Owing to the very high cost of mathematical printing
it has been necessary to limit the alterations in this
edition, ir order that as much as possible of the earlier
book may be reproduced by photographic processes. ...
To save expense I have refrained from small alterations
which would have been made, were I starting afresh, to
improve the English, & c., being content to let what
was printed stand, provided it was reasonably clear and
not actually wrong.

Harold Hilton

Plane Algebrasc Curves,

Oxford University Press, 1931

TUGBOAT

THE TEX USERS GROUP NEWSLETTER
EDITOR ROBERT WELLAND

VOLUME 2, NUMBER 2 JULY 1981
PROVIDENCE RHODE ISLAND USA.

2 TUGboat, Volume 2, No. 2
ADDRESSES OF OFFICERS, AUTHORS AND OTHERS
BALL, George HOWERTON, Charies P. MICHOLS, Monte C. SPIVAX, Michael
Computing Center Natonal Bureau of Standards Exploratory Chermstey Division 2478 Woodridge Dnve
Washington State Universty Bouldes Labs, room 3562 Sancka Natsonal Laboratory 8313 Decatur, GA 30033
Pullmen, WA 90164 " 305 South Brosdway Lweemore, CA 94550 404.329.0372
509-335-661¢ Boulkdes, CO 80303 415-422.2906
303-499-1000 ext. 4433 - STOVALL, John
BEEBE, Nelson : PALAIS, Richerd S. 7500 West Camp Whsdom Road
Oupartment of Physxs KELLER, Arthur M. md Mathematecs Deflas, TX 75236
201 North Physics Buiding Department of Computer Scence versily
Unwersity of Utah Stanlord Universty Waitham, MA 02154 STROMQUIST, Relph
Sat Lake Gity, UT 84112 Stanford, CA 94305 {On feave through June 182) *l:f:w of Wisconse
o156 5254 asdor-sat PHILLIPS, Bob 1210 W. Dayton Street
BEETON, Berbera KELLY, BN Oregon Software Madison, W1 53706
Amencon Mathematical Society Academic Computing Center 240 SW Canyon Road 606-262.8821
P.0. Bou 6248 Uneversity of WisconsinMadison Portiend, OR 97201)
Providence, R1 02940 1210 W. Dayton Street $03-226-7760 TRAGB-PARDO, Luis
01.272-9500 Madsson, Wi 53706 PIERCE. Tom Departrnent of Computer Science
603-262-3821 EGAG, Energy Measuraments Group Stanlord nwreses
0laz, Mox . P.0. Box 890 Stanford, CA 94305
Mathernatics Department KNUTH, Donald €. .
Stanford Unwersity Department of Computer Science 3:“ ;t::! R:I.V"%SOS VIELI.AND,:ohm
Stanford, CA 94305 Stanford Unversity 9;‘_ 05,7565 Depariment of Mathematics
415-327-8483 Stanford, CA 94305 Northwestern Unsvarsity
. PIZER, Arnold 2033 Sheridan Road
DOHERTY, Barry LeVEQUE, Wrikem J Department of Mathematics Evenston, 1L 60201
Amecian tartc Sccey Armercan Mathematical Socety Unetrsty of Rochester 312:864.28%
0. £.0. Bar 6248 . NY 14627
Providence, R 02340 Prowdence, R 02040 R uite. WHIDDEN, Semuel 8
401-272-9500 401-272-9500 Amercan Mathematical Soceety
! PLASS, Susan £.0. Box 5248
FRISCH, Micheel J. LIANG, Frank Poiye 209 Prowdence, Rl 02040
“&mm‘g"‘i Canter Oepartment of Computer Scence Conter for Information Technology 401-272.9500
g UL O = Stanford University Stanford Unwevsity
University of Minnesota WHITNEY, Ronald
o 55455 Stanford, CA 94305 Sunl‘o;g‘ c;vrgs Amércan Mathemateal Socety
612-373-4599 McCLURE, Robert S. P 0. Bax 6248
David 1026 West Mauda, Suite 308 PRICE, Lynne A Pravdence, Rl 02940
FUCKS, . nyvale, CA CALMA « 401-272-9500
Sunnywale, CA 24068
Ospartment of Computer Sciance 408.733-6617 Research and Development)
Stanford University 212 Gbraltar Orive TABALA, Ignacio
Stanford, CA 94305 “C(OU", Scott Sunnywale, CA 94086 Depariment of C_omwt« Science
4154971646 Gurmaughs, Corparation 4087441950 ?.'.’.'::: ‘::‘;"ags
GOUCHER, Reymond €. o . Commerce P SAMUEL, Arthur
American Msthematical Socety Owoue €T 06T v Computer Scisnce Dept ZAPF, Hormenn
P.0. Bax 848 ;& 6 ! Stanford University Sertersweg 35
Providence, R1 07940 7946191 Margarat Jacks Hah 4364 D-6100 Darmstadt Fed Rep Germany
401-272-9500 McKAY, Brenden D Stanford, CA 94305
f 2PPEL, Richard
HARRSS, Kent S. Vanderbdt Unevarsty SCHWAB, Rache) L. rcetrs § Tachwelogy
1026 West Maude, Sute 309 Computer Science Dopastment Nations) institutes of Heath 545 Tech Square
Sunnyals, CA 94063 Eor 70, Statwon B Computer Conter Branch Cambrdge, MA 01239
408-733-6617 ""‘;‘l';;ggﬁs Bulding 128, Room 2N207
HICKEY, Thomas B.) Bathesda, MO 20205
o0C MILLIGAN, Patrick SHERROD, Phil
6565 Framtz Road Boll Northern Reseerch, inc Box 1577, Staton B
Dublin, OH 43017 6854 Middieheld Road Vanderbik University
614-764-6000 um‘t; 9‘3—‘31(73 mmr Nashvile, TN 37235
HOOGE, Thes D. , ext 615-322-2951
University Computing Center MORRIS, Robert SMITH, Barry
208 Union 5t. S.E Mathematics Dapartment Oregon Softwace
University of Minsesota UMASS at Boston 2340 SW Canyon Road
Minneapolis, Ml 55455 Boston, MA 02125 Postiand, OR 97201
612-373-4599 617-287-1900, ext. 2545 503-226-7760

TUGboat is the newsletter of the TEX Users Group (TUG), and is published irregularly for TUG by the
American Mathematical Society, P.O. Box 6248, Providence, RI 02940. Annual dues for individual members
of TUG are $10.00 for 1981, and $15.00 for 1982; one subscription to TUGboat is included. Applications
for membership in TUG should be addressed to the TEX Users Group, ¢/o American Mathematical Society,
P.O. Box 1571, Annex Station, Providence, RI 02901; applications must be accompanied by payment.

Manuscripts should be submitted to the TUGboat Editor, Robert Welland, Department of Mathematics,
Northwestern University, 2033 Sheridan Road, Evanston, IL. 60201; submissions to the macros and problems
columns should be sent to Lynne Price, CALMA, Research & Development, 212 Gibraltar Drive, Sunnyvale,
CA 94086; items submitted on magnetic tape should be addressed to Barbara Beeton or Barry Doherty,
American Mathematical Society, P.O. Box 6248, Providence, RI 02940.

Submissions to TUGboat are for the most part reproduced with minimal editing. Any questions regarding
the content or accuracy of particular items should be directed to the authors.

TUGhboat, Volume 2, No. 2

OFFICIAL ANNOUNCEMENTS
1982 Membership Dues

1982 dues for individual members of TUG will be $15. Membership privileges will
include all issues of TUGboat published during the membership (calendar) year. All new
members and other persons inquiring about TUG will be sent TUGboat Vel. 1, No. 1, but
1981 issues will be sent only to persons paying the 1981 dues of $10. Beginning in 1982,
foreign members will be able, on payment of a supplementary fee of $12 per subscription,
to have TUGboat air mailed to them.

, TUGboat Schedule

Volumes of TUGboat are numbered on a calendar year basis. Volume 1 appeared in
1980, Volume 2 corresponds to 1981, and 1982 will bring Volume 3. Volume 1 consisted
only of issue No. 1, dated October. Three issues are planned for Volume 2: No. 1 appeared
in February, and No. 3 is planned for November. No schedule has been determined yet
for 1982. .

The deadline for submitting itema for Vol. 2, No. 8, is October 1, 1981. Contributions
on magnetic tape or in manuscript form are encouraged; editorial addresses ave given at the
bottom of page 2, and a form containing instructions for submitting items on tape is bound
into the back of this issue.

It has been necessary to reprint back issues of TUGboat to fulfill the requirements
of the growing membership. Each member is entitled to receive all issues which appear
during his membership year, as well as Vol. 1, No. 1. If you have not received any issue
to which you are entitled, instructions for obtaining such issues are included on the form

referred to above.

EDITOR’S REMARKS
Robert Welland

We thank Lynne Price for taking on the respon-
sibility of editing our Macro column; it is a complex
task and we are thankful that it is in such talented
hands. In the future, please submit all macros to

Lynne A. Price

CALMA

Research and Development
212 Gibralter Drive
Sunnyvale, CA 94086

We also thank Barry Smith of Oregon Software
for getting TEX up and running on the VAX (see the
VAX/VMS site report, page 34) and for making it
easily available to all VAX users. Because of this
work, we will see TEX flourish at very many sites.

Due to the hard work of Thea Hodge and Michael
Frisch of the University of Minnesota (see their site

report on page 28), we hope to see TEX up and
running on Cyber machines sometime this fall; may
the North Star guide them to success.

Lastly we extend the membership’s gratitude to
Barbara Beeton and Sam Whidden of the AMS
whose hard work has made the TUGboat newslet-
ters possible.

* % % % % % % * x *x %

Editor’s note: The TUG Chairman, Richard
Palais, is on leave jor o year. At the Steering
Committee meeting in May, Michael Spivak was ap-
pointed to serve as temporary Chairmon until Dick’s
return.

CHAIRMAN’S REPORT
Michael Spivak
Since I am substituting for Dick Palais as

Chairman of the TUG Steering Committee during
the next year, I suppose that I ought o emerge

4

briefly from the dimness of the AMS-TEX macro en-
gine room and report on the view from the bridge.

Up here it’s all inchoate brightness—everything’s
presently in a fog, though there's the promise of
smooth sailing ahead. By the time of the Cincinnati
meeting in January, the official Pascal TEX should
be published, and more important, up and running
at many more sites. If you have encountered and
solved any particular problems bringing TEX up,
your experiences will undoubtedly be of interest to
others who want to implement TEX on the same, or
similar, systems. If possible, please present your in-
stallation and/or use experiences at a session of the
Cincinnati meeting; see the preliminary announce-
ment by Tom Pierce on page 8. Perhaps we’ll soon
be able to stop worrying about getting TEX run-
ning, and can concentrate on using TEX. Two fun-
damentally opposed philosophies of how TEX should
be supported were spelled out by Bob Morris and
Sam Whidden in the last issue of TUGboat, and
it will certainly be interesting to find out just how
much support is going to be needed, since this will
obviously influence the final decision. Actually, it
seems that the problem of getting TEX running (i.e.,
producing dvi files) will be much easier to solve than
the problem of getting the files printed, because of
the variety of printers used and the secrecy about
their inner workings. Perhaps this should be the
next major problem that TUG could make a sys-
tematic attack on.

Of course, TEX is already up and being exten-
sively used at some places, and more and more
macro packages are being produced to get TEX to
do just about everything except shine your shoes
and write the papers for you. At the present stage,
there are clearly still many tricks to be learned (as
Don said, we are just beginning to scratch the tip
of the iceberg). Even if a macro package performs
some function that isn’t of particular importance to
another macro writer, it may contain some tricks
that will be useful. Perhaps we should encourage
more people to send in special tricks, or emphasize
such tricks in their macro packages; eventually
a “standard library” of tricks could be compiled.
(Hours of pestering Don have produced some basic
tricks, documented in the article “Macro Madness”
(see page 50), that may help people to make TEX's
macro facility work more like the ‘programming lan-
guage’ that many have wished for.)

As this last paragraph has indicated, my own par-
ticular interest in using TEX is to get it to typeset
anything a mathematician would want with minimal
understanding on the part of the typist. Obviously
the interests of other TyX users and implementors

TUGboat, Volume 2, No. 2

are going to be quite different. One of the prob-
lems with our last meeting was its undifferentiated
nature. Although almost everyone got quite a bit
out of some particular talk or meeting, it wasn’t
eagy to know beforehand which one it would be.
This is probably only to be expected at the initial
stages, especially since so many different levels of
TeXpertise are being addressed, but with Tom’s help
the Cincinnati meeting ought to be better strue-
tured, so that people can know what will be useful to
them, and what can be skipped. Perhaps we'll even
be so organized that we can propose the organization
for the next meeting. Let’s hope so!

REPORT ON THE
TUG STEERING COMMITTEE MEETING

Robert Morris

The TUG Steering Committee meeting took
place in two sessions. The first, on May 13, simply
set the loose agenda for the second, which was a
public meeting on the evening of May 14.

The following actions were taken (a few of these
may have been taken at the loosely organized
general membership meeting on May 15):

a. By acclamation Mike Spivak was declared Chair
of the Steering Committee. Richard Palais will
be out of the country for a year.

b. Personal dues will be raised to $15 for 1982, but
no institutional dues are contemplated pending
TUG offering something to its members beyond
the newsletter.

c. The Treasurer’s report was approved; a version
updated through June 30 appears on page 5. In
summary, the individual membership fees and
excess workshop revenue will cover the publi-
cation of TUGboat and minor administrative
expenses for this year.

d. The idea of having architecture specific im-
plementors’ workshops, preferably at a sue-
cessful site, was endorsed. These would be
highly technical and financially self-supporting.
Vanderbilt may organize one for TENEX sites;
see page 28 in this issue for an announcement.

e. A tape standards committee was established to
propose formats for the exchange of TEX files.
A first proposal is put forth by Patrick Milligan
on page 10.

f. Lynne Price agreed to edit the Macros and
Problems columns in TUGboat, and to serve as

TUGboat, Volume 2, No. 2

focal point for discussion on the next generation
of TEX, with emphasis on user-friendliness.

g It was agreed to call a general membership
meeting to coincide approximately with the
winter meeting of the American Mathematical
Society next January in Cincinnati; see the
preliminary announcement by Tom Pierce on
page 8.

h. Don Knuth announced his desire/intention to
have TEX fully frozen by the end of the year,
and to publish the theory and workings of TEX
early in 1982.

i. It was decided that the architecture coordina-
tors should not in general be those actually im-
plementing, in order to shield the implementors
from repetitive questions. This has worked well
for the VAX/VMS implementation and will be
gradually accomplished for the other architec-
tures. Site coordinators are listed on the inside
front cover, and their addresses are given on

page 2. If you have/want current information, .

please contact them.

* Minutes respectfully submitted,
Robert A. Morris

Secretary
Editor's note: Attendees at the meeting may submit
additions and corrections to the minutes in writing to
the Secretary.

* % * % *x % %X *x ¥ *x *

TUG TREASURER'S REPORT

June 30, 1981

Beginning balance, January 1, 1981: $(419)
Income: Membership? $1,555

Tape leasing 400

Workshop? 7,445 9,400
Expenses®:

~ TUGboat Vol. 2, No. 1: 500 copies

Printing $1,012

Postage 320

Clerical labor 60 $ 1,392

Reprinting TUGboat:

Vol. 1, No. 1: 300 copies 195

Vol. 2, No. 1: 300 copies 655
Steering Committee luncheon,

San Francisco Jan. 81 170

Workshop? expenses T 236 (2,648)

Estimate of future 1981 income:
Mernbership (100 members) $ 1,000

TEX tape sales/leasing 1,000 2,000

Estimate of future 1981 expenses:
TUGboat Vol. 2, Nos. 2&3: 800 copies
Printing $3,200
Postage 900
Clerical labor 200 $ 4,300

Reserve for 1981 expenses for
Cincinnati meeting,

January 1982 1,000
Support for Stanford
TEX Coordinator! 3,600 (8,900)
Subtotal: $(567)
Anticipated receipts in 1981 against
1982 individual membership
(50%% of membership) 4, 500

Balance (estimate to December 31, 1981) $°3,933
Notes:

1. Total membership is 495, of which 30 are com-
plimentary; of these, 371 members are domestic
and 124 foreign.

2. The Implementors’ Workshop held at Stanford,
May 14-15, 1981, was attended by 92 partici-
pants.

3. Not included in these figures are costs for ser-
vices provided by AMS professional staff, in-
cluding programming, reviewing and editing,
answering telephone inquiries, maintaining the
mailing list, and other clerical services.

4. Professor Arthur Samuel is acting for Luis
Trabb-Pardo as TEX coordinator, answering
questions, distributing tapes, and fixing bugs in
the TEX source code. Luis has asked, and the
finance committee has agreed, that TUG con-
tribute to Professor Samuel’s support.

Respectfully submitted,
Samuel B. Whidden, Treasurer

PROPOSAL FOR
INSTITUTIONAL SUPPORT OF TUG

Robert Morris

Late last week (June 14) the Finance Committee
met with an unusual opportunity to fund some-
thing which has made me change my previous posi-
tion about TUG institutional membership. Barring
an obstruction due to an Air Traffic Controllers
strike, we are sending the chairman of TUG, Mike
Spivak, to the ANSI standards committee on Text
Processing Languages, X3J6.

This committee will be considering a number of
possibilities for the processing of mathematical text,
and one of the Steering Committee members, Lynne

6

Price, will be attending as a member. However,
Lynne can not attend the beginning of the meeting
and felt it important that TEX be represented at
least informally by someone knowledgeable.

Acting in hastily convened and loosely organized
telephone meetings, we agreed to pay the cost
of Mike’s attendance at this meeting as our ob-
server, even though TUG has no funds in its budget
beyond those needed to pay for the newsletter.
Approximately $1000 will be borrowed from the
AMS to be reimbursed from future TUG income.

In the Steering Committee meeting (see my
minutes, page 4) it was agreed that we would
propose no institutional dues until we had some
proposal for use of such money to the benefit of
the membership. Here is such a benefit: repre-
sentation of the TEX user community at standards
committees and other organizations which may be
in a position to influence the use or restriction of
text processing systems (for example, I could en-
vision also presentations to governmental agencies
who might be promulgating standards for govern-
ment documents).

Another benefit I think should accrue to paying
institutional members is an annual (?) tape of con-
tributed macros and (perhaps) a copy of AMS-TEX
when it is in its “positive versions” (in the cur-
rent pre-release versions I am enthusiastic about dis-
tributing it at cost to anyone who wants to test
it. Later, I would make it a benefit of institutional

membership).
Thus I now argue for the following dues structure:
Individuals approximately the
cost of TUGboat

Educational institutions $100
Non profit institutions
using TEX in house $250

All others - $500

Note that I have included all commercial or-
ganizations and all users of TEX who use it to
produce publications for sale (e.g. the AMS and
university presses) as one class of users.

I hope the precise figures and the ratios will be the
subject of much discussion in this forum, because I
will ask for formal ratification of some such struc-
ture at the annual meeting in January.

I will collate any replies this note brings. Please
mail them to me at:

— (before Sept 1): IBM Cambridge Scientific
Center, 545 Technology Square, Cambridge,
MA 02139.

— (after Sept 1): Dept. of Mathematical Sciences,
UMASS /Boston, Boston, MA 02125.

- Arpanet address: ramOmit-me.

TUGboat, Volume 2, No. 2

If you are especially anxious that the full text
of your reply be published in TUGboat, please so
indicate.

Editor’s note: The X3J6 meeting described above
has been reacheduled, and Lynne Price will probably
attend rather than Mike Spivak, so that TUG funda will
very tikely not be required. Bob’s new position, in favor
of institutional support, is not affected by this change,
a fact he has confirmed in a telephone conversation.

® % % % * % % % % % *x

REPORT ON THE
TEX IMPLEMENTORS' WORKSHOP,
STANFORD, 14-15 MAY 1981

Barry C. W. Doherty

At the TEX Implementors’ Workshop in May, 92
people were registered (a complete list follows). The
goal was to draw together both those knowledge-
able about TEX and those in various stages of the
implementating TEX-in-Pascal, from having an in-
terest to having completed the installation, so that
there could be communication of the problems and
solutions involved.

