, W3, W4, X2, X3, X4,
Y2, Y3, Y4, 22, 23 and 24; these commands also
change horirontal coordinate or vertical coo*&).
Actually, the .DVI-reading program must have a
stack that can hold horimntal eoordiaata and verti-
cal coordinates, as well aa w-, x-, y-, and s-amounts.
These six values always get pushed and popped
together, and a reasonable maximum stack depth
might be about 200 (times six, since six items get
pushed a t once). As each page starts, a .DVI read-
ing program should set the amount variables to zero.
The stack should be empty. The initial value of F
doesn't matter, since every page of a . DVI file must
have a FONT or FONTNUM command before any
command that will set a character (the HORZCHAR
and VERTCHAR commande). Note that F is not
pushed and popped.

A program called DVITYP is available that taka
any . DVI file and prints a readable dmcription of its
contents, together with error messages if the iile is
not in the correct format.

Command Name

Command Bytes
Description

VERTCHARO

0

Set character number 0 from the e u m ~ t
font such that its reference point is at the
currant position on the page, and then
increment horhontal coordinate by the
character's width.

VERTCHARl
1

Set character number 1, ete.

VERTCHARl27

127

Set character number 127, etc.

NOP 128

No-op, do nothing, ignore. Note that
NOPe come between commands, they
may not come between a comrmnd
and its parametem, or between two
parametem.

14 TUGboat, Volume 2, No. 2

EOP

129 cOI4) ci(4) . .. cQI4j p[4)

k g b i n g of j q e . The parameter p is
a pointer to the BOP command of the
previous page in the .DVI file (where the
BrstBOPina ,DVIfi le hasapof-1, by
convention). The ten c's hold the values
of '@$'a ten \countera at the time this
pasG W8B output.

130
The end of all commands for the page
has been reached. The number of PUSH
eommsnds on this page should equal the
number of POPs.

FONT 137 f[4]

Set current font to f. Note that this cam-
mand is not currently used by =-it
is onIy needed if f ie greater thm 63,
because of the FONTNUM commands
below. Large font numbers are intended
for uee with oriental dphrrbets and for
(possibly large) illustrations that are to
appear in a document; the maximum
legal number ie 232 - 2.

X2 144 n[2]

Move right m rm's by adding a, to horiuw-
fal coordinate, and put m into x-amount.
Note that m is in 2's complement, so th
could actually be a move to the left.

PUSH 132
X3 143 431

Push the current values of horimnfal
Same as X2 (but has a 3 byte long m

coordinate and vertical coordinsC, and parameter).

the current w-, x-, y-, and camounts X4 142 m[4]
onto the tack, but don't alter them (so Same as X2 (but has a 4 byte long a

an XO after a PUSH will get to the e k e

spot that it would have had it had been
given juet before the PUSH).

POP 133
Pop the r-, y-, x-, and w-amounta, and
vertical coordinate and horirontal caw
dinate off the stack. At no point in a
. DVI file will there have been more POPS ,
than PUSHea.

HORZRULE
135 h[4] w[4]
Typeset a rule of height h and width r,
with it8 bottom left comer at the ument

position on fhe page. If either h 5 0 or
r _< 0, no rule should be set.

VERTRULE
134 h(4] n14]
Same as HORZRULE, but a h inme-
ment h o r i d c o o ~ t e by w when
done (even if h 5 0 or r 5 0).

parameter).

XO 145
Move right x-amaunt (which can be nega
tive, etc).

W2 140 m[2]
The sarlpe as the X2 command (i.e., d-
ters horisontal coordinate), but alter w
amount rather than x-amount, so that
doing a WO command can have Mixent
results than doing an XO command.

W3 139 4 3)
As above.

W4 138 m[4]

As abwe.

WO 141

Move right w-amount.

n 148 n[2]

Same idea, but now it's * d m n rather
than "rightn, a0 vertical coodmte
changas, ae does y-amoant.

Y3 147 431
As above.

Y4 146 n[4]

Set character c just as if we'd gotten
bUerUI.

the VERTCHAR~ command, but-don't 22 152 421
change the cwrent pocrifion on the page. Another downer. A i k t s v&ical COOP

Note that c muat be in the range [O..l27j. dinate and o-amount.