The first day consisted of a series of planned talks
on various aspects of TEX, from advanced usage to
desirable features of Pascal compilers and techni-
cal details of TEX's output. On the second day, a
series of informal sessions focused on people’s prin-
cipal interests and concerns, attempting to provide
the information most necessary for those trying to
install TEX and to gather the major unsolved prob-
lems hindering such installation.

Some of the more ‘formal’ talks either appear as
articles in this issue of TUGboat or will appear in
subsequent issues. Similarly, a number of the topics
addressed during the second day have generated
communications that appear here. The range of in-
terests was large, with the result that many par-
ticipants felt that much more could (or should) have
been said about each of the topics. (Perhaps these
communications will stir such a discussion in these

pages!)
The schedule

First day (May 14th)

9:00-10:00 Donald Knuth “TiX debugging aids”
A detailed analysis of sample TEX input using in-
formation available through features built into TEX
(such as \trace and \ddt). It is hoped that a presen-
tation of this talk will be available for the next issue
of TUGboat.

-

TUGbost, Volume 2, No. 2

10:00-10:45 Ignacio Zabala “Pascal-related
issues” Concentration on the characteristics and
suitability of various popular Pascal compilers, with
suggestions on what to look for in a compiler and
how to cope with the compiler one has. (See this
1ssue, p. 16.)

11:15-12:00 Ignacio Zabala “The system depen-
dent module of TgX-in-Pascal” The Pascal elements
of TEX and their implications. (See the articles by
Lawson, Zebala and Diaz, TUGboat Vol. 2, No. 2,
pp. 20, 32.)

1:15-2:00 David Fuchs “Different output formats,
conversion issues” Largely a discussion of TEX's
DVI file format. (See this issue, p. 12.)

2:00-2:45 Luis Trabb-Parde “From DVI to
paper” General discussion of translator (driver) pro-
grams (from DVI to something a specific device
understands), and the role of spoolers/servers in
scheduling and queueing—features and characteris-
tics, downloading of fonts, memory requirements,
efficiency.

3:00-3:30 Frank Liang “Hyphenation in TgX”
Discussion of the algorithm used in TgX and com-
p¢ rison with other widely used algorithms. (See this
tssue, p. 19)

3:304:00 Michael Plass “Lines, paragraphs,
pages” Discussion of how TEX functions in this con-
text. See report by Donald E. Knuth and Michael F.
Plass, Breaking paragraphs into lines, Stanford CSD
report CSD-CS-80-828.

A panel discussion had been scheduled to begin
at 4:00; talks were running longer than planned as
a result of discussions following most. Instead Don
Knuth spent a few minutes discussing his plans for
TEX, which include a series of three books providing
complete documentation on the system (dates are
projected completion dates):

- TEX—an entire listing of the Pascal source
code, a ‘final’ user manual, and a history of
debugging TpX. (Winter 1982)

~ Computer Modern Roman—a description of
this font family. (Spring 1982)

-~ METAFONT—similar to the book on TEX
(Winter 1983)

........

Second day {May 15th)

9:00-10:00 “TgX distribution and instaliation”
General problems of obtaining TEX and of the
transportability of both TEX and TEX-related files.
Questions were raised about the real utility of the
current means of distributing TEX-in-Pascal as two
quasi-independent documents (Pascal source code
and internal documentation), both produced from

7

the same meta-language source; general opinion
seemed to favor distribution of the original source
together with the programs (currently implemented
only in SAIL) for producing the pieces, to allow each
gite to tailor the results to its (and its compiler’s)
needs more easily. One result was the formation
of a tape standards committee. (See the article by
Milligan on this committee, p. 10.)

10:00-11:00 “METAFONT and fonts” Interest
in both METAFONT and in the distribution of
fonts. Again, one result was the formation of a com-
mittee to look into the problems. (See the article by
Doherty, p. 34.)

11:00-12:00 “Son of TgX” Even before TEX s final
release there have been numerous suggestions for
what TEX might (or ought to) do. The spirit of these
modifications is to allow more specialized typeset-
ting to be done without damaging the compatibility
with standard TEX. Some desired features include
a more “suitable” input language, more tractable
error rnessages, incorporation of graphics output,
non-English hyphenation capabilities, batch mode
(rather than interactive processing), and real-time
interactive TEX. (See the article by Price, p. 58.)

1:00-2:00 “Macro packages” Already several
major macro packages have been developed (see the
documentation on the macro packages by Keller and
Diaz, for instance, as well as Spivak’s AMS-TEX, in
various issues of TUGboat). Here there was an at-
tempt to focus on standards and conventions of pos-
sible interest to macro writers: questions of com-
patibility, consistency in font-naming, conventions
for replacing characters found on the Stanford non-
standard terminal keyboards. (See the articles by
Milligan (p. 44) and Price (p. 43) in this issue.)

2:00-3:00 “Output devices and their interfaces” A
somewhat more specific examination of some of the
more common output devices, their characteristics
and what is required of their interfaces. A

3:00-4:00 “Architecture sessions” About a half-
dozen groups formed to discuss their particular
problems. Major sessions included IBM, VAX, DEC
10s and 20s, CDCs.

4:00-5:30 “Output device demonstrations” This
was devoted to Trabb-Pardo’s presentation of the
Canon Laser Printer (see his article in this issue,
p. 26) and a tour of BNR given by Milligan
(equipment including a& Versatec, PERQ, and
Alphatype).

¥ % % * ¥ ¥ * ¥ ¥ x %

Attendees, TEX Implementors’ Workshop
Stanford, May 14-15, 1981

Adamo, Vincent — Texas A & M University
Amabile, Carolyn - National Information Systems
Ash, William - Stanford Linear Accelerator Center
Ball, George - Washington State University

Beebe, Nelson - University of Utah

Beeton, Barbara - American Mathematical Society
Bennison, John - Brown University

Berns, Eagle - Stanford University

Blair, John - CALMA

Broadwell, Peter ~ Univ. of California, Santa Cruz
Brown, Malcolm ~ Stanford University

Buckle, Normand - University of Montreal

Bupara, Sarge - Exxon Office Systems

Carnes, Lance - Gentry, Incorporated

Chaflee, Roger - Stanford Linear Accelerator Center
Conley, Marsha - University of Mlinois

Copeland, John

Cralle, Robert - Lawrence Livermore Lab

Dailey, William H. - Letterman Army Institute
Day, Christopher - Lawrence Berkeley Lab

Diaz, Max - Stanford University-

Doherty, Barry - American Mathematical Society
Doob, Michael - University of Manitoba

Durling, Bob - University of California, Santa Cruz
Faul, Don ~ Lawrence Livermore Lab

Faulkner, Thomas - Washington State University
Forster, Doug - Stanford University

Frisch, Michael - University of Minnesota

Fuchs, David - Stanford University

Gittelsohn, Michael - San Francisco State University
Goldby, Alan - University of California, Santa Crus
Grosso, Paul - University of Michigan

Guenther, Dean - Washington State University
Hickey, Thomas — OCLC, Incorporated

Hodge, Thea - University of Minnesota

Jackson, Calvin — California Institute of Technology
Katagiri, Grace - University of California, Berkeley
Kelley, Al - University of California, Santa Crus
Knuth, Donald - Stanford University

Lanford, Oscar - University of California, Berkeley
Lindsey, Clark - University of California, Riverside
Mapes, Jefl - Stanford University

Meler, Randy - Stanford University

Milligan, Patrick — BNR, Incorporated

Morris, Bob - University of Massachusetts, Boston
Nichols, Monte - Sandia Labs

Norstad, John - Northwestern University
Nussbaum, Frank — Newline Graphics

Palais, Richard - Brandeis University

Payne, Thomas - University of California, Riverside
Pierce, Thomas - EG&G, WASC, Incorporated
Plass, Michael - Stanford University

Plass, Susan - Stanford University

Platt, Craig — University of Manitoba

Price, Lynne - BNR

von Raesfeld, Mary — National Information Systems
Reier, Warren - Gentry, Incorporated

Rensz, Peter - W. H. Freeman and Company

des Riviéres, Jim — Carleton University

Robb, Richard — Cemrel, Incorporated
Rosenschein, Jeffrey S. — Stanford University

Ross, Kenneth ~ University of Oregon

TUGboat, Volume 2, No. 2

Rushworth, Tom - Block Brothers Industries
Sachs, Jonathan - independent contractor

Samuel, Arthur - Stanford University

Schechtman, Marty - Newline Graphics

Scott, Eric P. ~ California Institute of Technology
Sears, Chris - San Francisco State University
Sherrod, Phil - Vanderbilt University

Smith, Barry - Oregon Software

Spivak, Mike

Stovall, John ~ Wyeliffe Bible Translations
Stromquist, Ralph - Univ. of Wisconsin-Madison
Tal, Avi - Electis Engineering Incorporated
Thedford, Rilla - Mathematical Reviews
Trabb-Pardo, Luis - Stanford University

Truax, Terry - Mathematical Reviews

Tuttle, Joey ~ 1. P. Sharp Associates

Van Dalen, Gordon - University of California, Riverside
Van den Bosch, Peter ~ Univ. of British Columbia
Wakabayashi, Nobuo - Stanford University
Weening, Joe — Stanford University

Welland, Robert — Northwestern University
Wheeler, Norman

Whidden, Samuel - American Mathematical Society
Whipple, Edgar - Lawrence Berkeley Lab
Whitney, Lynn - Univ. of California, Santa Crus
Whitney, Ron - American Mathematical Society
Wilmott, Sam - Block Brothers Industries

Wiser, David ~ Stanford Linear Accelerator Center
Wolf, Joe - University of California, Berkeley
Zabals, Ignacio - Stanford University

* * % x * X ¥ ¥ % % %

PRELIMINARY ANNOUNCEMENT:
TUG MEETING,
CINCINNATIL, JANUARY 1982

The next TUG meeting will be held in Cincinnati,
Ohio, at the Stouffer's Cincinnati Towers from
January 11-12, 1982. This meeting will review the
growth and applications of TEX. All TUG members
are urged to attend. There will be computer site
dependent symposia as well as a general overview of
TEX-in-Pascal. We hope also to have a demonstra-
tion of TEX.

A preliminary schedule will be mailed to TUG
members early in the fall, as soon as a program has
been devised. We would like to solicit reports on
TEX implementation and usage. Discussion topics
which are submitted by September 15 will be con-
sidered for inclusion in the preliminary schedule.

Please send such requests to:

Tom Pierce

TEX Users’ Meeting
P.O. Box 880

Collins Ferry Road
Morgantown, WV 26505

¥ * ¥ x X ¥ ¥ ¥ % ¥ %

TUGboat, Volume 2, No. 2

ASK NOT WHAT TUG CAN DO FOR YOU,
ASK WHAT YOU CAN DO FOR TUG!
Patrick Milligan
BNR Inc.

At the recent TEX Implementors’ Workshop,
there were several discussions (both formal and in-
formal) concerning the future of TEX and the TEX
Users Group. The following article reflects my
opinions about where we should be headed, and how
we can get there.

It seems clear that the widespread acceptance and
use of TEX is tied very closely to the success and
growth of TUG. Without an effective forum for the
interchange of ideas and information, TEX will prob-
ably not fulfill its potential as a standard language
for computer typography. The TEX Users Group,
through TUGboat, has begun to provide such a
forum, but in order to function effectively, your as-
sistance is required!

At the time of the Workshop in May, there
were over 300 members of TUG. It is not known
how many of this number are actual TEX users
(es opposed to potential users awaiting a work-
ing implementation of TEX on their local computer
facilities). In addition, it is not known how many
TEX users have not yet become paying members of
TUG. By definition, the TEX Users Group must have
users of TEX in order to be a viable organization.
Therefore, the primary goal of TUG should be to
encourage and assist the growth of the TEX user
community. There are several ways that you, as a
member of TUG, can help:

1. If you are lucky enough to have a working TEX
installation, encourage your local users to join
TUG. In addition, share your experiences with
the use and/or installation of TEX by sending
letters, articles, bugs, and macros to TUGboat.

2. If you have received a version of TEX and are
in the process of installing it on your local com-
puter, let TUGboat know about your progress
(or lack of progress). News of (temporary)
failure is just as important as news of success!

3. i you are waiting for a version of TEX to be
available on your flavor of computer architec-
ture, contact your site coordinator to indicate
your interest. In this way, you might be able
to receive advance notice of a working TEX.
Also, you might begin to acquire the necessary
hardware for your output devices and begin to
build some of the support software necessary to
drive such devices.

4. If no one is implementing TEX on your flavor of
computer architecture, obtain a copy of TEX-in-

9

Pascal and begin your own installation effort. If
you are not a systems programmer, you should
be able to interest someone on your local com-
puter staff to assist.

The intent of such communications to TUGboat
is to minimize the “reinventing of the wheel”. Each
potential TEX installer should be able to draw upon a
wealth of knowledge on the trials and tribulations of
TEX installation. Each novice macro writer should
have numerous examples available to learn from. It
is frustrating to hear second-hand rumors at TUG
meetings or workshops like: “So and So at SRI hasa
working VAX/UNIX TEX” or “Someone at DEC has
a Diablo device interface” or “Somebody at MIT has
some nice thesis macros.” Just as Don Knuth has
shared TEX with the world, it is imperative that you
share your TEX experiences with TUG.

Many of TUG’s current problems are due to a
lack of “critical mass”. The porting of Pascal TEX
to many architectures, and the availability of out-
put devices and their interfaces has not happened
as quickly as anticipated. At.the TUG Steering
Committee meeting in May, the issues of institu-
tional memberships and TEX support were discussed,
but not resolved. The primary obstacles to the in-
stitutional memberships were (a) the fear that such -
fees would inhibit the installation of TEX by small
organizations or universities, and (b) the current or-
ganization of TUG does not easily allow additional
services beyond TUGboat as an enticement to make
such fees worthwhile. The bottom line seems to be
that there aren’t enough TEX installations willing or
able to bear the burden of additional services such
as TEX support or enhancement. As the number of
TEX-in-Pascal installations grows, the direction and
functions of TUG will grow also.

Once the first hurdle of providing TEX to a wide
base of users is met, there are other challenges for
TUG to face. In the area of output device support,
there is a strong need for portable device drivers and
TEX support tools written in Pascal or some other
widely used programming language. Admittedly,
standard Pascal does not provide the full set of
facilities required to write such device drivers, but
most Pascals provide some means of escape or ex-
tension to allow full use of the underlying operating
system. It would be a useful exercise in portability if
large portions of device driver code were written in
standard Pascal, with architecture or operating sys-
tem dependences collected together in one or more
system dependent modules (like the SYSDEP code
of TEX-in-Pascal). One example of such a program
is the Pascal version of DVITYP, written by David
Fuchs at Stanford. Pascal TEX itself is an interesting

10

experiment in portability. These examples are just
the beginning; much more work needs to be done in
this area.

Another direction for TUG growth is in the
area of macro packages. Most TEX installations
quickly discover that one or more layers of macros
are required to insulate their users from “naked”
TgX. Many useful macro packages have been
presented in TUGboat. Michael Spivak’s com-
prehensive AMS-TEX macros have been thoroughly
documented in The Joy of TgX. However, many
more useful and interesting macros have been devel-
oped but not contributed to TUG. Also, the issue of
portability is applicable to macro packages as well:
the use of extended ASCII character sets, font codes,
counters and boxes all make the job of merging
several macro packages together difficult. Output
device dependences may find their way into mac-
ros, thus defeating TEX’s “device independent” out-
put. It is hoped that Lynne Price, the TUG macro
coordinator, may be able to bring some order out
of chaos in this area (with your help). Awareness
of the portability and modularity issues will assist
TEX macro writers; standards and conventions en-
couraged by TUG will also help.

Closely related to the issues of portable TEX
support tools and macro packages is the area of
machine readable distribution. A proposed standard
for machine independent tape interchange is dis-
cussed elsewhere in this issue of TUGboat (page 10).
Stanford has attempted to solve this problem for
the distribution of TEEX-in-Pascal, macros, and fonts.
The current organization of site coordinators has
solved the problem of distribution between sites us-
ing similar computers, through the use of common,
operating systermn dependent tape formats. However,
the problem of general, machine independent tape
interchange between TEX users who use different
computers has not been completely solved. It is im-
portant that standards for tape interchange be es-
tablished, and portable tools developed to support
these standards.

One potential area which TUG should explore is
the sale of machine readable macros and programs
submitted to TUGboat. Having one distribution
center for these contributions would be preferable
to contacting the author(s) of a particular program
or macro package. Receiving one tape from TUG
would be easier than requesting tapes from mul-
tiple sources, and would be much easier than typ-
ing in part or all of a long macro package or pro-
gram. In addition, TUG would have another source
of revenue! This sort of scheme has worked well
for the DECUS Library (a part of the DEC Users

TUGboat, Volume 2, No. 2

Society), and for Addison-Wesley’s distribution of
Ratfor source for the programs in Kernighan and
Plauger’s Software Tools.

In conclusion, it is clear that what you get out
of TUG depends on what you are willing to put
into it! Without member contributions, there would
be no TUGboat. Without volunteers, there would
be no TUG Steering Committee. The future for
TEX and TUG looks bright, provided we can ease
our growing pains (with your help). Before I step
down from my soap box, I would like to thank all
of you who have made the TEX Users Group and
TUGboat possible through your involvement. The
staff of the American Mathematical Society deserve
special thanks for their hard work and patience.

* ¥ X x ¥ %X %

A PROPOSAL FOR A
MACHINE INDEPENDENT
TAPE INTERCHANGE STANDARD
Patrick Milligan
BNR Ine.

At the TgX Implementors’ Workshop in May, a
committee was formed to propose a tape format
suitable for machine independent and operating sys-
tem independent interchange of TEX source files.
The members of this committee are:

Nelson Beebe University of Utah
Patrick Milligan BNR Inec.

Robert Morris UMASS /Boston
Susan Plass Stanford CIT

The motivation behind this proposal is to provide
a means of submitting machine readable TEX source
to TUGboat (and someday to AMS journals), as
well as a means of distributing and exchanging TEX
macros and manuscripts. To some extent, the prob-
lem of tape interchange formats has been addressed
by TUGboat in its ASCI “card image” format
(80 characters/record X 100 records/block). The
primary problems with such a format stem from
TEXs use of the full ASCII character set. The fol-
lowing potential problems exist:

e Not all computer systems support the ASCH
character set, and those that do may limit
or prohibit the use of ASCII control charac-
ters. There are “standard” translations be-
tween ASCH and EBCDIC graphic charac-
ters, but no such translations exist for con-
trol characters. TEX can usually aveid the
use of control characters, but as we have seen
in recent TUGboat macro packages and in
the TEX manual itself, it is tempting to use

TUGboat, Volume 2, No. 2

the “extended” ASCII character sets in use at
Stanford, MIT, and CMU if they are available.
In addition, TEX's control sequences for nega-
tive conditional thin space (\<) and conditional
thin space (\>) must be entered using control
characters!

o TEX makes some assumptions about the under-
lying structure of text files. In particular, it
is assumed that a file is organized as a long
string of characters which is divided into lines
by end-of-line characters, and into pages by
form-feeds. On some systems, the structure of
text files is either fixed length “card image”
records, padded with blanks (and possibly with
sequence numbers in columns 73-80), or vari-
able length records rounded to computer word
boundaries and padded with blanks or some
other filler. In most cases, it is not impor-
tant to know where the placement of the end-
of-line is, or whether the trailing blanks on
a line are “real” or supplied by the system.
However, if the meaning of blanks or end-of-
line characters is changed through the use of
the \chcode control sequence, their placement
and existence becomes critical. Many powerful
techniques presented at the TEXarcana mini-
course depend on the ability to redefine space
or carriage-return to invoke a control sequence.
Arthur Keller's \nofill macro (presented in
TUGboat Vol. 2, No. 1) also uses this feature
of TEX. ‘

e Another attribute of some text file repre-
sentations is limited line length. The worst
case seems to be the fixed width card image
format with sequence numbers. Since TEX al-
lows lines up to 150 characters, unless care is
taken, TEX source may overflow the 72 charac-
ter limit imposed by some systems. Even if
a conscious effort is made to limit line length,
there are times when it is difficult if not im-
possible to break a line for fear of introducing
a significant space. For example, the \gspace
macro in AMS-TEX has one line which is 98
characters long, and it can’t easily be broken
since the space character has been redefined to
be category 12 via \chcode.

Many of the problems listed above must be
resolved in the system dependent module of Pascal
TEX for each architecture. By definition, our tape
interchange format must be independent of the
design decisions that were made for a specific im-
plementation of TEX. The best we can do is provide
a format that can be transformed into suitable input
for Pascal TEX on a given system. It is also hoped

11

that such a transformation is reversible. An addi-
tional constraint placed on our tape format is that
it should be able to accommodate TEX sourece con-
taining control characters, significant trailing spaces
and carriage returns, and long lines. It is not our
place to pass judgment on the use of TEX's some-
what esoteric tricks: We must accept the reality that
such features will be used.

In order to meet our constraints of machine in-
dependence and compatibility with TEX's idealized
notions of text files, we are proposing a tape format
which represents a TEX source file as a stream of
ASCH characters separated into lines by carriage-
return linefeed pairs. This stream of characters will
be broken into tape records N bytes long, where
N will be chosen such that (1) a tape record will
exactly fill an integral number of words on all tar-
geted architectures and (2) N will be large enough
to effectively utilize the tape. Suggestions for a good
value of N would be greatly appreciated! The last
block of the tape should be padded with NULs.
In order to avoid problems with “helpful” systems
that like to throw away “unwanted” characters,
each ASCII character will be represented as two
hexadecimal digits.

In order to make this format work, each TEX in-
staller for a given architecture will have to write
two programs: One to read such a tape and trans-
form the data into a machine-dependent text file
format that TEX will digest, and another program
to perform the reverse transformation and output a
hex-encoded tape. The design decisions that went
into the implementation of the system-dependent
module for Pascal TEX will be applicable to these
tape utilities.

It is assumed that 9-track tapes will be used,
although the hex encoding would work equally well
for 7-track tapes (using a 6-bit ASCII subset for
each digit). The same coding scheme can be used
to transfer files over phone lines if N is chosen to be
a reasonable terminal line length.

An added benefit to this format is that it can be
used to transfer binary data such as DVI, TFM, and
font files with few modifications. In this case, the
two hex digits would represent an 8-bit data byte
instead of a 7-bit ASCI character.

It seems clear that we need a tape standard
that addresses the problems of machine indepen-
dent information exchange, while still providing the
functionality that TEX requires. There are two ques-
tions to be asked:

1. Is this the format that we need?
2. Is it worth the effort involved?

12

Your input is needed to answer these questions.
Feedback from those of you who have been actively
working on porting Pascal TEX to new architectures
is especially welcome. Please respond!

* % kX X Xk * ¥ %

Software

2 * ¥ % * % % *x ¥ * %

£ * ¥

THE FORMAT OF TgX'S DVI FILES
VERSION 1
David Fuchs
TEX Project, Stanford University
April 18, 1981

When TEX compiles a document, it produces
an output file that contains specifications of how
TEX has decided the formatted text should ap-
pear in hard copy. These output files are known
as ‘.DVI’ files, which stands for ‘device indepen-
dent’. For instance, running TEX and telling it to
\input dviinf will cause TEX to look for a file
called DVIINF.TEX, read it, and produce an output
file called DVIINF.DVI, which is a .DVI file. This
document describes the format of . DVI files in detail,
giving all the specifications along with examples.

A .DVI file contains information about where
characters go on pages. The format is such that
there are those who say that almost any reason-
able device can be driven by a program that takes
.DVI files as input. In particular, 2 .DVI file can be
printed on the Xerox Dover, Xerox Graphics Printer
(XGP), Varian, Versatec, Canon and Alphatype at
the Stanford CS Dept., depending on what spooler
it is passed to. .

The .DVI file is a stream of 8-bit bytes, packed
in computer words high-order byte first. If the com-
puter word length is not evenly divisible by 8, then
the extra bits at the low-order end of each word will
be unused. The first byte in a .DVI file is byte num-
ber zero, the next is number one, ete. For example,
on Stanford’s 36-bit word machines, byte number 0
is in the highest order eight bits of the first word
in a .DVI file, while byte number 7 is in the twelfth
through fifth least significant bits of the second word
in the file; and the least significant four bits in every
word are zero.

A .DVI file is actually a series of commands.
A command consists of one byte containing the
command’s unique number, followed by a number
(possibly zero) of parameters to the command. A
given command always has the same number of
parameters. These parameters may take from one
to four bytes each, but a given parameter of a given

TUGboat, Volume 2, No. 2

command always takes the same number of bytes.
Some parameters may sometimes be negative, in
which case two’s complement representation is used.
The complete list of commands, with a description
of all the .DVI commands and their parameters, is
below. The reader is encouraged to refer to the com-

" mand list while reading the various examples in this

document.

In the command descriptions; a lower case letter
with a [bracketed] number following it means that
the command has a parameter that is that number
of bytes long. An X3 command, for instance, is 3
bytes long, the first byte of which has the decimal
value 144, the second and third of which give the
distance to move to the right. If the second byte =
S and the third = T, then the distance to move is
285 4T (but if the high order bit of S is a one, then
the distance to move is 285 - T — 216, considering
S and T as being in the range [0..255)).

The .DVI file contains a number of pages fol-
lowed by a postamble. A page consists of a BOP
command, followed by lots of other commands that
tell where the characters on the page go, followed
by an EOP command. Each EOP command is irs-
mediately followed by another BOP command, or
by the PST command, which means that there are
no more pages in the file, and the remaining bytes
in the .DVI file are the postamble. Remember that
TEX really doesn’t have an official knowledge of page
numbers (although it does print the value of \count0
on your terminal as it outputs each page on the as-
sumption that some meaningful number is there),
so the only thing that can be said about the order-
ing of pages in a .DVI file is: The order in which
pages come in a .DVI file is the same order in which
TEX constructed them, which is the same order in
which the TEX user specified them. Any blank or
nonexistent page from a TEX job might not be in
the .DVI file at all. If we consider the page number
to be the value of \count0, then the page following
page number 34 in a .DVI file might well be page
number —5.

Some parameters of . DVI commands are pointers.
A pointer is simply a byte number as discussed
above. A pointer itself is 4 bytes long. For example,
a BOP command’s last parameter (p[4]) is the BOP’s
previous page pointer. This parameter is the num-
ber of the byte in which the previous page’'s BOP
command begins. In particular, the second page’s
BOP command’s previous page pointer parameter
(p[4]) is always zero, since the first page’s BOP is
always in byte zero in a .DVI file. If the first page
in a .DVI file had only a BOP and EOP command,
then the third page’s BOP’s previous page pointer

TUGDboat, Volume 2, No. 2

would be 46, since the first page’s BOP command
takes bytes zero through 44, the first page's EOP is
byte 45, so the second page’s BOP is in byte 46.

When a .DVI-reading program reads the
commands for a page, it should keep track of the
current font. This can be done with a single in-
teger variable, the value of which will always lie in
the range {0..232 — 2]. The value of the current
font is changed only by FONT and FONTNUM
commands. Whenever a command occurs in the
.DVI file that causes a character to be set on the
page, the character is implicitly from the current
font.

Likewise, the program should keep track of the
current position on the page. The current posi-
tion on the page is like a cursor on the page;
whenever a character or rule is set, it gets put
at the current position on the page. The current
position on the page is just two numbers—which
are called horizontal coordinate and vertical coor
dinate. Moving to the right on a page is rep-
resented by an increase in horisontal coordinate,
while moving down is an increase in vertical coor-
dinate. The upper-left-hand corner of the page is
horisontal coordinate = vertical coordinate = 0
(ie., our system is slightly non-cartesian). Both
coordinates are given in rsu's (ridiculously small
units), where 1rsu = 10— "meter. This is so that
accumulated errors will be insignificant even in the
worst imaginable case (a “box” many feet long).
The current position on the page is moved gbout
by the commands W0, W2, W3, W4, X0, X2, X3,
X4,Y0, Y2, Y3, Y4, Z0, Z2, Z3 and Z4: The vertical
coo~dinate is changed by Y and Z commands, while
the horisontal coordinate is changed by W and X
commands. (The value of horizontal coordinate can
also change as a side effect of setting a character or
rule (VERTCHAR and VERTRULE commands)—
the current position on the page moves right the
natural width of the character or rule set. The POP
command may also change current position on the
page.)

So, whoever or whatever reads a .DVI file might
have three variables, F', H and V, to keep track
of the current font and the current position on the
page. Four more variables are also called for: w-
amount, x~amount, y-amount, and s-amount. These
variables hold not locations, but distances (in rsu’s).
The amount variables are used in .DVI files to
move the current position on the page around: The
commands X0 and W0 add x-amount and w-amount
to horisontal coordinate, respectively, while Y0 and
Z0 add y-amount or s-amount to vertical coordinate,
respectively. There are also a number of commands

13

that change the value of w-amount, x-amount, y-
amount or s-amount (W2, W3, W4, X2, X3, X4,
Y2, Y3, Y4, Z2, Z3 and Z4; these commands also
change horisontal coordinate or vertical coordinate).
Actually, the .DVI-reading program must have a
stack that can hold horisontal coordinates and verti-
cal coordinates, as well as w-, x-, y-, and s-amounts.
These six values always get pushed and popped
together, and a reasonable maximum stack depth
might be about 200 (times six, since six items get
pushed at once). As each page starts, a .DVI read-
ing program should set the amount variables to zero.
The stack should be empty. The initial value of F
doesn’t matter, since every page of a .DVI file must
have 8 FONT or FONTNUM command before any
command that will set a character (the HORZCHAR
and VERTCHAR commands). Note that F' is not
pushed and popped.

A program called DVITYP is available that takes
any .DVI file and prints a readable description of its
contents, together with error messages if the file is
not in the correct format.

........

Command Name
Command Bytes
Description

VERTCHARO
0
Set character number 0 from the current
font such that its reference point is at the
current position on the page, and then
increment horisontal coordinate by the
character’s width.

VERTCHAR1
1
Set character number 1, ete.

VERTCHAR127
127
Set character number 127, ete.

NOP 128
No-op, do nothing, ignore. Note that
NOPs come between commands, they
may not come between a command
and its parameters, or between two

parameters.

14

BOP

EOP

PUSH

POP

129 c04) c1f4) ...

c9[4] p[4]

Beginning of page. The parameter p is
8 pointer to the BOP command of the
previous page in the .DVI file (where the
frst BOP in a .DVI file has a p of —1, by
convention). The ten ¢’s hold the values
of TEX’s ten \counters at the time this
page was output.

130

The end of all commands for the page
has been resched. The number of PUSH
commands on this page should equal the
number of POPs.

132

Push the current values of horisontal
coordinate and vertical coordinate, and
the current w-, x~, y-, and s-amounts
onto the stack, but don’t alter them (so
an X0 after a PUSH will get to the same
spot that it would have had it had been
given just before the PUSH).

133

Pop the s-, y-, x-, and w-amounts, and
vertical coordinate and horisontal coor-
dinate off the stack. At no point in a
.DVI file will there have been more POPs
than PUSHes.

HORZRULE

135 hi4] w(4]

Typeset a rule of height h and width w,
with its bottom left corner at the eurrent
position on the page. If eitherh < 0 or
w < 0, no rule should be set.

VERTRULE

134 h{4] w{4]

Same as HORZRULE, but also incre-
ment horisontal coordinate by w when
done {even if h < 0 or v < 0).

HORZCHAR

136 ¢[1] .

Set character ¢ just as if we'd gotten
the VERTCHARc command, but don’t
change the current position on the page.
Note that ¢ must be in the range [0..127).

FONT

X4

X0

w2

w3

W4

W0

Y3

Y4

Yo

Z2

TUGboat, Volume 2, No. 2

137 £[4]

Set current font to £. Note that this com-
mand is not currently used by TEX—it
is only needed if £ is greater than 63,
because of the FONTNUM commands
below. Large font numbers are intended
for use with oriental alphabets and for
(possibly large) illustrations that are to
appear in a document; the maximum
legal number is 232 — 2.

144 n[2}

Move right m rsu’s by adding m to horison-
tal coordinate, and put m into x-amount.
Note that m is in 2’s complement, so this
could actually be a2 move to the left.

143 n[3)

Same as X2 {but has a 3 byte long m
parameter). :

142 n4]

Same as X2 (but has a 4 byte long m
parameter).

145 .
Move right x-amount (which can be nega-
tive, etc).

140 n[2]

The same as the X2 command (i.e., al-
ters horisontal coordinate), but slter w-
amount rather than x-amount, so that
doing a W0 command can have different
results than doing an X0 command.

139 n[3)

As above.

138 m{4

As above.

141

Move right w-amount.

148 nf2]

Same idea, but now it’s “down” rather
than “right”, so vertical coordinate
changes, as does y-amount.

147 n[3)

As above.

146 n[4)

As above.

149

Guess.

152 m[2]

Another downer. Aflects vertical coor-
dinate and s-amount.

TUGDboat, Volume 2, No. 2

73 151 mf3]
Z4 150 w[4]
Z0 153
Guess again.
FONTNUMO
154 -
Set current font to 0.
FONTNUM1
155

Set, current font to 1.

FONTNUM63
217
Set current font to 63.

131 p(4] n[4) 4{4] m{4] b{4] w(4]

Fontdef Fontdef ... Fontdef

-1{4] q[4] 1[1] 223(?)
The postamble starts here. See below for
the full explanation of the parameters of
the pestamble.
Commands 218-255 are currently undefined and will
not be output by TEX.

The PST command, which is always the last com-
mand in a .DVI file, is somewhat special. The
parameter p is a pointer to the BOP of the final
page in the .DVI file. The parameters n and d
are the numerator and denominator of a fraction
by which all the dimensions in the .DVI file should
be multiplied by to get rsu’s (TEX always outputs
a 1 for each of these values, they are included in
.DVI format to allow other text systems to con-
veniently output .DVI files). The parameter m is
the overall magnification requested by parl2 in the
TEX job (parl2 is unitless, and is 1000 times the
desired magnification). Next come h and w, which
are the height of the tallest page, and the width of
the widest (both in rsu’s).

Next in the postamble come the font definitions,
one for each font used in the job (i.e., each FONT
and FONTNUM command in a .DVI file must refer
to a font number that has a font definition). The
format of a font definition can be considered to be:

fnum(4] fchk(4] fmag{4] fnamlen(l] fnam{fnamlen]

The font number is held in fnum. The font checksum
(from the font’s TFM file) is in fchk. The parameter
Imag holds the font magnification (1000 times the
‘at size’ of the font divided by its ‘design size’ {or

PST

15

Jjust 1000 if there was no ‘at’ specification for the
font)). Next comes the byte Inamlen, which is the
number of characters in the font name, followed
by the the font name, one ascii character per byte
(right justified). Note that the font name includes
a directory only if the font is not in the standard
default library directory. From the definitions of the
parameters of the PST command, note that the end
of the font definitions is marked by a font number
of -1 {which is not a legal font number). The four
bytes following this phony font number constitute
the parameter q, which is a pointer to the PST com-
mand (i.e., the beginning of the postamble). Next
is a single byte parameter i (called the ID byte).
Currently, the ID byte should always have a value of
1; it will be changed to 2 on the next incompatible
release of .DVI format in 1990. Finally, there is
some number (at least 4) of bytes whose value is 223
(base ten = '337 octal).

The idea of the q pointer at the end of the post-
amble is that a .DVI reading program can start at
the end of the .DVI file, skipping backwards over
the 223's, until it finds the ID byte. Then it can
back up 4 bytes, read q, and then do a random seek
to that byte number within the .DVI file. Now the
postamble can be read from start to finish, while
storing away the names and magnifications of all the
fonts. Now the program can jump to the start of the
.DVI file and read it sequentially. The reason for
reading the postamble first is that to figure where
the characters on & page go, the .DVI reading pro-
gram must know the widths of the characters {see
the VERTCHAR commands’ description above). To
find the widths, the .DVI reader must know the
names of the fonts so it can get their widths from
a TFM or VNT (or some other kind of font) file. But
TEX can’t put out all the font names until the end of
the .DVI file because new fonts can appear anywhere
in the TEX job. If font definitions were scattered
throughout the .DVI file, then a spooler that read
.DVI files would have to read all the pages of the
.DVI file, even if the user only wanted the last page
printed. The decision to put the font definitions in
the postamble was based on these considerations,
and the fact that just about any reasonable sys-
tems language allows random access. Unfortunately,
standard PASCAL does not offer this feature. If it is
absolutely necessary for a .DVI reading program to
be written in standard PASCAL, then it either must
make two passes over the .DVI file, or TEX must be
doctored to output two files: the regular .DVI file,
plus a PST file, which contains only the postamble.
So far, there have been no reports of any installation
of TEX that required this kind of kludge.

16

A few words on magnification: If you have a
TgX document that does not mention any ‘true’
dimensions, then if you change just its \magnify
statement, the .DVI file produced by TEX will
change in just one place—the word in the pos-
tamble that records the requested magnification.
The idea is that any spooler that reads the .DVI
file will multiply all dimensions in the .DVI file by
the magnification, thus the default magnification in
the .DVI file may be easily overridden at spooling
time. So, if the document specifies \magnify{1200},
a \vskip 34cm will be recorded in the .DVI file
as .34 X 107 rsu’s of white space, but the spooler
will multipy this by 1.2, making 40.8 centimeters of
white space on output. If the user tells the spooler
to use a magnification of 1000 rather than the 1200
in the .DVI file, then the output will have 34cm
of white space. If a dimension in the document is
specified as being ‘true’, then TEX divides the dis-
tance specified by the prevailing magnification, so
that when a spooler looks at the .DVI file and mul-
tiplies by the magnification, it gets back the original
distance. So, if we \vskip 24truecm while the
magnification is 1200, TEX puts out .DVI commands
that specifies 20 centimeters of white space. An out-
put spooler that reads this .DVI file then puts 20 X
1.2 = 24cm of white space on its output. Of course,
‘true’ dimensions will come out ‘false’ if the spooler
is told to override the magnification.

Font magnification goes one step further. Assume
for a moment that the overall magnification is 1000.
Now, if a TEX job specifies \font A=CMR10 at
15pt, say, that font’s magnification is recorded as
1500 in its font definition. When a spooler reads this
.DVI file, it will try to use the file CMR10.150VNT (or
CMR10.150ANT, depending on the device), which is
just like CMR10. 100VNT, but the dimensions of all its
characters were multiplied by 1.5 before they were
digitized. An uppercase ‘W’ in CMR10 is 10pt wide,
but CMR10 at 15pt has a 15pt wide “W’, so after
VERTCHARS? is seen, horisontal coordinate is in-
creased by (15pt) X (254000rsu/72.27pt). Overall
magnification is taken into account after all other
calculations; for example, at magnification 1200 the
font CMR10.120VNT would be used. Note that if the
user had asked for cmr10 at 15truept, the factors
would cancel out so that CMR10.150VNT would be
the font chosen regardless of magnification. The
magnification factor is given times 100 in the font
file name so that roundoff error due to several mul-
tiplications will not affect the search for a font with
characters of the right size. This convention about
font file names is merely a suggestion, of course, it
is not part of the .DVI format per se.

TUGboat, Volume 2, No. 2

........

Appendix: Comparison between version 0
and version 1.

Note that .DVI files have an ID byte at the end
of the postamble, which tells what version they are.
The changes since version 0 are:

DVI files now use the upper bits in a word
on machines whose word size isn’t evenly divisible
by 8. The BOP command has ten \counter
parameters. The size of rsu's has changed to be
10— "meter. The postamble has changed to include
overall magnification as well as a fraction that al-
lows use of non-rsu dimensions. Font checksum and
magnification are new, as is the convention about
default directory name. Font descriptions in the
postamble give the length of font names rather than
delimiting them with a quoting character. The old
zero ID byte is now a one.