TUGboat, Volume 2, No. 2

ZO 153

Guess again.

FONTNLlMO
154
Set current font to 0.

FONTNUMl
155
Set c u m n t font to 1.

FONTNUM63
217
Set current font to 63.

PsT 131 p[4] n[4] d[4] m[4] h[4] w(4]
Fontdef Fontdef ... Fontdef
-i[4] q[4] i[ij 223[?]

The poetamble starts here. See below for
the full explanation of the parameters of
the poetamble.

Commands 218-255 are currently undefined and will
not be output by w.

The PST command, which is always the last com-
mand in a .DVI file, is somewhat special. The
parameter p is a pointer to the BOP of the final
page ,in the .DVI file. The parameters n and d

are the numerator and denominator of a fraction
by which all the dimensions in the .DVI file should
be multiplied by to get rsu's (w always outputs
a 1 for each of these.values, they are included in
.DVI format to allow other text systems to con-
veniently output . DVI files). The parameter m is
the overall magnification requested by par12 in the
'QjX job (par12 is unitless, and is 1000 times the
desired magnification). Next come h and a, which
are the height of the tallest page, and the width of
the widest (both in rsu's).

Next in the postamble come the font definitions,
one for each font used in the job (i.e., each FONT
and FONTNUM command in a . DVI file must refer
to a font number that has a font definition). The
format of a font d h i t i o n can be considered to be:

The font number is held in f num. The font checksum
(from the font's TF'M file) is in f chk. The parameter
fmag holds the font mapifleation (1000 times the
'at sire' of the font divided by its 'design size' (or

just 1000 if there was no 'at' specification for the
font)). Next comes the byte Inamlen, which is the
number of characters in the font name, followed
by the the font name, one ascii character per byte
(right justified). Note that the font name includes
a directory only if the font is not in the standard
default library directory. F'rom the definitions of the
parameters of the PST command, note that the end
of the font definitions is marked by a font number
of -1 (which is not a legal font number). The four
bytes following this phony font number constitute
the parameter q, which is a pointer to the PST com-
mand (i.e., the beginning of the postamble). Next
is a single byte parameter i (called the ID byte).
Currently, the ID byte should always have a value of
1; it will be changed to 2 on the next incompatible
release of .DVI format in 1990. Finally, there is
some number (at least 4) of bytes whose value is 223
(base ten = '337 octal).

The idea of the q pointer at the end of the poet-
amble is that a .DVI reading program can start at
the end of the . DVI file, skipping backwards over
the 223'5, until it finds the ID byte. Then it can

back up 4 bytes, read q, and then do a random seek
to that byte number within the .DVI file. Now the
postamble can be read from start to finish, while
storing away the names and magnifications of all the
fonts. Now the program can jump to the start of the
.DVI file and read it sequentially. The reason for
reading the poetamble first is that to figure where
the characters on a page go, the .DVI reading p re
gram must know the widths of the characters (see
the VERTCHAR commands' description above). To
find the widths, the .DVI reader must know the
names of the fonts so it can get their widths from
a TFL(or VNT (or some other kind of font) file. But

can't put out all the font names until the end of
the . DVI file because new fonts can appear anywhere
in the job. If font definitions were scattered
throughout the .DVI fife, then a spooler that read
.DVI files would have to read all the pages of the
. DVI file, even if the user only wanted the last page
printed. The decision to put the font debitions in
the poetamble was based on these considerations,
and the fact that just about any reasonable sys-
tems language allows random access. Unfortunately,
standard PASCAL does not offer this feature. If it is
absolutely necessary for a . DVI reading program to
be written in standard PASCAL, then it either must
make two passes over the . DVI file, or TE;X must be
doctored to output two files: the regular .DVI file,
plus a PST file, which contains only the postamble.
So far, there have been no reports of any installation
of QjX that required this kind of kludge.