Some ideas for version 2.

Although 1990 is still a ways off, we are currently
expecting that version 2 of .DVI files will differ in
the following ways:

The ID byte will be 2. The q bytes of the pos-
tamble will be preceded by ‘s[2]’ where s is the
maximum stack depth (excess of pushes over pops)
needed to process this file.

* kX %k ¥ X ¥ *x X ¥ * 2

SOME FEEDBACK FROM PTEX
INSTALLATIONS

Ignacio Zabala

The Pascal version of TEX was designed and writ-
ten with the intent to generate a transportable pro-
gram. Nevertheless, given the characteristics of the
TEX system, some special assumptions had to be
made about the Pascal environment in which PTEX
was to be installed. Essentially, the requirements
are:

- The system should have enough addressable
memory to store the large arrays employed by
PTEX (about 128K words of 32 bits).

- The compiler should be able to really pack
fields of a PACKED RECORD and overlap multiple
variants of packed records. If this requisite is
not satisfied, PTEX will require at least four
times as much memory.

~ The compiler should be able to handle large
case statements (say over 64 actual cases in a
range [-500..500]) and have & default case (this
is non-standard in Pascal but available in most
compilers).

TUGDboat, Volume 2, No. 2

Additionally, PTEX requires an EXTERNAL (or
separate) compilation facility. If no such thing is
available, the SYSDEP module has to be inserted
both in TEX and in TEXPRE by hand. Also, if
there is no compile time variable initialization, the
INITPROCEDURE appearing in the program has to be
changed into an ordinary procedure.

Even though we tried to avoid it, the fact that
PTEX was developed and debugged on a PDP-10
with Hamburg Pascal influenced the way the pro-
gram was coded and documented. This compiler
was often permissive in the same way as other lan-
guages of common use in Stanford (SAIL). Only
feedback from other installations can help us im-
prove the transportability of the program.

We have been lucky in receiving information from
people who really worked on (and reported) both
errors in the program and incompatibilities in the
compilers.

The following are some of the problems that other
compilers have had with the system. As said, it is
often the case that the difficulty is due to the per-
missiveness of our Pascal, and not to the installa-
tion's compiler:

~ Source must be all uppercase. {CD Cyber)

— Tab characters not allowed in the source.
(P8000)

— Identifiers should be different in the first 8
characters. (VS, UW, P8000)

— Identifiers longer than 15 characters will not be
accepted. (VAX)

~ No octal (“20b”) notation. (VS, P8000)

— All declared labels must be used. (VAX, VS,
Uw)

- Can’t take large procedures. (VS, UW, P8000)

- Can’t take large arrays. (MULTICS)

- No standard MAX and MIN functions. (P8000)

- Cannot take fields of packed records as actual
parameters. (VAX, VS)

- Argument to PACK must be of type array (it’s
not enough that it evaluates to array). (VS)

~ Loop counters must be local variables. (VS)

- Labels and gotos must be local to same block:
cannot go to a label inside the else part of an
it statement from inside the body of the true
branch. (VS)

— No nested WITH statements allowed. (UW)

- Requires ENVIRONMENT modules for external
linkage. (UW)

- Variables must be initialized before their use.
They are not cleared by default. (VS)

~ No GOTO labels in enclosing procedures. (UW)

- No INITPROCEDURE. (VAX, UW, MULTICS)

- Can’t take large CASE statements. (UW)

17

- No EXTERN procedures. (P8000)
- Instead of OTHERS: the default case of CASE
statements is: '
ELSE: (P8000)
OTHERWISE: (VAX, CD Cyber)
OTHERWISE (UW)
None (MULTICS, SUNY)
- Can’t pack memoryword properly. (CD Cyber)
- In packed records, elements defined of type
0..255 or 0..65535 are stored in whole 32 bit
words. Records are assigned to length of the
longest freevariant possible. (P8000)
All reports have received due attention. Currently,
the code is all uppercase in lines that are never
longer than 72 characters. All identifiers are shorter
than 16 characters and differ in the first 8 charac-
ters. Octal variables appear only in the module that
contains the system dependencies.

Two more particularly interesting problems are
worth mentioning here.

Eagle Berns, while running PTEX with PASCAL-
VS, detected a case statement for which no default
had been provided, and whose switch variable was
out of range. Intendedly, execution should have
resumed after the case statement and that is what
Hamburg Pascal did. PASCAL-VS signalled an er-
ror. Unfortunately, this situation is left undefined
in the Pascal report.

Bill Kelly, using UW Pascal, detected trouble
in the statement pagemem[curchar] :=scanlength;
The function scanlength has the side-effect of
changing curchar. UW Pascal {as opposed to
Hamburg Pascal) does not evaluate subscripts on the
left side of the assignment until the right side has
been evaluated.

The original SAIL program assumed that vari-
ables would be implicitly initialized to 0, and the as-
sumption was still valid for our Pascal. Much work
had to be put into initializing everything before its
use.

Below, we present a synthesis of some of the
reports that have been most helpful in our project.

MOORE SCHOOL: UNIVAC SERIES 90 — PASCAL
8000 (GEORGE OTTO)

Pascal 8000/1.2 does not accept numbers like
100B or 400000B. These numbers must be changed
to the appropriate integer or real form.

Pascal 8000/1.2 does not support EXTERN proce-
dures and functions because of the internal loader.

Pascal 8000/1.2 uses ELSE: for the default case
of CASE statements. (Not OTHERS: like Hamburg
Pascal).

Tab characters not allowed in source.

18

Our Pascal must uniquely distinguish between all
identifiers in the first 8 characters. Longer identifiers
can be used, but only the first 8 characters of them
are significant!

At the moment we are having trouble writing
a tape from our EBCDIC machine to be read by
Wharton's ASCII machine, to be sent to you over
the net.

No standard MAX and MIN functions.

Pascal 8000/1.2 has a problem recognizsing
10000000000.0 as a real. The fix is to use 1.0E10,

Pascal 8000/1.2 stores elements defined 0..255
and 0..65535 in 32 bit words. Records are as
signed to length of the longest freevariant possible.
Therefore, the memory structures of TEX will not
work as is.

U. OF MINNESOTA: CD CYBER (MIKE FRISCH)

— Everything must be uppercase

- Can’t pack memoryword properly {this is bad)

- Had to replace OTHERS: by OTHERWISE:

JET PROPULSION LAB: UNIVAC 1100/81 — U
WISCONSIN PASCAL (CHARLES LAWSON)

- This compiler employs environment modules
(CD made one containing outer block TYPE and
EXTERNAL procedure declarations)

- Found inconsistent definition and use of
ReadFontInfo arguments.

—~ Changed INITPROCEDURE to ordinary proce-
dure, and deleted empty block at end of
SYSDEP.

- Changed OTHERS: to OTHERWISE.

—~ Changed type of brchar. from INTEGER to
AsciiCode.

- This compiler does not allow GOTO labels in
enclosing procedures: in quit changed GOTO
100 by a comment.

~ Deleted unused labels.

- Found nested WITH curinput in getnext.(twice)

MULTICS: BENSON MARGULIES

The compiler dislikes the construction
INITPROCEDURE. There is an array that is claimed
to be too big. (May be solvable.) Impossible to
deal with the need for an OTHERWISE statement,
which the compiler does not provide. The filename
interface of PTEX is still basically PDP10 oriented.
For a machine without a fixed number of “channels”
the file opening interface is problematic, requiring
the establishment of an arbitrary limit.
U OoF WISCONSIN: UNIVAC 1100/82 — U OF

WISCONSIN PASCAL (BILL KELLY)

A major problem in converting TEX for the 1100

hasg been the differing methods of external compila-

TUGboat, Volume 2, No. 2

tion. In UW Pascal, all global declarations, includ-
ing procedure and function heads must be included
in an “environment module”.

It would be helpful if the same names were used
for the same types in both TEX and SYSDEP. When
we received TEX, a type might be called packed-
hyphenbit in one and pckdhyphbits in the other.
Our compiler does not accept identically defined but
differently named types as identical in procedure
parameters.

I was a bit confused by the INITPROCEDURE busi-
ness at first. the documentation ought to say a bit
more about this: namely, that that syntax allows
compile-time initialization on your compiler, that
it should be changed into a procedure in compilers
without this feature, and where it should be called
in TEX and TEXPRE.

We have a problem in the compiler with large
case statements. It does not handle statements with
a large number of cases, and the case statement in
maincontrol gave some problems with this. There
isn't a fixed limit in the compiler, but I broke the
case statement in two, and the compiler had no
problem.

The sheer size of TEX has given us some prob-
lems. The UNIVAC’s instruction set includes many
instructions with a 16-bit address field that can only
address 64K of data. The data area for TEX runs
to something like 71K for us, and we had to cut
mem down from 32K to 25K to get the compiler to
accept it. This would have been easier if a Pascal
version of UNDOC were available, or if UNDOC had
left memsize as a named Pascal constant instead
of reducing it to 32767, and memsize-1 to 32766,
ete. I had to go through with a text editor and
locate all references to 32767 and 32766 and deter-
mine by comparing the Pascal listings against the
printed TEX listings whether these were actually ref-
erences to memsize. I seem to have gotten them all
because we haven’t had subscript out. of range errors,
but it did mean that all the memory reduction was
from the higher end of mem which is probably not
optimal. We occasionally run into “TEX capacity
exceeded: memsize=25000". I didn't try to alter
the other memory parameters like varsize because
there were so many instances of varsize+1 and such
that would have been affected.

We ran into another interesting problem: on a
UNIVAC, a person typing at a terminal can type
“@sof” and his terminal input is considered to have
reached an end of file. This concept doesn’t exist
on most systems, so it wasn't considered in TEX.
Basically, if a person types “@eof”, I artificially
return “\end” to TEX, but this doesn’t always work.

TUGboat, Volume 2, No. 2

I need to do more work on this. If this affects other
sites this is something you might want to look into.
CMUA: PDP-10 — HAMBURG PASCAL

(BILL SCHERLIS)

(1) Some changes in the code were required in or-
der for compilation to succeed here. In particular,
the local compiler uses different conventions for PACK
and UNPACK has different switches, and does not
want a PROGRAM statement. Also, a main program
body is not required in a file for separately compiled
procedures. These changes were all fairly minor.

(2) The compiler here is not friendly to inter-
procedural GOTOs, so these were eliminated by add-
ing & new WrapUp procedure. (See the labels
endOfTEX and FinalEnd in TEX.) Again, this was
straightforward.

(3) Some new features were added to the lo-
cal compiler (by Andy Hisgen) to support ASCI
files and False-starts. FILE OF ASCII does the
expected thing here, except the conventions for
RESETing the terminal are somewhat different.
FalseStart is like the MACLISP SUSPEND opera-
tion: If a Pascal program calls FalseStart, then
execution is suspended and the program may be
SAVEd. When this core image is STARTed up, ex-
ecution will resume at the FalseStart call. [added
such a call to our copy of TEX.PAS just before the
call to InitSysDep.

(4) The installation documentation was reason-
able, though it could be a bit more detailed in
certain areas. Examples: expected problems, the
symptoms of various bugs (e.g., not reading the
STRINI file), some remarks on the control structure
of TgX....

(5) Testing here has been a bit skimpy, since I
can't easily get hardcopy output.

(6) Some hacking still remains: I haven’t touched
AppendtoName yet, but I expect no problems here.

Andy Hisgen suggests changing the procedure er-
ror so that ordinary letters are used instead of CR
and LF. Thus, the help message becomes something
like:

Type ¢ or C to coatinue,
t or F to flash error messages,
1or ... or 9 to dismiss the next 1 to 9

tokens of input,

i or I to insert something, x or X to quit.
instead of
Type <cr> to continue,

<11> to flash error messages,

1or ... or 9 to dismiss the next 1 to 9

tokens of input,

i or I to insert something, x or X to quit.
because having a message like this implies that the
host operating system will let the user type in both
CR and LF and that it will distinguish between

19

them. Some systems do not do this, either because
they don’t permit it at all, or because it is not the
normal way of doing things on that system. Unix,
for example, seems to turn both CR and LF into
LF. This problem cannot just be smoothed over
in SYSDEP.PAS, because the help message above
occurs in TEX.PAS and because the procedure error
in TEX.PAS is the one which actually fondles the
characters to see if we got a CR or LF.

PRINCETON PLASMA PHYSICS LAB:
PDP-10 — HAMBURG PASCAL &
VERSATEC OUTPUT (PHIL ANDREWS)

This is about the first thing I, or anyone else here,
have done in Pascal and I had to guess at some of
the differences between our compiler and yours.

It seems that TEX assumes that the loader will
preset all variables to zero, however our loader in-
serts junk some of the time. ,

Since our compiler doesn’t have enough room to
load in debug with TEX it’s particularly painful try-
ing to find errors.

Once I figured out how to bring up the first
release I had little trouble with the others but I
think some help could be given. The major problem
with compiling was the sheer size of TEX.PAS and
TEXPRE.PAS which forced changes in our com-
piler.

As of May 9 I have the latest version of TEX
up and running and have no outstanding bugs.
Our interface to a 100pt/inch Versatec is working
satisfactorily and we are hoping to obtain the use
of 200pt/inch Versatec in the near future. I am
presently supporting TEX at General Atomic at San
Diego also, our spooler only required a slight change
to run there.

TEX AND gYPHENATION
Frank M. Liang

Word hyphenation is a useful feature of any com-
puterized document formatting system. Sometimes
it is also one of the most embarrassing.*

The current TEX hyphenation algorithm was de-
veloped by Prof. Knuth and myself in the summer
of 1977. Our goal was to come up with a reasonably
compact algorithm that would find a significant per-
centage of possible hyphenation points, but would
make very few errors. The algorithm is described
in Appendix H of the TEX manual. Note that

*If you find any such embarrassing hyphenations done by
TEX, you are encouraged to send them to the author.

20

there have been quite a few minor changes since the
original printing of the manual; these are described
in the errata file.

Basically, the algorithm has four types of rules:
(1) Prefix removal (e.g. com-, dis-, ex-), (2)
Suffix removal (e.g. -able, ~ful, -tion), (3) Vowel-
consonant-consonant-vowel rule (can usually split
between the consonants), and (4) Exception table
(about 300 entries). Actually, these parts are ap-
plied in the order (4), (2), (1), (3); this order is rather
important because of the interaction between rules.
For example, the horse- prefix was put in not so
much because we were concerned about hyphenat-
ing words like horse-power correctly, but rather to
avoid hyphenating them incorrectly (the vcev rule
(3) would break hor-sepower).

The rules were mostly found by hand. Good
prefixes were found by looking through a diction-
ary; suffixes by looking through a reverse diction-
ary. Other ad hoc rules were discovered as the devel-
opment proceeded (break vowel-q, break after ck).
However, as good computer scientists, we then used
an on-line copy of the American Heritage Dictionary
(at Xerox PARC) to test our rules. This testing had
two purposes: (1) to determine which pairs of con-
sonants should be split under the veev rule, and (2)
to generate a list of exceptions to the rules. The ex-
ception list originally contained thousands of words,
but was pruned down to just a few hundred. Also,
in some cases new rules were formulated to take care
of large classes of exceptions.

How well does the algorithm work in practice?
Quite well, it seems. Quantitatively, in a test on
a pocket dictionary word list, the algorithm found
about 40% of the allowable hyphen points, with
about 1% in error. Furthermore, the hyphen points
found were usually the most reasonable or “good”
places to break the word. In practice, the algo-
rithm almost never makes a glaring mistake, while
at the same time the user does not very often need to
specify explicit (discretionary) hyphens, unless the
columns are very narrow (or letters very wide).

The algorithm takes about 4K 36-bit words of
code, including the exception dictionary.

A note on the implementation: If the algorithm
is programmed by sequentially checking each of the
rules to see if it applies, it will run rather slowly.
Using a hash table would improve things, but a
faster and more compact way is to use a version of a
finite state machine. Interested readers should look
at the actual code.

Time magasine algorithm

This is reputedly the most widely used hyphena-

tion algorithm (of acceptable quality). The idea is to

TUGboat, Volume 2, No. 2

decide whether or not to split a word based on four
letters wx-yz around the potential hyphen point.
However, this would require storing a table of 264 =
456,976 bits, which is excessive. (Actually, only
about 10-15% of these 4-letter patterns actually oc-
cur in English words, but it seems the storage would
still be considerable.) i

Instead, the algorithm uses three tables of size
262 = 676, corresponding to the pairs wx, xy, and
yz. The origin of these tables seems to have been
forgotten, but they are supposed to represent the
conditional probability of a break given that the first
two, middle two, or last two letters, respectively,
are a particular pair. To decide whether to break
at a given point, the values for the three pairs are
looked up, multiplied together (as if they were inde-
pendent probabilities, which they are not), and then
compared to a threshold.

Adjusting the threshold obviously changes the
performance of the algorithm. One estimate is: 40%
hyphens found with 10% error. In any case a large
exception dictionary will be required for good per-
formance. One reason for this is that looking at
Jjust four letters around the potential hyphen point is
not sufficient. The author has discovered examples
where one must look as much as 7 letters ahead (!)
to determine hyphenation (consider def-i~ni-tion
vs. de-fin-i-tive).

Patterns :

Currently the TEX project (more precisely, me)
is conducting research into better hyphenation algo-
rithms. In particular, I am investigating a method
based on the idea of hyphenating and inhibiting pat-
terns. For example, a hyphenating pattern might
be ~tion, indicating that whenever tion occurs in
a word, we can hyphenate immediately before it.
Another good example is ¢-c. Note that hyphenat~
ing patterns are a generalization of the prefix, suffix,
and vecev rules discussed above.

In addition, the idea of inhibiting rules has proved
useful. Such rules formalize the notion of “we can
usually hyphenate such and such a pattern, except
when it is followed by ...”. Also, such rules are often
useful for handling classes of exceptions.

More importantly, we hope to be able to extract
the rules automatically from an on-line dictionary.
This will be done by collecting statistics on the
effectiveness of all possible patterns, and then using
some heuristics to choose a good set of patterns.
Preliminary experiments with this approach indi-
cate that it will be very effective. For example, a
set of about 3300 hyphenating and 2700 inhibiting
patterns gets 85% of the hyphens with 2% error.

TUGboat, Volume 2, No. 2

21

" TgX on SMALL MACHINES

Kent S. Harris and Robert M. McClure

Unidot, Inc. Sunnyvale, CA

1. ABSTRACT

As small computers become more affordable,
the demand for increasingly sophisticated software
grows, Unfortunately, much of this software is large
and does not easily fit on small computers. Emu-
lation through interpretive techniques typically yields
unacceptable performance. Reengineering of existing
software is frequently desirabie, therefore, for reasons
of both cost and compatibility. The art of compressing
large mainframe-developed programs into small address
apace machines has become very important. One such
effort is the reengineering of the TEX typesetting sys-
tem. Since this paper really deals with putting large
software systems on small computers, and is not a paper
on TEX itself, familiarity with TEX is assumed.

2. INTRODUCTION

TEX! is a recent creation by Donald E. Knuth
at Stanford University. It is a system for typesetting
beautiful books-especially books that contain a lot of
mathematics-an area in which the cost effectiveness of
computer typesetting over manual methods is obvious.
The equation

1 [V

5z | (X s)0 + o)

X Jmoo k=1

it a vivid example. That TEX is especially popular
today compared to other computer typesetting sys-
tems is due primarily to TEX's level of sophistication
and ease of use. TEX has recently been endorsed by
the American Mathmatical Society for submission of
machine readable input, a trend that is likely to grow
quickly in the years ahead.

~ The goal of this project was to implement TEX
on a small, preferably desktop size, computer. We
1) The “X* in TEX is actually a Greek chi, and therefore TEX
is pranounced the same as the first syllable in technology. The

name TEX is a registered trademark of the American Mathemati-
cal Sgclety.

CH1626-1/81/0000-0380$00.75 ; 1981 IEEE

380

also wanted to use a commercially available operat-
ing system that would provide additional typesetting
tools such as editors and other text processing facilities.
Since UNIX? had demonstrated superior text manage-
ment functions over other operating systems and ap-
peared as if it were becoming a de-facto standard for
small machine operating systems, it was chosen as
a basis for this implementation. UNIX was in the
process of being ported to several 16-bit architectures
by various manufacturers while already enjoying rather
widespread usage in the DEC PDP-113.

Another issue was that of implementation lan-
guage. The C language* seemed to meet the require-
ments best for programming this class of system on
small processors. It provided the best combination of
both high and low-level features of any language that
had reasonable wide-spread distribution.

The final major goal was to avuid using compres-
sion techniques such as interpretive systems. Although
interpretation is widespread today (most BASIC sys-
tems are interpretive), und do provide for very com-
pact code, it usually incurs a large performance penalty,
especially for programs requiring substantial computa-
tion. TEX was expected to be computation intensive.

The original version of TEX was written in
SAIL, a language developed at the Stanford Artificial
Intelligence Laboratory for DEC PDP-10’s and 20s.
Furthermore, TEX was a large program, even with 36-
bit words. It seemed to have an insatiable appetite
for memory while building pages of text. The idea of
actvally compressing TEX into a 16-bit address space
without using interpretive techniques initially appeared
(uite absurd.

3) DEC and PDP-11 are trademarks of Digital Equipment Cor-
poration.

4) Kornighan, Brian W. and Ritchie, Dennis M., The C Program-
ming Language, Prentice-Hall, Englewood Cliffs, New Jersey
(1978).

© 1981 JEEE. Reprinted, witk permission, from Digest of Papers CompCon Spring *81, February 2828, 1081, San Francisco, CA.

The goal indeed seemed to be a formidable task.
The methods employed to bring about the realisation
of “Table-top” TEX is what this paper’s all about.

3. MULTFPROCESS APPROACH

It was clear from the size of the SAIL version
that TEX could not possibly exist as a single process
within a 16-bit address space. Because UNIX does not
support a runtime overlay system, we decided to split
TEX into two separate but concurrent processes. We
decided to use UNIX’s simpie but elegant system of
pipes. The UNIX pipe is a mechanism by which the
output of one process (passl) is routed to the input of
another process (pass£). One early question concerned
whether there existed a division point in TEX where this
simple tandem scheme could be implemented, or were
feedback paths from pass® to passl always necessary?

Figure 1 is a simplified block diagram of data
flow. The vertical dashed line shows the most obvious
place of division. The balancing of instruction and data
space requirements between the two passes along with
numerous other details also affected this division point.
After examination of the boxes labeled “Main Control”
and “State Stacks”, it was determined feedback paths
would, unfortunately, be required. Pass! and pasal
had to exist as processes coupled by two pipes, one for
commaunication in the forward direction and one for the
reverse direction.

A few words about virtual memory techniques
are in order. As much data (both predefined and
generated) as possible was to be kept memory resident
for obvious performance reasons. Since a 16-bit data
space was simply not emough to hold the numerous
tables required by TEX, most were moved to secondary
storage and cached through memory resident buffers
with buffer replacement done on a least-recently-used
(LRU) basis. We will refer to these as virtual memory
(VM) systems. How these VM systems are incorporated
into various nooks and crannies of TEX will become
clear shortly.

4. PASS ONE

The overall purpose of pass! is to break down in-
put text into a stream of primitives and data for pass?,
who does the real work. Passl is responsible for macro
definition and expansion and for managing other user
defined token lists (such as the output routine, align-
ment texts, and mark texts). These token lists are kept
as character strings instead of hash indexes or primitive
codes as in the SAIL version. This provides for ease of
passl manipulation whereas the SAIL implementation

381

TUGboat, Volume 2, No. 2

reduces them to pass®-like entities. Subsequently, time
honored string based algorithms can be used. Figure 2
shows our macro expansion stack frame layout.

The hash entry symbol table is managed on a
linear collision basis-applying the hashing function to
the symbol, using this value to index into the hash
table, and then linearly scanning to find either a symbol
match or a free cell. Contents of the hash table are
address pointers to the symbol character string (see
figures 3 and 4). The bash table is one-to-one with
the first part of the equivalents table. The equivalents
table contains key information for all primitive control
sequences and user defined control sequences. This ar-
rangement is essentially identical to the SAIL version
with the exception that the hash table pointers and
macro text pointers are actually VM pointers.

The VM system used to hold the outpul routine,
alignment templates, and mark texts is illustrated in
figure 5. The addresses shown are not mandantory and
can be tailored for a particular user’s needs. Additional
VM systems can be added to expand allocated sizes
of the various clements. However, the numbers shown
are realistic. This mechanism of fixed size allocation
fosters simplicity and saves memory with little loss of
generality.

Two output routine definition areas are shown,
allowing output routine redefinition without collision.
The next four 4K (byte) biocks comprise the halign and
valign template storage areas. The remaining memory
up to the 32K point is currently unused. The second
32K is divided into 128 256-byte chunks. Each chunk
can hold one mark tezt. Although there are only
three possible marks per page of text (top, bottom, and
first), pasal does not know where the page break will
be. To solve this problem, we keep up to 128 mark
tezts. When pass® decides it’s time to digest the out-
put routine, it indicates to pass1 how many marks were
on the page just built. Passi uses this information to
manage the pointers and text buffers accordingly.

5. PASS TWO

The primary data structures of pass® are large
and complex linked lists. For performance, these lists
are memory resident. However, two tables are virtual in
passf-font information and the hyphenation exception
dictionary.

Font inlormation filles typically range between
700 and 1000 bytes in length. Since TEX supports
32 font files, the need to kecp these tables on secon-
dary storage is clear. As before, font information files
are cached on an LRU basis with a small number of

TUGboat, Volume 2, No. 2

files (usually four) in memory at one time. Since
font changes are relatively rare, this causes little perfor-
mance degradation.

In fact, the only VM system that has hindered
performance significantly is the hyphenation exception
dictionary. Currently, exceptions are kept in a file of
sorted fixed length records and simply binary searched.
There are superior methods that we expect to incor-
porate later.

Perhaps the most important implementation
decision in pass £ concerns execution speed rather than
code volume. The SAIL version utilizes floating point,
exclusively for its glue® values. This approach is un-
acceptable considering the poor floating point charac-
teristics of most 16-bit processors.

Moreover, output results will differ between vari-
ous processors with slightly different floating point im-
plementations due to differences in accumulated round-
off. The solution, of course, is to use fixed point with
appropriate scaling. There is a most conspicuous fly
in this ointment. It is inherent in TFX’s line-breaking
and page-breaking algorithms that glue values have the
same dynamic range between 0 and 1 as between 1 and
oo. This is essentially the definition of floating point!

The technique we chose is usually considered the
worst possible solution-software emulation of floating
point. The key, however, is the format used (figure
6). At first, a 18-bit exponent may seem a bit exces-
sive, but since this is the natural width of arithmetic
of most small machines, it provides for rapid manipula-
tion. Astonishingly enough, TX has performed very
well utilizing this technique.

The SAIL version uses floating point exclusively
for all glue and dimensional data. We limit the use
of Bating point to gain both space and speed perfor-
mance. With the exception of 32-bit glue values and
line widths used within the line-breaking code, all of
TEX’s internal dimensional values are kept as 168-bit in-
tegers. In this implementation of TEX, internal units
are mils (.001 inch), providing for a range of -4-32.767
inches. For a standard 8.5 by 11 inch page, this is
certainly suilcient.

8. CONCLUSION

A few words about performance are in order.
Actual measurements so far show that TiX on an Onyx
C8002 system can process 8.5 by 11 inch pages of

§) One of the more Intoresting concepts 1o TEX is the idea
that characters and combinations of charscters (bozes) are
held together with a flexible space called glue. After positional
calculations are done, the giue Is set.

average complexity text in about 5 to 10 seconds per
page {with hyphenation turned off). Currently, hyp-
henation degrades this by a factor of 2 or 3, but this
is improvable. The system mentioned has as its proces-
sor a Zilog 28002 16-bit microprocessor with 256KB of
main memory, and a secondary store consisting of a
10MB Winchester disk with an average access time of
about 55ms.

The techniques described here are only an ex-
ample of those possible in the realm of software com-
pression. The task of compressing software without
gross performance degradation may not be a systematic
one, but this example illustrates its feasibility.

7. REFERENCES

1. Kouth, D.E., TEX and METAFONT, New Direc-
tions in Typesetting, Digital Press, American
Mathmatical Society (1979).

WEN
MARK
TEXT
bl
OUTPUT - TOKEN
™1 routine ™1 scamier
—)
MACRO
"™ Text
e SIATE gl —MaIN. |
STACKS CONTROL
MAIN LINK
LISTS ol
PROCESSORS STACKS
OUTPUT
PROCESSOR

ko

FIG. 1 = SIMPLIFIED DATA FLOW
SAIL VERSION

2 TUGboat, Volume 2, No. 2

mexstx()

CURRENT POINTER T0
EXPANS JON———fn] PHEXCUR PREVIOUS HasH(}) \ W SYSTER
POINYER MEXTXT FRAME (b4 BYTES)
MExArs([(]
T HI-WATER i
MEXARG[N}
ARG ‘0’ ‘
TEXT MACRO TEXT
GLOBAL DEF ~ LOCK—— VM SYSTEM
(blk BYTES)
H
€orsl1)
ARG ‘N’ TEXT v HI=WATER =i
FIG+ 4 ~ MACRO VIRTUALIZATION
pooy TEXT [T ‘
ANOTHER
VM SYSTEM
0] output
ROUTINE 1
HI~WATERssaeiig 409 outeuT
ROUTINE 2
FIG- 2 = MACRO EXPANSION FRAME ' 81921 AL 1enMENT
TEMPLATE 1
204801 AL IGNMENT
TEMPLATE U
HASH TABLE EQUIVALENTS TABLE . :
coSses 32768 § maRK TEXT 1
POINTERS TO MULTI-CHARACTER . 65280 | mark TEXT 128
SYMBOL NAMES , PRIMITIVES AND
MACROS FIG- 5 ~ MISC. PASS] VIRTUALIZATION
31 16 15
| expomeny | mantissa
BINARY murJ
———ceaw F1G+ b =~ GLUE FORMAT
SINGLE CHARACTER
PRIMITIVES AND
MACROS
31 1615 0
GLUE FORMAT (MILs)
CHARACTER :
ATTRIBUTES FOR -
TOKEN SCARNES | Line-BrEaKING WiDTHS Gus) |
F16. 3 - EQUIVALENTS TABLE) €16+ 7 ~ DATA FORMATS

TUGboat, Volume 2, No. 2

5 & 3 % % % x 3 = ¥ »

Output Devices

* x £ % 2 X * ¥ & ® =

-~ OUTPUT DEVICE NEWS FLASH -
(APS-5 AND LINOTRON 202)

David Fuchs

A quick note just before the deadline: During this
summer, I will be working on Pascal interfaces for
the Autologic APS-5 (and the compatible micro-5),
and the Mergenthaler Linotron 202. The first incar-
nation of each interface will allow TEX to use only
fonts supplied by the manufacturer. There is some
reason to hope, however, that I will also be able to
get enough information about font encoding on these
machines so that I can write METAFONT output
modules for each one. This would allow the CM font
family (as well as any other METAFONTed fonts)
to be used with these machines. I am particularly
enthusiastic about the APS-(micro)5; the native lan-
guage of the machine looked good, the documenta-
tion seemed complete, and the people at Autologic
were quite helpful. They even said that they would
consider releasing their font encoding description on
a non-disclosure basis “if it helps us sell typesetters”.
For more details on the status of either of these in-
terfaces, please contact me at this address:

David Fuchs
Computer Science Dept.
Stanford University
Stanford, CA 94305
I am also interested in hearing any news of anyone

individual member listings and the “Site Reports”
column which appears in every issue of TUGboat.

COMPUTERS
Amdahl Ithaca Intersystems
Apple LSI11
Burroughs microcomputers
cDC Motorola 68000
CDC 6400 *Multics
CDC 6600 »sNord
CDC 6700 North Star Horison
CDC 7600 ssOnyx :
«sCDC Cyber PDP 11
Cray PDP 8
DEC PERQ
*+DEC 10 Pascal microengine
»*DEC 20 Perkin Elmer
DEC WPS-8 Prime
DG Raytheon 703
DG Eclipse $-100
DG Nova Siemens
DG S140 Singer/Wang L8400
Facom 230-75/M-180 TI 990
Foonly TRS 80
Fujitsu M190 Tandem
HP 1000 Telefunken TR440
HP 3000 seUnivac 1300
Honeywell sUnivac 90
IBM Univac System /80
s«]|BM 303X VAX
IBM 3081 *VAX (UNIX)
fBM 360 *sVAX (VMS)
++IBM 370 Wang 2200
IBM 43XX Wang OIS
IBM Series 1 Xerox Alto
ICL 1904S Xerox Sigma
ICL 2960, 2980 Z80
Intel 8080 Z8080
Interdata

OUTPUT DEVICES

succeeding or failing to interface TEX to any device. AM Comp/Set 4510 H COMpS0
AM CompEdit HI VideoComp
* % %X X £ X X % B ¥ ¥ Alphakey Multisetter laser
seAlphatype CRS Mergenthaler
Anadex Mergenthaler CRTronic
Summary of Computer Equipment Autologic APS-5 Mergenthaler Linotron
Devi Bobat Eurocat Mergenthaler Omni
and Output ces CalComp Mergenthaler VIP
. . *sC, LBP NEC Spinwriter
The follqwmg computer arcl_ut,ecture groups and Co‘::’:umphic Nomxf typesetting system
output devices have been specified by TUG mem- Compugraphic 7500 Olivetti
bers. Computers marked with #=* are known actually “g:ml’“@‘l’:fc gﬁ"omw ;"P';z Pacesetter
to have a version of TEX installed and capable of Coz::g:;h:: Unisetter Q?R,,Em
producing DVI files; output devices so marked have Compugraphic Videosetter Sanders
actually produced output copy from TEX DVI files. g‘;‘bb 4 Dat &,“"”g’; 00
(No dist.inct.ion is made pet,ween gystems capable of nFl;:il:ila Data nVa:i:‘n
production and those still operating only on a test GSI C/A/T ssVersatec
basis.} A single * indicates that work is in progress. GSI phototypesetter Wang phototypesetter
The separately-bound membership list contai Graphiset 8 Kerox

e parately-oound memoboersnlp lLis .con a1ns Harris 7400 Xerox 1700
sublistings of member names by the device types Harris phototypesetter Xerox 5700
given below. There is not yet any cross-reference g‘&?&“‘ ”))Eem r97°°
mechanism to indicate which output devices are IBM 6670 e Xerox XGPr
connected to which computers; for details, see the IBM laser printer

26

TUGboat, Volume 2, No. 2

IMAGEN CORPORATION page 1 of 2

Description of IMAGEN products

INTELLIGENT PRINTER SYSTEM

IMPRINT-10 : A xerographic intelligent printer system developed and introduced by the
IMAGEN Corporation, with initial deliveries in May 1981. IMPRINT-10 uses software-
definable fonts to print justified text in a variety of styles and sizes at high resolution.
Interfaces for the IMPRINT-10 exist which allow it to be easily mated to most host systems.
This page was printed on the system. IMPRINT-10 is based on the Canon LBP-10 table-top
printer which evolved from office copier technology. It prints on plain paper, using a solid
state laser and rotating mirror to synthesize images at a rate of about 10 pages per minute
for 11 inch high paper, with a resolution of 240 dots per inch.

PRINTER INTELLIGENT CONTROLLER SYSTEM

IMAGEN-C : A general purpose display controller developed and introduced by IMAGEN
Corporation, with initial deliveries in May 1981. IMAGEN-C accepts page layout information
from a host computer and synthesizes the video needed to control the raster-scanning printer
or other display device. It can be interfaced to one or more host computers using a variety
of serial and parallel interfaces. IMAGEN-C contains diagnostic procedures for itself and
accessible portions of its environment. It is available only to OEM buyers with nationwide
maintenance organizations.

FEATURES AND FUNCTIONS PROVIDED BY SYSTEM INTELLIGENCE

Type Font Flexibility. Suitably formatted files may be printed as jéstified text contain-
ing an assortment of type styles, sizes and pitches including proportional. The systems
can handle extended character sets such as those encountered in ideographic languages
(e.g. Kanji symbols: # ff &) This permits large symbol sets to be used as well
(i o+ Rq‘;). The commands necessary to invoke font changes are simple character
sequences which can be generated by any host system without major software effort. The
systems are, however, also capable of printing the output from Troff, TgX, Scribe and similar
typesetting systems. Fonts are software-defined and can be local in firmware or downloaded
from the host computer to the controller. e

Page Orientation Flexibility.

Portrait mode

Landscaps mode

IMAGEN 12769 Dianne Drive, Los Altos Hills, CA 94022 415 949-1580

TUGboat, Volume 2, No. 2

IMAGEN CORPORATION page 2 of 2

Forms overlay. Forms can be overlaid with whatever data is sent from the host computer
to the printer. A forms definition package allows for forms to be easily described in a high

level language.

Logo and Signature Printing. IMAGEN has the capability to scan and digitize hard copy
originals in advance and store them in the host or locally in the system for printing upon
user command. In this manner logos, signatures, as well as other graphic images can be

integrated into text output.

Sarter/Collator. With this feature, reports may be transmitted from the host computer
to the controller with the pages in any order. The controller will then print as many copies
of the report as specified keeping all pages in the proper order for each copy set, without the
need for further communication.

Business Graphics. This feature allows the system to print curves of different shapes and
widths as well as backgrounds, intermixed with the text. Business graphics features can be
used to produce typical graphs, charts, engineering diagrams, and, in general, drawings of
medium complexity.

Full Graphics Capability. This feature permits the system to generate an arbitrary pattern
of dots, so that any figure may be reproduced on the page. In this way the system can be
used as a facsimile receiver, general plotting device, and to do CRT screen dumping for

computer graphics systems.

Text Setting Capability for Word Processors. In typesetting applications the host computer
usually generates the appropriate set of instructions to the controller to obtain the desired
layout. Text Setting capability allows for justification and other basic typesetting operations
to be performed by the system. This feature can be used to extend the capabilities of existing
word processors, most of which operate only in a “typewriter” style.

Communication Protocols. The systems have the capability to communicate using network
protocols. This.feature allows the easy integration of IMPRINT-10 as a node within a
distributed environment.

File Management Capability. An optional local disk and file management capability allow
for font storage and printing job queueing. This results in a self-contained printing system in
the sense that the host computer does not have to undertake font management and spooling
tasks.

BASIC SYSTEM.

»Four fonts
sSorter/collator

ePage orientation flexibility
R S-232C interface

By selecting a suitable combination of features and an interfacing arrangement, this
versatile printing system can be adapted to a wide range of tasks for word processing, business
data processing, communications, in-plant printing, and graphics.

IMAGEN 12769 Dianne Drive, Los Altos Hills, CA 94022 415 949-1580

27

28

Site Reports

* ® % x & % * * *k &k X%

TEX UNDER THE NORTH STAR
Part 1

As coordinator for the CDC Cyber implementa-
tion of TEX, ! have agreed to answer questions from
interested Cyber sites about our progress with TEX-
in-Pascal and with our implementation of drivers for
the output devices to which we have access. When
we have succeeded in our implementation, I wiil
make available for distribution, for a charge, a tape
with the following information:

1. TEX-in-Pascal source, as modified to com-
pile successfully on a Cyber under the ver-
sion of Pascal maintained at the University of
Minnesota.

2. A file containing the Computer Modern font set.

3. Our device driver(s).

4. Relocatable binary of these files.

1 will also send a copy on microfiche of the
Pascal compilation and cross reference listing. I
will provide sympathy, understanding, and hand-
holding as you put TEX up on your system.