A few words on magnification: If you have a
T)iJC document that does not mention any 'true'
dimensions, then if you change just its w i f y
statement, the .DVI Ale produced by will
change in just one place--the word in the pot+
tamble that records the requested magnification.
The idea is that any spooler that reads the .DVI
file will multiply dl dimensions in the .DVI file by
the magnification, thus the default magnification in
the .DVI file may be easily overridden a t spooling
time. So, if the document specifies \msgnify{1200),
a \vskip 34cm will be recorded in the .DVI file
as .34 X lo7 rsu's of white space, but the spooler
will multipy this by 1.2, making 40.8 centimeters of
white space on output. If the user tells the spooler
to use a magnification of 1000 rather than the 1200
in the .DVI file, then the output will have 34cm
of white space. If a dimension in the document is
specified as being 'true', then 'l&X divides the dis-
tance specified by the prevailing magnification, so
that when a spooler looks at the . DVI file and mul-
tiplies by the magnification, it gets back the original
dietance. So, if we \vskip 24truecm while the
magnification is 1200, 'QX puts out . DVI commands
that specifies 20 centimeters of white space. An out-
put spooler that reads this .DVi file then puts 20 X

1.2 = 24cm of white space on its output. Of course,
'true' dimensions will come out 'false' if the spooler
is told to override the magnification.

Font magnification goes one step further. Assume
for a moment that the overall magnification is 1000.
Now, if a '&X job specifies \font A=ClIIRlO a t
lSpt, say, that font's magnification is recorded as
1500 in its font definition. When a spooler reads this
.DVI file, it will try to use the file CWlO. 150VNT (or
CYR10.150ANT, depending on the device), which is
just like CNR10. IOOVNT, but the dimensions of all its
characters were multiplied by 1.5 before they were
digitized. An uppercase 'W' in CMRlO is lOpt wide,
but CMR10 at 15pt has a 15pt wide 'W', so after
VERTCHAR87 is seen, horirontal coordinate is in-
creased by (15pt) X (254000rsu/72:27pt). Overall
xmgndication is taken into account after all other
calculations; for example, at magnification 1200 the
font CURIO. l2OVNT would be used. Note that if the
user had asked for c m r l O a t 15truept, the factors
would cancel out so that CWlO. 150VNT would be
the font chosen regardless of magnification. The
magnification factor is given times 100 in the font
file name so that roundoff e m due to several mul-
tiplications will not d e e f the search for a font with
characters of the right si~e. This convention about
font file names is merely a suggestion, of course, it
is not part of the . DVI format per se.

TUGboat, Volume 2, No. 2

Appendix: Cornpariaon between m i o n 0
and version 1.

Note that . DVI files have an ID byte at the end
of the postamble, which tells what version they are.
The changes since version 0 are:

DVl files now use the upper bits in a word
on maehines whose word size isn't evenly divisible
by 8. The BOP command has ten \counter
parameters. The size of rsu's has changed to be
10-7meter. The postamble has changed to include
overall magnification as well as a fraction that al-
lows use of non-rsu dimensions. Font checksum and
magnification are new, as is the convention about
default directory name. Font descriptions in the
postamble give the length of font names rather than
delimiting them with a quoting character; The old
zero ID byte is now a one.

Some ideas for version 2.
Although 1990 is still a ways off, we are currently

expecting that version 2 of .DVI files wiU differ in
the following ways:

The ID byte will be 2. The q bytes of the poe-
tamble will be preceded by 's[2Iy where s is the
maximum stack depth (excess of pushes over pops)
needed to process this file.

SOME FEEDBACK FROM PTEX
rNSTAtLATION8

Ignacio Zabala

The Pascal version of 'QijX was designed and writ-
ten with the intent to generate a transportable pro-
gram. Nevertheless, given the characteristics of the
'&jX system, some special assumptions had to be
made about the Pascal environment in which P T M
was to be installed. Essentially, the requirements
are:

- The system should have enough addressable
memory to store the large arrays employed by
PTEX (about 128K words of 32 bits).

- The compiler should be able to really pack
fields of a PACKED RECORD and overlap multiple
variants of packed records. If this requisite is
not satisfied, PTEX will require at least four
times as much memory.

- The compiler should be able to handle large
case statements (say over 64 actual caees in a
range [-500..500]) and have a default case (this
is non-staddard in Pascal but available in moat
compilers).