{ have also agreed to act as go-between for other
matters which may come up from time to time.
However, I don’t intend to act as a roadblock! Bob
Welland, editor of TUGboat, would be delighted
to receive articles and letters-to-the-editor directly
from you.

My address is in the front of TUGboat; my phone
number is (612} 373-4599. This number is always
answered and I am reasonably good about returning
calls.

In Part II of this report, M. J. Frisch, our TEX im-
plementor, describes our current progress. However,
please note that calls should be directed to me, not
to him.

Thea D. Hodge

Part 1

We recently got a proper device independent
(DVI) file output from our Pascal version of TEX.
This is a version we received from Stanford in
December, 1980. While we are pleased with this
success, it is only a beginning.

Several temporary changes .had to be made to
get TEX to work because our conversion is incom-
plete. Our font information file had only one font
which was converted to 60-bit Cyber words from
36-bit DEC-10 words (containing mixed integer and

TUGboat, Volume 32, No. 2

floating point). The input text was very simple and
the output was only a set of numbers, the contents
of TEX's DVI file.

We have no device driver programs and our next
major task is to write one or more. Potential devices
at our site are a Varian 200 dot/inch plotter, a
Linotron 202 typesetter, plus 2 Xerox 9700 page
printer at a local service bureau. (The 9700 would
be intended for proof copy of text; full math output
doesn’t seem practical on it at present.)

Further tasks are to finish the TiZX conversion by
finding out how to remove the temporary changes.
We believe these changes are due to incomplete im-
plementation of the system dependent routines. We
will also have to convert the remaining font infor-
mation files to Cyber format.

Our system dependent changes produce a NOS
operating system version using 6- and 12-bit ASCII
character codes for input and output. If we can find
a way to test it, we can build an 8-bits-in-12 ASCI
version for NOS/BE sites.

TEX is a very large program, around 98K words.
Our site only allows time-sharing for 32K so we run
TEX as a batch program. While we realize that TEX
is intended to be interactive, our CDC Cyber users
will have to live with this problem until (or if} we
can find ways to make our version of TEX smaller.

If all goes well, we plan to announce TEX
availability for CDC Cyber users at the VIM users
group meeting in October. We will need to write
installation documentation and we would like to try
out our installation procedure at a nearby CDC site.

If there is enough time before October, we will
do a conversion of a more recent version of TEX
(rather than the December 1980 version). There are
a number of attractive features in recent versions
which would be helpful. Several recently written
Stanford programs are also valuable, particularly
one by David Fuchs that prints the contents of a
DV1 file.

In summary, we really can see some light at the
end of the tunnel.

Michael J. Frisch
* ‘# * * * * * * x L t 3
DECSystem-10/20
IMPLEMENTATION WORKSHOP

Phil Sherrod

An implementation workshop for persons inter-
ested in installing TEX on a DECSystem 10 or 20
will be held at Vanderbilt University in Nashville,
Tennessee, on September 10 and 11. The course will

TUGboat, Volume 2, No. 2

discuss the details of connecting TEX output devices
to DEC 10s and 20s as well as software issues in-
volved in installing TEX. Conference attendees will
have access to a system running TEX. For details,
contact

Phil Sherrod

Vanderbilt University

Box 1577, Station B

Nashville, TN 37235

615-322-2951

AMS SITE REPORT
Barbara Beeton

Sinece our last report (TUGboat Vol. 2, No. 1,
page 48), an integrated spooling system has been
developed and installed to control output to both
the Varian and the Florida Data. This spooler will
print stra&ht text (ASCII) files, using the rather
primitive fonts supplied with the output devices, as
‘well as TEX output. Output defaults to the “local”
device, using device-appropriate fonts (Varian in
Providence, Florida Data in Ann Arbor), but may
be overridden; output page positioning may be ad-
justed either interactively or from a predefined op-
tion (.OPT) file, allowing each column of a muiti-
column page to be treated by TEX as a separate page
to conserve memory space, then overlaid on output:
multiple copies, output of selected pages, deletion
(by submitter) of a job from the queue, and other
similar features are also supported.

‘We have acquired the capability of generating
fonts for the Alphatype via METAFONT (see ar-
ticles by W. J. LeVeque, page 39, and Ron Whitney,
page 40). The Alphatype is being used for limited
internal production. (Another composition system
is still being used for our major journals, pending
completion of necessary work on symbol and math
fonts.}) The entire two-column portion of this issue
of TUGboat and the separate address list have been
generated on the Alphatype. A number of articles
were sent in on mag tape, from VAX and Univae
1100 systems as well as from DEC 10s and 20s; this
experiment has been most successful, and we hope
to receive many articles for future issues on tape.
Some files have also been received via a phone file-
transfer mechanism (not a network).

We have prepared camera copy on the Alphatype
for several other organizations that do not have their
own high-quality output device; for these jobs, TEX
input was provided to us on tape, and the out-
put proved to be virtually identical to the original.

29

Requests for Alphatype jobs will be considered, on a
time-available basis; for price and other details, call
or write to

Raymond Goucher

American Mathematical Society

P.O. Box 6248

Providence, RI 02940

401-272-9500

¥ *x * ¥ % % % ¥ ¥ x *

TEX AT THE 1981 SPRING
DECUS U. S. SYMPOSIUM
Patrick Milligan
BNR Inc.

In keeping with a long standing tradition, there
was a TEX Birds-of-a-Feather session at the recent
DECUS symposium held May 18-21 in Miami. (In
case you didn't know, DECUS stands for “Digital
Equipment Computer Users Society.”) The panel
members were:

Patrick Milligan Coordinator for DEC-20

Phil Sherrod Coordinator for DEC-10

Barry Doherty =~ American Mathematical Society
Bob Phillips Oregon Software

It comes as no great surprise that DEC users
are interested in TEX: Don Knuth's book, TEX
and METAFONT: New Directions in Typesetting
is jointly published by the American Mathematical
Society and Digital Press. In addition, versions of
TEX exist for the DEC-10, DEC-20, and VAX/VMS
computers.

Since the DECUS Symposium was held im-
mediately after the TEX Implementors’ Workshop
at Stanford. emphasis was placed on the installa-
tion of TEX. Output samples from various devices
(including Versatee, XGP, Canon LBP-10, and
Alphatype) were passed around. A free TEX sample
(the TUG membership forin) was distributed. The
content and utility of recent TUGboat issues was
described. In short, a sales pitch was made for TEX,
TUG, and TUGboat.

Another session on TEX is planned for the next
DECUS Symposgium to be held December 7-11 in
Los Angeles.

* % x * ¥ *x % % x *k %

TEX AT NIH
Rachel Schwab

TEX exists on the DECsystem-10 at the National
Institutes of Health in Bethesda, Maryland. At

30

present it may be used only by the DECsystem-10
stafl. Hopefully we will soon have facilities available
so that it may be opened up for general usage.

Currently there are four steps involved in running
TEX at NIH. First one runs TEX to translate text
into a DVI file. Then the DVI file is used as input
to a program called DVIPDP. DVIPDP essentially
takes DVI records, extracts all the important infor-
mation, and outputs new records that contain op-
codes along with other information. For example:
opcode 3 indicates a rule and the information that
goes with a rule are height and width. Opcode 2
indicates a “delta y” item-—the vertical coordinate
is moved by a certain number of pixels, et cetera.

DVIPDP produces a “PDP” file of records like
the ones described above. This file is transferred
to a PDP 11/70 by means of a high-speed com-
munications link. A Benson/Varian printer plotter
is hooked up to this PDP 11. A driver program,
TEX/11, was written for the 11 that takes “PDP”
records and translates them into scan lines.

TEX at NIH has the ability to take graphs and
figures and place them inside a TEX file. TEX itself
has not been modified to do this, but the DVIPDP
and TEX/11 driver have the ability. Graphs are
created by using MLAB or OMNIGRAPH on the
DECsystem-10. A program has been written that
will convert a plot file into a file of alphanu-
meric records which in turn may be translated by
DVIPDP.

As one can see by the above description, us-
ing TEX at NIH is complex. The four steps (TEX,
DVIPDP, CLINK (transfer to the 11), and TEX/11)
will need to be compressed before TEX can come up
in a production environment. This necessarily in-
volves getting our own small computer and printer
to hook up to the DECsystem-10 for usage with TEX.

NIH is a community of scientists and researchers
who produce technical papers in abundance. The
potential for use of TEX at NIH could be very high.
However, TEX is not an easy system to learn. We
are hoping that the AMS-TEX macros will make us-
ing TEX a little easier, and we are looking into the
possibility of writing some type of TEX preprocessor.

x * % x * ¥ * % * % %

AN IMPLEMENTATION REPORT
FOR THE UNIVAC 1100
Bill Kelly
University of Wisconsin-Madison

We have TEX running on the Univac 1100 using
University of Wisconsin-Pascal. This is a report on
some of the problems we encountered in implement-

TUGboat, Volume 2, No. 2

ing TeX. The difficulties were of several kinds. A
major difficulty is in the differing syntax of exter-
nal compilation between various Pascal compilers, a
feature not defined in the original Pascal definition.
Differences in I/O on the host machines and in the
ways the compilers handle 1/O were another prob-
lem. Memory limitation problems were encountered,
and these were made worse by the fact that we were
altering Pascal code rather than the macro language
TEX was written in. The typesetter we are using is
not addressable as a raster device, and so we were
unable to use standard TEX/METAFONT fonts.
Instead we had to write a pre-processor to convert
descriptions of the typesetter fonts into: format.
Various errors occurred in using TEX, some of which
were traced to errors in the TEX code, others of
which related to improperly formatted fonts. The
1100 operating system allows a user to end terminal
interaction with a program by typing an end-of-file
signal—TEX doesn’t consider the existence of this
concept. Because we have no inexpensive proofing
device we had to write a line printer proofing pro-
gram which has severe limitations due to the limited
range of actions and characters possible on a line
printer. We have found the overfull box messages
to be unhelpful in correcting justification problems
and have replaced them with a more informative
message. We have found it very difficult to set type
in narrow columns with TEX. Details of all these
problems are discussed below.

We should all hope that the project of transport-
ing TEX makes future language designers careful to
be complete in defining language standards. Hours
and days of work could have been saved if the Pascal
definition included external compilation, the default
case in the CASE statement, etc.

External compilation in UW-Pascal uses a syn-
tax very different from that used at Stanford. Any
shared types, variables, procedures, and functions
must be declared in a separate environment module.
Only the head of procedures and functions is in-
cluded there: the name, parameters, and result type
comprise the head. Each code module includes a list
of procedures and functions which correspond to the
heads in the environment. To convert TEX into this
format required a lot of hand coding.

Differences in I/O handling required a lot of re-
coding in the system-dependent module, SYSDEP.
Of course, it is to be expected that one would have
to recode the system-dependent code, but it could
be made clearer what part of the Stanford code
refers to PDP-10 peculiarities and what is required
by TgX. For instance, TEX expects lines to be ended
by carriage returns or line feeds, etc., which is the

TUGboat, Volume 2, No. 2

internal file format of most PDP computers. In
the Univae file architecture, carriage returns and so
forth are not preserved in the file.. This must be
the case with many computer systems, and espe-
cially in Pascal compilers where such system-specific
things are supposed to be transparent. What we
did was to read a line from the Univac file, and
when Pascal returned true as the value of the end-of-
line function EOLN, SYSDEP appended a carriage
return. This would have been much easier had the
SYSDEP code not also dealt with ignoring line feeds
and nulls, or rather had it documented and localized
these local quirks. To make it easier for future sites
to implement TEX, procedures like Skip TrailingStuff
to ignore nulls after a line end, and functions like
EndOfLine which would check for PDP-10 line end
characters, but note that on non-PDP machines a
function like EOLN might be used.

The fact that TEX expects input files to be page-
oriented is a minor nuisance. Apparently files on the
PDP-10 are made up of “pages” delimited by a form
feed character This is not the case on our machine
a.ud on man}f others. This causes minor problems in
two ‘respects: one is that if a file containing a form-
feed character on our system were read by TEX,
it would be interpreted in a manner inconsistent
with our operating system. The other is that “page
numbers” appear along with line numbers in the
error messages. This tends to be very confusing since
there is no page number in the file structure, but
there are page numbers in the formatted output—so
a Univac TEX user would assume the page number
referred to the output pages We circumvented this
by changing the error message from “p.0, 1.50” to
“Line 50” . This could be built into TEX by providing
a Pascal constant “pageOriented” which the TEX
implementor could set to true or false.

Implementing TEX is difficult because the pro-
gram is written in a macro language which is
converted by the UNDOC program into Pascal.
Unfortunately the UNDOC program is not presently
available in Pascal insofar as we know. The macro
code serves well as structured documentation, but
it is difficult to refer back and forth between the
macro code and the Pascal code. This is because the
macro code is divided into sub-sections in a struc-
tured heirarchy, which expand into linear Pascal
gode. Also the use of macros to provide alternate
names for variables in the macro language means
that a single Pascal statement may look entirely
different in the two listings. Another drawback is
that expressions involving constants are folded into
a single constant. This makes compilation efficient
but changing array sizes difficult. We ran into this

31

problem in trying to reduce the size of the “mem”
array to meet a8 memory restriction in our compiler.
The ultimate solution is to distribute UNDOC with
TEX. But admittedly this work should take second
priority to work on TEX itself. A difficulty which
may be impossible to surmount with this approach
is that the output from UNDOC may still be un-
suitable for compilation, depending on the features
of the compiler. For us this came about because of
the environment feature of UW-Pascal; other sites
have had to hand code the default case of the Pascal
CASE statement. If this situation occurs, it would
be impractical to correct errors in the macro source
and all fixes will end up being done in the Pascal
code anyway. It is unclear whether it is realistic to
expect UNDOC to be able to produce compilable
code for all compilers automatically.

On the Univac 1100, a user at a terminal can
type @eof to force an end-of-file condition in the
terminal input to the current program. The program
must terminate without further intervention. This
possibility is not allowed for in TEX, most likely be-
cause this concept of a terminal end-of-file does not
exist on many computers. We have circumvented
this problem by having the InLnTer procedure in
SYSDEP pretend that the user typed \end if he
indeed types an @eof. This is not the ultimate
solution, since there are circumstances where TEX
will not accept a \end command, as for instance in
the middle of a paragraph. To help out with this
problem (and to make TEX generally more friendly),
our basic macro file redefines the \end command
to be \par\vfill\end. This avoids the problem
of an unfinished paragraph at the end, but not of
an unfinished \halign, etc. The suggested solution
to this is to have a function TerEof in SYSDEP to
detect a terminal end-of-file condition. On detect-
ing this, a clean-up procedure would terminate any
current levels of processing, possibly issuing warn-
ing messages. Without having examined the code
closely, we don’t know if the TerEof idea would be
the best approach to modifying the existing TEX
code, but the general idea would be the same no
matter what the implementation. This added code
would not impact sites that do not have a terminal
eof concept, because the TEX installation documen-
tation would say to have TerEof always return false
at these sites.

Using TEX with a non-raster device

Our primary output device is a Compugraphic
8600 typesetter. The 8600 does use digitized data
to create its characters, but it will not accept user-
defined character shapes. Therefore our TEX font
files reflect the shapes of font characters available

32

from Compugraphic, and our device driver outputs
characters and commands to the 8600 rather than
bit rasters. We get an excellent quality of out-
put this way, but the approach is not without its
difficulties. .

One problem was in converting character shapes
into TgX-readable format. The data had to be
manually typed, and a program was written to trans-
form the raw data into a pair of files, one for TEX
and one for the 8600 driver. Until all the bugs were
worked out of this program. mysterious TEX errors
resulted from improperly formatted font files. For
example, parentheses (and other delimiters) of vary-
ing size form a linked list in the font information. At
first, our font preprocessor did not correctly indicate
the end of the linked list. This problem was difficult
to diagnose, because it caused a Pascal error; TEX
assumed the font information to be correct and so
did not issue any warnings. This is as it should be
for maximum efficiency of TEX. but it points up the
usefulness of a program such as the one described
in TUGboat Vol. 2, No. 1 which automatically (and
correctly!) converts font files into readable data and
vice versa.

Using a device like the 8600 limits the portabi-
lity of our TEX-produced documents because the
fonts do not correspond exactly to METAFONT
fonts. We have similar fonts, for instance our
English Times resembles Computer Modern Roman,
but slightly different widths can lead to different
paragraphing and pagination, overfull entries in
tables, etc. We cannot use METAFONT with
the 8600 because the manufacturer provides no
method of addressing the typesetter as a graphics
device, and the cost of having fonts custom-made
by Compugraphic is prohibitive.

An interesting problem encountered in using a
micro-computer driven typesetter like the 8600 in
conjuction with TEX is the lack of cooperation be-
tween the two devices. The typesetter itself has a
fair degree of intelligence, but it seems impossible to
use any of it with TEX because of the need to make
the DVI file device-independent: TEX must assume
it is dealing with an entirely stupid device! The
8600 does justification, tabulation, automatic accent
placement, box-drawing, ete. The commands we
pass to the typesetter bypass all these features! The
question of cooperation between smart devices is a
difficult one, and it seems a shame that the “smarts”
of the typesetter can’t be better utilized. This is
a general question, not one addressed specifically
at TEX, that of portability vs. efficiency for a par-
ticular device. One approach would be to have a
heirarchy of commands, for instance a ‘box’ com-

TUGboat, Volume 2, No. 2

mand in TEX, which could also be expressed in terms
of more primitive commands like HORZRULE and
VERTRULE. A user with an intelligent device could
configure TEX to output the ‘box’ command while
other configurations could output 4 separate line
commands. To maintain transportability, a stan-
dard skeleton for a device driver would have to be
distributed which could break a box command down
into 4 line commands at that stage. The user with
the intelligent machine would bypass this procedure.
Alternatively, all configurations of a program .like
TEX could output the box command and distribute
the rest of the work to be divided between the device
driver program and the device as the programmer
sees fit.

A Limitation of TEX

We have found one apparent limitation to TEX:
it seems impossible to set text in narrow columns
without extensive manual hyphenation. One cus-
tomer wanted to set 9 point type in 2 inch columns.
When we ran TEX, we got many overfull box mes-
sages. This leaves you to figure out the cause of the
error. It may well be that there is a word that TEX
does not know how to hyphenate. We have devel-
oped a non-stangdard message for overfull horizontal
boxes that prints the box as a single line on the ter-
minal, representing characters as their correspond-
ing ascii character (or a question mark if the charac-
ter is non-printing), glue as a space, and hyphena-
tion nodes as dashes. This gives you an idea of
whether TEX knows how to hyphenate a word at the
beginning or end of the line, and you can insert dis-
cretionary hyphens as needed. However, if the word
that is giving TEX trouble occurs on the previous or
next line, you must consult TEX’s hyphenation rules
to find whether it knows how to hyphenate the word.
Thus I have found myself hyphenating words at ran-
dom, which;is a distinct inconvenience in itself, and
often find that there are still overfull boxes.

In addition to poor diagnostics, we had trouble
in getting TEX to set the narrow columns at all
without overfull boxes. We tried adjusting the
\jpar parameter to have TEX look at more pos-
sibilities, and it still gave overfull boxes. Manual
hyphenation did not work. We eventually had to in-
crease the \spaceskip (or word spacing) parameter
to allow a very large space between words, and create
typographically bad output. In some cases even this
did not work, and a \linebreak command had to
be used. ’

At MACC we charge customers as closely as pos-
sible for the resources they use, and we have found
TEX to be very expensive in both memory and CPU
time. This is not really a surprise to anyone, of

TUGboat, Volume 2, No. 2

course. But it means that most users cannot afford
to run a document through TEX four or five times to
find the right discretionary hyphens needed to avoid
an overfull box. Nor is this user-friendly.

There may be no easy way to solve this
justification problem. It may be an unavoidable
side effect of the justification algorithm used. One
possibility would be having a “paragraph debugger”
that would help to diagnose the problem in a given
paragraph: e.g., point out a large word that can-
not be hyphenated that is at the root of the prob-
lem. This would be a difficult program to write.
An alternate hyphenation routine would be another
possibility. Allowing TEX to violate its hyphena-
tion rules if necessary to justify a paragraph, mean-
time issuing a warning, would at least focus on a
specific problem, i.e. a questionable hyphenation.
rather than leaving the user guessing.

Usefuiness of macro sharing

TEX in itself seems to provide a standardized lan-
guage for typesetting. However, a non-computer
programmer will find this language difficult to use.
and will not have a ready facility for writing his own
macros. TEX users need to do much more macro-
sharing as was done in TUGboat Vol. 2, No. 1. Good
macros put the typesetting capability in the reach of
most users. There are still problems when an error
occurs through improper use of a macro. The diag-
nostics are geared toward one with a knowledge of
programming. One aid in this would be to provide
8 way for a macro to send a message directly to the
terminal. This was shown in TUGboat Vol. 2, No. 1
ay an extension added b}” dne site; it seems to be a
useful enough feature to incorporate into the stan-

dard TEX.

* * ¥ % ¥ * £ *x %k % %

AVAILABILITY OF
OREGON SOFTWARE IMPLEMENTATIO
OF TX FOR THE VAX/VMS

Monte C. Nichols

This VAX/TEX site report consists of an ab-
breviated version of a memo recently sent to all
VAX/TEX users. The information contained here
should allow anyone who obtains the VMS version
from Oregon Software to implement same on their
VAX/VMS sgystem. The only output device sup-
ported at this time is a Versatec 1200 A or V80
printer having a DMA interface to the VAX.

A preliminary VAX/VMS implementation of TEX,
with auxiliary programs to support a Versatec
printer, is now available from Oregon Software.

33

(Further progress on a UNIX/TEX at Brown awaits
the arrival of the U. of Washington compiler.) The
accompanying article by Barry Smith explains how
you can obtain a copy of the VMS version. You
should understand that, in spite of the efforts made
by Oregon Software, this is not the final version
(in fact, Stanford has just released a new version
of TEX). Barry has overcome numerous bugs in
DEC Pascal to get us to our present state, but more
remains to be done. You can help in this effort by
carefully documenting any bugs that you encounter
after making sure (insofar as possible) that they are
bugs and not errors you are making during your TgX
learning process. We have encountered our share of
both in the short while the system has been up and
running at Sandia. If you fix a bug, please send your
fix to Barry!

The distribution tape is 9 track at 1600 bpi
and consists of about 6500 blocks. The tape
was made using the command MCR BCK MTAO:
TEX.BCK=+.%;+%. The data can be recovered
by creating a directory “{TEX]"”, setting your
default to that directory, mounting the tape (using
MOU/OVER=ID MTAO:), and then recovering the files
using ’

MCR RST ».x*;* = MTAO:TEX.bck

It is suggested that you put all the files on the tape
in the [TEX] directory and initially use the program
there.

The special Versatec driver (LVDRIVER.EXE) must
be copied from [TEX] to [SYSEXE] and installed.
This is done for Versatecs utilizing a DMA inter-
face by inserting two lines in [SYSEXE]STARTUP.COM
after $ RUN SYS$SYSTEM:SYSGEN but before
AUTOCONFIGURE ALL. The two lines to add are

LOAD LVDRIVER/DRIVER=SYS$SYSTEM:LVDRIVER. EXE

and
CONNRECT LPAO/ADAP=3/NUMVEC=2/VEC=%0174

/CSR=%0777510/DRIVE=LVDRIVER

Reboot the system after these changes have been
made.

The programs LVSPOOL and LHSPOOL spool output
from theé DVI file to the Versatec printer, placing
pages of TEX output vertically or horizontally on
the printer. To function properly both programs
need the privileges ALLSPOOL and PHY__ I0. When
running from the TEX account the user must have
these privileges; if LVSPOOL and LHSPOOL are run
in [SYSEXE], the system manager can install them
with these privileges so they can be used by any
unprivileged user.

Although you could start your first TgXperience
by using TEX interactively, or with a file built us-

34

ing your system editor (using Knuth’s TEX and
METAFONT as a guide), it is suggested that you
might want your first attempt to be with the file
TYPO.TEX. To run this example from the [TEX]
directory (without using the startup command file
provided) enter:
R TEX (Wait for the * prompt—
this may take up to 20 seconds)

\input typo (Note lowercase.)
Watch the TEX comments—wait for system $)
R LVSPOOL or R LHSPOOL

(the system should handle the rest)

The mailing list for future informational
memos regarding VAX/TEX will be the list of
DUES PAYING TUG members who indicate a VAX
interest, 50 make sure you join.

TEX FOR VAX/VMS

Barry Smith
Oregon Software

Well, it works—TgEX for the VAX running VMS is
alive, available, and in production use. (Production
use is defined by example—we've just finished a
192 page manual for our optimizing PDP-11 Pascal
compiler that is entirely typeset by TEX, including
charts and diagrams.)

It’s not yet perfect, nor something a “naive user”
should be expected to enjoy. To list the major
deficiencies:

o There are still annoying bugs, such as the
flaming crash that occurs when one tries to in-
sert a footnote. Most of these seem to be due to
bugs in Digital’s VAX Pascal, which just makes
them harder to trace. (There's a new version
due out soon, as always.)

e It's the “old” TEX-in-Pascal acquired from
Stanford in late December. (Some of the bugs
are real TEX bugs, too.) We've just received the
recent official release, and as soon as I get a free
weekend, ...

o There’s absolutely no documentation what-
soever that relates to the VMS version.
(Gargon, another weekend, please!) The amasz-
ing thing is that this doesn’t seem to matter—
Knuth’s book describes the input format ex-
actly, down to subtleties like tracing, and the

installation directions are rather concise: “put.

everything in account [TEX]".

TUGboat, Volume 2, No. 2

But, when it’s good, it's very, very good—we’re
converting our skeptics to TEXnicians.

Details: TEX-in-Pggcal for the VAX (11/750 and
11/780) running VMS, with about 50 Computer
Modern fonts in assorted sizes. Comes with two
spoolers (horizontal and vertical) for a Versatec
1200 printer/plotter, using the standard Versatec
interface. Uses about 7000 blocks of disk space
(mostly for fonts) and about a megabyte (whew!)
of virtual memory while running. Comes in source
and binary/executable forms, sources for spoolers,
utilities, etc. (i.e., we’ll send you everything we
have). If you want to play with the Pascal pro-
grams, you’ll want the fancy listings available from
Stanford. A copy of the Pascal manual mentioned
above will be included on request.

Supplied only on magnetic tape (600 foot) in
“BCK/RST” format (that’s an MCR utility for
backup/restore, which works well for binary files).
We can write 800 or 1600 b/in tapes—hearing noth-
ing, we'll send 1600.

Fees: fifty dollars will get you a tape and ship-
ment via UPS. To minimize our overhead, please
don’t send a tape, and do send a check or negotiable
securities so we don’t have to deal with purchase or-
ders and billing (I'd prefer small unmarked bills). If
you (or your fgiend) are in the “truly needy”, just
let me know.

Maintenance: We’ll be working on bugs and con-
venience improvements for the perpetual future,
and will be pleased to hear comments, suggestions,
gripes, bugs—no promises of any response except
through the TUGboat and Monte’s newsletters.

¥ % ¥ %X %X x %

Fonts

¥ % * ¥ x *x ¥

¥ % ¥ ¥

* ¥ % x

FONT COMMITTEE
Barry C. W. Doherty

Getting TEX up and running is only the first
step in producing output. One needs also an
output device with an appropriate driver and
fonts. Transportable TEX output requires compa-
tible fonts. Those sites which have similiar output
devices (Varians etc.) and are willing to use the Stan-
ford Computer Modern family have this problem
solved.

There are many, however, who feel limited by
the CM family as avsilable from Stanford, either for
reasons of design, completeness or merely preference
for more traditionsl fonts (Helvetica, for instance).

TUGboat, Volume 2, No. 2

In addition, many typesetters come with their own
font libraries which people would like to use. A
strong interest in these matters was shown by
nearly everyone attending the TEX Implementors’
Workshop. One result was the formation of a com-
mittee to investigate font-related issues. Members
of the committee are

George Ball Washington State University
Barry Doherty American Mathematical Society

David Fuchs Stanford University
Tom Hickey OCLC
Ron Whitney American Mathematical Society

It has been suggested that this committee should
first try to identify vendors who are willing to work
with the TEX community to provide font infor-
mation (for TEX's metric files) and digitized rep-
resentations of fonts (so that these fonts can be
used with proof-quality devices), and to provide
additional symbols for use with TEX. The role
cf vendors is complicated by licensing agreements,
toyalties, etc., and inter-vendor cooperation is un-
likely. However, the TEX community may be large
and strong enough to have the potential for affecting
this development positively and to its benefit. It is
probable, however, that such help from vendors will
not produce fonts which can be reproduced on many
other devices.

The need for a font library has also been pointed
out, either one maintained centrally or with some
central means for pointing people in the right
di-ection. Many tools are already available for
manipulating font files (e.g. translating them into
editable form and repacking them). More such pro-
grams are needed, and they should be as transport-
able as TEX. (This could also help with the prob-
lem of disseminating font information, avoiding bi-
nary data entirely.) There is also a need for “device-
independent” fonts, at least to the extent of uniform
font metrie files and a reasonable representation for
proofing, so that a TEX file from an institution that
had, say, Helvetica could have that file printed else-
where.

Another role for the committee might be as a
source for model RFP’s to aid those institutions
which must submit such documents to vendors; this
would simplify the task of atquiring printers and
fonts. ’

We welcome any ideas or comments.

* x ¥ * * % * *x ¥ ¥ *

35

THE STATUS OF METAFONT AT OCLC!
Thomas B. Hickey

We have been running METAFONT on Tandem
hardware since August 1980. This was accomplished
by recoding the SAIL version into T/TAL, the
systems programming language on Tandem. The
conversion took about six to eight weeks of con-
centrated effort plus another two to three weeks over
nine months to add additional output modules and
correct problems.

The system now is a full version of METAFONT,
compatible with the original except in the following
respects:

e TFM files are not yet generated

e All of an identifier's name contributes to its

uniqueness, not just the first five characters plus
length

@ The limit on the size of wxy subscripts was lifted

e Use of <>, >= and <= for SAIL's one character

relational symbols

e Limitations on the size of the raster (currently

300 < 300)

® Output routines adapted to drive Anadex

printers

The conversion went fairly smoothly, the major
problems being the lack of SAIL’s nice strings and
the difficulty in determining exactly what field in a
word the SAIL version was using and what implicit
initializations were being performed by shifts used
to access and load fields.

Experience with METAFONT

In general, working with METAFONT is a
pleasure. The interpretive nature of its execution
allows a number of powerful tracing mechanisms
which are very useful. In designing an alphabet the
most difficult problems are deciding on the basic
approach to be taken in specifying characters and
writing the base routines which support such an ap-
proach. Once this is estaplished, adding characters
is fairly straightforward.

Most of the problems encountered in writing
METAFONT programs arise from the complexities
of the characters themselves, not METAFONT, but
there are several features which users of other pro-
gramming languages will occasionally miss:

o Loops

e Combinations of Boolean expressions

o A full complement of intrinsic functions

¢ Ability to write functions

tOCLC (Oniline Computer Library Center) is a not-for-profit
computer library service and research organisation based in
Dublin, Ohio.

36

¢ Local variable hiding

Implicit in the design of METAFONT is the as-
sumption that users have the ability to add their
own output modules for specific devices. The
METAFONT language offers no read access to the
raster, so such routines must be written in the
implementation language to be included in your
METAFONT system. It is also possible, of course,
to write programs which manipulate files in existing
output modes, such as CHR, but this would not be
a METAFONT program.

In my work in alphabet design I have found -

that much of the code is essentially defining two
paths and filling in between them. Successors to
METAFONT will undoubtedly include the ability to
define and manipulate paths as entities. The con-
cept of pens and erasers is certainly useful, but- less
fundamental than paths.

Conversion Problems

One of the reasons TAlL was chosen for imple-
menting METAFONT is its closeness in many ways
to SAIL. but there were a number of problems:

° [..a_ck of labelled case statements:
This was overcome by setting up arrays of ad-
dresses for jump tables. o

o A limit of two to nesting of procedures:
Only a problem in the raster module. Overcome
by moving and renaming variables.

o Lack of SAIL’s strings:
This necessitated the writing of a fairly com-
prehensive set of string handling routines.

o Lack of a macro facility as powerful as SAIL’s:
Some sort of macro facility would seem to be

. needed for a clean translation and TAL’s was
adequate for most purposes.

e Restrictions on file names:
File names on the Tandem are limited to eight
alphanumeric characters. Output file names are
constructed by adding a single character to the
front of them, so that CMRI10 could produce
files CCMR10, PCMR10, TCMR10, etc.

e 16 bit words:
This probably had the greatest effect of all.
The Tandem has an excellent repertoire of
32 bit arithmetic instructions but shifts and
Boolean operstions are only performed on 16
bit words. For ease of implementation and run
time efficiency a 3 word 48 bit cell was used for
dynamic mernory to correspond with SAIL’s 36
bit word. This does waste some space, espe-

cially in the double cell section (VMOM) of

TUGDboat, Volumg 2, No. 2

dynamic memory, but is quite efficient since
shifts and masks are not required to access
fields. In addition no new restrictions on sizes
of fields in memory cells were needed.

o Different rounding of negative floating point
numbers:
Rounding is now performed by a function call.

Chel

I am presently undertaking the coding of an al-
phabet called Chel. This alphabet is based primarily
on Helvetica and Helios and is designed to be us-
able over a broad range of widths and boldness.
Chel is set up so that for each font to be generated
a call to Chelbegin is made specifying point size,
boldness and width. Boldness can have any of six
values (extra light, light, regular, medium, boid, ex-
tra bold) and three width values (condensed, regular,
extended). The Chelbegin routine then sets up the
pens, x height, and other parameters which are used
by the character routines. None of the routines as-
sume that the vertical and horizontal raster resolu-
tion are equal.

The most important parameters are efactor and
bfactor which control the expansion and boldness.
If a user is not satisfied with the range of values
generated by the standard widths and boldness
these parameters can be controlled directly. The
characters are designed so that in nearly all cases
they change smoothly with efactor and bfactor.
Exceptions to this include the tail on the lowercase
‘a’ which has an abrupt transition when the bold-
ness is increased. I estimate that designing charae-
ters to work over such a broad range takes several
times the effort that designing a single font would.
Individual characters can be completed in as little
as 15 minutes. or may take several days. An average
character takes 3-4 hours.

Rough routines for both upper and lower case
have been completed, but a great deal of work
remains to be done to refine them and make them
work correctly in all weights and widths. Figure 1
is a lower case ‘b’ in proofmode. Figure 2 shows
this character in its 36 major variations (3 widths, 6
weights, and 2 slants). Both of these were printed on
an Anadex 9501 printer. Completion date for this
alphabet is somewhat uncertain although a useful
version should be finished this summer. While it is
anticipated that Chel will be made available outside
OCLC, no distribution mechanism has been estab-
lished.

TUGboat, Volume 2, No. 2

The letter)
File created by METAFONT 06/03/81 08:38:29 AN
“The i1etter b”

Figure 1. Lowercase “b”: Proofmode at OCLC.

3r

TUGboat, Volume 2, No. 2

38

Chel font at OQCLC.

Figure 2. Variations on the letter “b”:

TUGboat, Volume 2, No. 2

FONT DEVELOPMENT AT THE
AMERICAN MATHEMATICAL SOCIETY

William J. LeVeque

As Don Knuth has declared, his primary pur-
pose in developing METAFONT and TEX was to be
able to produce new editions of his book that would
look like the originals. So it was reasonable that
he should focus his attention, while designing par-
ticular alphabets and character sets in the Computer
Modern family, on those fonts needed for composing
ordinary text and mathematics. Roughly speaking,
these were Computer Modern Roman, Bold Face,
Slant, Sans Serif, and math mode Italics, Greek,
symbols and script, in 5, 6, 7, 8, 9, and 10 point
sizes, and Upright Italic and Typewriter in 9 and 10
point sizes.

When the American Mathematical Society (AMS)
decided to continue the development of Knuth's sys-
tem so that it could be used for the production of a
wide variety of Society publications, it was apparent
that additional fonts and symbols would be needed.
Here are examples of some of the gaps we saw:

- Mathematical Reviews uses over 250 distinct
non-alphabetic mathematical symbols, of which
fewer than 100 are available from Knuth's font
tables.

- There is a large number of diacritical marks
which are used in the various languages that
Mathematical Reviews quotes references in, and
they oceur on a larger number of letters than
one might expect; it is not feasible to reserve
a place in a font table for each combination
of letter with diacritic. (And of course mathe-
maticians put accents on letters in entirely un-
predictable ways.), If the accents are designed
separately, then the letters should be vertical if

~ they are to center properly under or over the

" accents. This requires, for example, an upright
Greek alphabet.

~ Mathematical Reviews uses the whole Cyrillic
family, none of which had been designed.

- Various publications such as the Combined
Membership List are produced in very small
type (5 or 6 point), and these had been designed
by Knuth only for sub- and superscripts, not for
text. What was needed was a text face as easy
to read as that in a telephone directory.

The AMS Trustees decided to create a
Font Committee (actually a subcommittee of its
Committee on Composition Technology) to work on
this problem; this committee contains both AMS
staff memnbers and working mathematicians who
have had prior experience or interest in type design.

39

Algo, they commissioned Hermann Zapf, one of the
world's outstanding type designers, to design several
fonts especially for the AMS which would be estheti-
cally consistent with Computer Modern Roman. It
was agreed that the augmented font family, con-
taining not only Knuth's and Zap{’s fonts but also
a large collection of mathematical symbols already
designed by an AMS staff member, Mrs. Phoebe
Murdock, for other purposes, should be called the
Euler family.

Dr. Zapf has now prepared drawings of four
alphabets: upright Greek and Fraktur (German),
upright script, and an entirely new kind of alphabet
which will be referred to as “handwritten”. The lat-
ter is rather like an upright italic, and will be used in
place of Knuth’s math mode italics. Zapf’s drawings
have been distributed to the Font Committee, and
the resulting suggestions have led to modifications
of several of the characters, to accord better with
what mathematicians are accustomed to.

The next step is to get METAFONT programs
written, to simulate these designs in 10-point type.
This work, now being done by one of Knuth's
graduate students, Scott Kim, should be completed
within a few weeks.

One of Knuth's METAFONT programs automa-
tically converts a “roman” version of a character
{whatever that means, for Greek or Fraktur) to four
others: slanted, sans serif, bold and typewriter. So
these five variants will immediately be availabie for
these characters and alphabets.

There is an additional step—or rather. there
are many hundreds of additional steps——required to
yield what could be regarded as a complete collec-
tion of fonts in the Euler family. As is well known to
type designers, type faces do not satisfactorily scale
up or down in size in a linear way. A 10-point font
reduced photographically to 6 points does not look
right; hair lines tend to vanish altogether, thick lines
get too thick, upper case letters begin to dominate
small lower case letters, etc. So it is necessary to ad-
just individually the various parameters that govern
the relative sizes of these features, for each desired
size. This is not a terribly time-consuming job, for a
single alphabet—but when there are five alphabets,
in five variant forms, in ten or fifteen sizes, plus all
the mathematical symbols and their variations, the
job looms large. This task is already under way in
the Society office; it is expected to be about a year
before all the font tables one could reascnably ask
for are available, in the Euler family. But long be-
fore then, of course, the ones most urgently needed
will have been completed, and it is hoped that TEX,
and Michael Spivak’s macro package, AMS-TEX, can

40

be used for most of the composition work of the
Society by the end of 1981. :

At first these fonts will be for the Society’s own
use, but it is hoped that through licensing agree-
ments the Euler family can be made generally avail-
able to other printing houses.

* *x * * % % % % %k ¥ %

TPHON

Ronald Whitney
American Mathematical Society

As was mentioned in Bill LeVeque's article (see
page 39). the AMS has been using METAFONT to
generate a set of small, highly condensed fonts to
be used in the Combined Membership List of the
Society and two other mathematical organizations.
We started by creating a 6 point sans-serif Computer
Modern font, and narrowed and thinned it until
parameter twiddling no longer yielded significant
improvements. Since proofmode was not yet avail-
able here and pens at Varian resolution were 1-
2 pixels wide. more proofing than usual was done
with the Alphatype. Inter-letter spacing seemed to
provide the most difficulty.

As can be expected when a font family is pushed
very far in a direction in which it is not designed
to go, it became necessary for our purposes to bifur-
cale some parameters (serif correction, unit width,
one pen size} and to modify some drawing routines.
The result is our first approximation to what we
have called the “telephone book” fonts. The TUG
membership lists in this issue have been printed in
TPHON and we welcome comments and criticisms
about its readability.

* x % ¥ ¥ & * *x ¥ x *

PROOFMODE AND MAGNIFICATION
Barry C. W. Doherty and Ronald F. Whitney
American Mathematical Society

A large part of the TEX effort at the AMS has
been the development of a library of fonts adequate
for our typesetting requirements, and for this we
have been making extensive use of (the SAIL version
of) METAFONT. So far this has taken four direc-
tions: (1) creation of fonts in larger point sizes (e.g.,
14 and 18 point), (2) filling in holes (e.g., 8-point
text italic), (3) production of a complete set of fonts
for the Florida Data and (4) creation of a ‘telephone
book font’ (cf. the article by Ron Whitney in this
issue, p. 40).

TUGboat, Volume 2, No. 2

All but (3) have necessitated changing the
parameters in the .MF files, but only with the last
have really significant changes had to be introduced,
to compensate for the changes of parameters sub-
jected to excessive shrinkage. While METAFONT
has been able to generate the Florida Data fonts, it
has not been able to cope with the rounding prob-
lems made more visible by the low resolution of
the output; some improvement might have been had
by modifying the .MF files-—at the expense of in-
consistency of fonts across devices—Ileaving as the
only practical alternative the manipulation of the
raster pattern via an intermediary file. Changing
the font description would also violate Knuth’s goal -
of designing to the highest resolution device, in our
case the Alphatype CRS.

This development has been able to proceed
without the availability of proofmode, although (4)
concerns the creation of a new font, and would have
been greatly facilitated had proofmode been avail-
able. Other pending work involves the creation of
new fonts and new symbols. This work requires
proofmode, or at least some means for examining
an enlarged representation of the character.

Proofmode was implemented originally for the
Xerox XGP. The routines for proofmode reside in
the METAFONT module MFOUT. Our task was
to rework those routines to produce proofmode on
the Varian, which meant the translation of XGP
commands to those suitable for the Varian (or the
Florida Data), requiring the translation of absolute
movement commands to relative ones. That is,
for the XGP one could say ‘move to column 545’
whereas for the Varian one has to say ‘move 224
units from last reference point’. The job was made
more difficult by the fact that the XGP is not a
available commercially, and it was not immediately
clear how to compare the XGP with the Varian.

The basic procedure was to make METAFONT
proofmode write a TEX-like .DVI file, containing all
appropriate commands and typeset characters. Fuil
utilization of the DVI commands PUSH and POP to
save and restore one’s current position on the page
prevented the need for the introduction of several
real parameters to keep track of where one is on
the page (and the amount by which this position
had changed). This also prevented the occurrence
of numerous (accumulative) rounding errors.

Changes were also necessary to the file-opening
procedures to account for the fact that one was deal-
ing with a binary rather than an ascii (text) file. At
the same time the general file-handling procedures

TUGboat, Volume 2. No. 2 41

July 1, 1901 09:99:10 CYEBUG.I¥I.¢ Page !

Cyrillic uppercase 3.

Varian proofmode at the AMS.

1 Varian output of magnified character.

[| |

METAFONT character description:

Cyrillic letter Eprime;

call charbegin{°037+3codeoffset,11,0,0,phb,0,rbowl);

cpen; top3y2=.3hh;

if bot3y2<.1ihh: new y2:; bot3y2=.1hk;

f1i;

1rt3x2=round .75u; w38 draw 2; % lower buld

hpen; 1ftOx3=round 1.25u; y3=good6 .8hh; 1rtOx4=lft3dx2; yd4=y2;
x20=x3; rt4x3=rtO0xl; yi1=y3; topOy20=hh;

x5=.5[x3,x7]-u; x6=.5[x4,x7]; topOy5=hh+o. botOy6=-o;
rtix7=round(r-u); y7=y6.

if ucs$0: w0 ddraw 1..20, 3..20; % upper serif
rpen#; w4 draw 3{0,1}..5{1,0}; % erase spurious part
£i;
bpen; w0 draw 3{0,1}..5{1,0}; X shoulder
call “a darc(5.7,v5); : % bowl
y9=y10=.52hh; x8=2u; x10=11t5x7;
w0 drav 9..10; % bar

w0 draw 6{-1,0}..4{0,1}. %X tail

42

were changed to to allow greater flexibility in both
specifying and reporting the full file names.

Changes were worked out first on an ‘archaic’
TFX version of METAFONT but have since been
transferred to a more recent (TFM) version in a
rather straightforward manner. Some modifications
in approach have been suggested by work done at
stanford. although the development has been inde-
pendent.

A METAFONT description is device-independent
as well as point-size-independent—within limits:
that limit is NETAFONT itself with its highly
device-dependent routines and its inability to deal
(linearly) with the full range of point sizes of
interest to the typesetting community. The
METAFONT description may be device independent
but METAFONT is not, and that sort of generality
is not possible without the use of translators to
" modify METAFONT's output. The consequence of
this last is erucial with respect to the creation of a
font library. and its implications are discussed else-
where in this issue.

The larger figure on the previous page is a Cyrillic.
) produced by proofmode. Vertical unitlines and
significant horizontal lines (representing h-height, x-
height. axis-height, baseline, and descender depth,
from top to bottom) form a grid on which the
character is drawn. Points mentioned in the drawing
routine are labelled.

In addition to proofmode (which takes work to
implement). METAFONT contains a magnification
option which is very easy to use. In ordinary font
production for the Varian, one runs METAFONT
and sets the variable pixels to 3.6. This value
represents the number of pixels per point on that
machine (increased by 30% since we use the Varian
for proofing). To obtain the other character shown,
one simply fools the Varian into thinking that one
point (the printer’s unit) contains 3.6*15 pixels. For
the Stanford METAFONT this is done by specifying
mode=-1 (to tell METAFONT that you want a Varian
font and that a magnification factor is coming) and
mag=15. The same sort of procedure would work for
any other output device for which METAFONT can
produce characters.

Although significant points are neither indicated
nor labelled with this magnification option, the
figure obtained is of value in design. Subtleties of
strokes are more likely to stand-out here than in our
Varian output of proofmode. It seems to us, for ex-
ample, that the vertex at the bottom of the letter
is more apparent in the smaller then in the larger
figure.

TUGhboat, Volume 2, No. 2

* % X * x % * ¥ ¥ % *

Warnings & Limitations

x % % ¥ ¥ %k % ¥ ¥ ¥ *

Uppercase Update; Fickle Fonts

Last issue’s warning about \uppercase has now
been rendered obsolete by a change in TEX, whereby
dimensions (.5em) and function words (for, after)
are recognized in any combination of upper- and
lower-case letters (.5EM, For, aFtEr). This change
was made in Don Knuth’s own version of TEX on
February 27, 1981, and is described in the errata
list among the “Extensions since last printing”. But
check the status of your local version before chang-
ing your macros!

Welcome though this change may be, it lays
another trap: A macro for formatting entries in an
index included the specification “... \hangindent
10pt #1 ...” and an index entry “Forecasting”
was rendered as “casting”, indented just a bit more
than the specified hanging indent. Don explains it
thus:

“The word ‘tor’ is allowed after ‘\hangindent’;
eg.,

\hangindent 3pt for 5§
and moreover you can use letters as constants as in
\char ¢ (= \char’145)

Then \hangindent 3pt Forecasting means
\hangindent 3pt for °145 casting
Likewise, the word ‘plus’ or ‘minus’ will be gobbled

after \hskip 1pt ...”

To disarm the trap,
braces to the offending macro:
10pt{}#1 ...”

add a couple more

“... \hangindent

........

Probably most sites use a version of TEX that has
preloaded fonts, and probably most sites preload the
fonts specified in basic.tex (see the TEX manual,
Appendix B, for details). But some users, for
whatever reason, decide to associate different fonts
with the one-character names assumed by basic.
When a file using non-basic font names is run
through a version of TEX that has preloaded basic,
the job may run to completion with no warning (the
SAIL implementation of TEX gives no warning, but
some Pascal versions may—at least the VAX/VMS
version does 80). TEX will use the metrics of the
preloaded fonts, but the spooler will use the fonts
requested by the user, and a ragged right margin
may be only symptom.

TUGboat, Volume 2, No. 2

There are two solutions: (1) Go back into
the input files and change all conflicting font
designators—this can get very messy; or (2) use
a version of TEX in which no fonts have been
preloaded; such a version, commonly known as
“VIRGIN'TEX", will start up much more slowly than
a preloaded version, owing to the greater number of
font metric files that must be loaded at run time.
The following convention has been adopted at many
installations: Preloaded fonts use no capital letters.
Thus you are always safe if you introduce a new font
called A, B, ..., Z. (Actually, the AMS requires an
extended set of fonts, including a full complement

of cyrillic fonts in 6 sizes; these are called 4, . . ., F,
but G through Z remain open for special use.)
Barbara Beeton
* * * * * * * * * *® *
MACRO
0
L
U
M
N
Send Submzssions to:
Lynne A. Price
TUG Macro Coordinator
Calma R&D
212 Gibraltar Dr.

Sunnyvale, CA 94086

The macro column is a new regular feature of
TUGboat. It is a forum where TEX users can ex-
change formatting problems (with or without solu-
tic 18), questions about writing macros, comments
on macros published in earlier issues of TUGboat,
ete. .

* ¥ X

Discussion of macros at the TEX Implementors’
Workshop in May included some simple suggestions
for increasing portability of macros across TEX sites.
First, the excellent suggestion was made that ASCII
sites attempt to standardize the characters chosen
to replace SAIL delimiters. The AMS-TEX conven-
tions are recommended: ampersand (&) for the tab
character, underscore (_) for the subscript indicator,
and caret (~) for the superseript delimiter. Second,
macro packages typically include several font dec-
larations. Incompatible assignment of font codes
makes it difficult for users to select an assortment
of macros from different packages. If font codes as-
signed in a macro file do not correspond to the fonts
preloaded by some versions of TEX, strange results
can be difficult to explain. There is no total solution
to this problem, but it can be minimized. Macro

43

packages should come with documentation deserib-
ing the fonts and font codes used. When sending files
to another installation, users should remember that
preloaded fonts differ from site to site. A helpful
convention in assigning font codes is to reserve up-
percase letters for user declarations and to let stan-
dard macro packages use other characters. Patrick
Milligan’s DefineFont macro described below can be
used to automatically assign available font codes.

* % * * * X %x *x ¥ ¥ X%

Macros on Microfiche

Editor’s note: In an effort to hold down expenses,
some of the more extensive macro packages in future
issues of TUGboat will be published on microfiche, with
a summary or introduction to each package included in
this column. Authors of macro packages who submit
their work for publication here are requested to supply
such an introduction adlong with the camera copy of the
package. Because fiche i3 not as easy to use as paper,
an aitempt will be made to arrange for the collection
and distribution of these macro packages in machine-
readoble form (probably on magnetic tape); details will
be published as soon as they are knoun. Fiche will
conjorm to the jollowing specifications: negative image
(white characters on black), 105mm X 148mm, 24-to-1
reduction ratio, containing 98 frames per fiche.

* ¥ *x x ¥ *x x ¥ * * %

ERRATUM:
NOFILL PROGRAM
Patrick Milligan
BNR Inc.

There was one subtle error in the program listing
of both the SAIL and Pascal versions of the NOFILL
program that appeared in TUGboat Vol 2, No. 1. In
both programs, the definitions of macros * and *
were reversed (see pages 90 and 96). As printed, the
definitions are correct, but the program source was
incorrect. Since the program source was run through
NOFILL for publication, the incorrect definitions
became correct, but all other uses of * (acute accent)
and " (grave accent) were incorrect.

Also, there was some confusion about the table
of contents entry on page 136 entitled NOFILL
Program with Pascal Source. When the two pro-
grams were submitted to TUGboat, it was not clear
if the SAIL version would be printed, or the Pascal
version, or both. The introduction to the SAIL ver-
sion was appropriate to both versions, but no intro-
duction was prepared for the Pascal code.

44 TUGboat, Volume 2, No. 1

19 TX/PASCAI, SYSDEP Procedure Specifications

. e ottt i b i v =t

READFONTINFO

This is an integer function that has the following parameters:

Var.? Name Type
FYL INTEGER

Var FONTINFO FNTINFOARRAY
Var FMEM FMEMARRAY
Var WDBASE FBASEARRAY
Var HTBASE FBASEARRAY
Var DPBASE IFBASEARRAY
Var ICBASE FBASEARRAY
Var LGBASE FBASEARRAY
Var KRBASHE FBASEARRAY

Var EXTBASIE FBASEARRAY
Var PARBASE FBASEARRAY

Var FCKSUM I'BASEARRAY
Var FPFB FRASEARRAY
Var FSIZE FSIZEARRAY
Var FPF1 FPIARRAY
Var FMEMPTR INTEGER

Var PSIZE REAL

Var ATCLAUSE BOOLEAN

Reads font information from file FONTFIL. The integr FYL is used us au index iu the various array
parameters to establish the destination of this information.

RELEASE

Procedure with one parameter.
Name Type
'YL INTECER

The integer FYL must be in the range [1..6]. It selects one of ICHAN1 through ICHANG and executes
RESET(ICHANX) followed by FILPTR:=FILPTR-1. :

This closes and rcleases the iudicated file and frces the entry in FILENAME.

RSETFLE

Procedure with (our parameters.

Name Type
1)) INTEGER
FNAME CHARS
FDIRECTORY INTEGER
FDEVICE CHARS

The integer 1D must be in the range [i..6]). It sclects onc of ICHANI throngh ICHANG to be opened
for input and associates it with FNAME, FDIRECTORY, and FDEVICE.

TUGboat, Volum_t_a 2, No. 2 ' 45

% Examples:

% \DefineFont{cmtt}{\tt} % typewriter font

% \DefineFont{mflogo}{\mflogo} % METAFONT logo font
\def\DefineFont#1#2{

\if !'\UserFonts!{
\xdef#2{)}\send9{Error: No font codes available for font #1}}

\else{
\Apply {\First} to {\UserFonts!} -> {\FontCode} % Get font code
\font\FontCode=#1 % Load font
\xdef#2{\curfont \FontCode} % Define macro to use font

\Apply {\Rest} to {\UserFonts!} -> {\UserFonts} % Remove code from list

}

% The \Apply macro is used to apply a macro to its argument, when the
% argument is a macro also. The trick is to fool \TEX into expanding
% the argument before the macro is applied. If a better way exists to
% perform this feat, please send your solution to TUGBoat.

%
% Usage:
% \Apply {<function>} to {<argument>} -> {<result>}
%
% where:
% <function> is the macro to apply
% <argument> is the macro containing the argument to <£unct1on>
% <result> is the macro used to save the result -
%
\def\Apply #1 to #2 -> #3{
\let\Func=\let % Setup dummy function
\xdef\Eval{\xdef#3{\Func #2}} % Expand argument
\let\Func=#i % Redefine function to use macro
.Eval % Apply macro to its argument

X

% The \First and \Rest macros are used to manipulate strings terminated with
% an exclamation mark (!).

\def\First#1#2!{#1} % Returns first character of string
\def\Rest#1#2! {#2} % Returns string with first character removed

% The macro \UserFonts describes the set of font codes available to

% \DefineFont. The list of font codes should not contain an exclamation
% mark (!) since this is used to terminate strings passed to the \First
% and \Rest macros (and it isn’t a valid font code anyway). A reasonable
% convention for font codes is to have all upper case letters available’
% for user fonts:

\def\UserFonts{ABCDEFGHI JKLMNOPQRSTUVWXYZ}

% If \DefineFont is used to allocate all fonts used (including those in
% BASIC) , then all 64 possible font codes should declared.

46

A MACRO MENAGERIE
Brendan D. McKay

1. Math-style testing
One of the things which one should be able to
do in TEX, but which apparently is impossible, is to
test for the current math-style (display, text, seript
or scriptscript). For example, how does one write a
macro which produces a bold-face “g” of the right
size? (\def\g{\hbox{\bf g}} obviously doesn’t.)
Here’s a trick which doesn’t completely solve the
problem, but which goes a long way towards that
goal.
\xdef\subscr{4} \xdef\supscr{t}
\chcode’1=13 \chcode’'136=13
\dez\M5{T}
\dezi#1{\subscr{\if\Ms T{\def\MS{S}#1}\else
{\dez\Ms{X}#1}}}
\dez t#1 {\supscr{\12\uS T{\det\uS{5}81}\else
{\dez\Ms{x}#1}}}

The idea is to maintain a macro \MS which has
the value “S” for scriptstyle; “X for scriptscript-
style, and “T" for all other styles, including non-
math mode. This can then be tested using the
\if macro. The definitions above will maintain \MS
correctly if the style changes by use of the sub-
script or superscript characters, but not otherwise.
Style change macros like \scriptstyle can also be
redefined to maintain \MS, but automatic changes
caused by things like \over will go undetected. In
such cases the user must define \MS himself, if it is
going to be tested.

As a sample application, here is a definition of
\bz (“select bold-face”) which behaves the same as
pormal in non-math mode and selects a font of the
right size in math-mode. In the latter case it acts
only on the following character, control sequence or
group. Let’s suppose that A, B and C are bold-face
fonts of the required sizes.

\dez\bz{\itmmode{\gdet \Fnt##1{\hbox
{\12\Ms T{\:A##1}\else
{\i2\uS S{\:B##1}\else{\:C#81}}}}}\else
{\gdet\Fot{\ :A}}\Fnt}

In our second application we’ll define a2 macro
for raising a portion of text. If you type
“Alift(text)\by(dimen)\\”, then (text) is put in
& \hbox and raised by an amount (dimen). (text)
will appear in the current style, except that display
style and text style are not distinguished.

\def\112t#1\by#2\\{\raise#2\hbox{\1famode
{\12\MS T{$#1 $}\else -
{\12\uS S{$\scriptstyle#1$}\else
{$\scriptscriptstyle#13}}}\else{#1}}}

TUGboat, Volume 2, No. 2

2. Groupless \ifs

A good source of inscrutable bugs involves the
way that TEX handles conditionals like \if, \ifpos,
\ifvmode etc.. Let’s suppose that we want to select
font A if the macro \format has the value “1” and
font B otherwise. The obvious method is

\if\format1{\:AX\else{\:B}

but this doesn't work. The reason is that the text

produced is not “\:A” or “\:B”, but “{\:A}" or

“{\:B}". Since font definitions are revoked at the

end of groups the total effect is (nothing useful).

It is sometimes handy to have another version of

\if which avoids this rather unsatisfactory state of

affairs. While we're at it, we'll change the format to

\If{char,)(char:)(true text)\else

(talse text)\endif

— a few fewer braces never hurt anybody. Three

possible definitions for \1f are as follows.

(1) \def\1f#1#2#3\else#4\endit
{\izs1#2{\gdes\Ittemp{#3}}\else
{\gdet\Iftemp{#4}}\Iftomp)

(2) \def\else#1\endif{} \def\endif{}
\der\1s#1#2{\ir#1#2{\gdef\Iftemp{}}\else
{\gder\Iftemp#¥1\else }}\Itten;ﬁ ,

(3) \des\Irsiu2{\it#1#2{\gdef \Iftonmps#1i\else
##2\endif{##1}}\else{\gdet\Ifvonps#1\else
##2\endif{##2}}\If temp}

All three definitions work in most ordinary eir-
cumstances. The first definition has the unpleasant
peculiarity that any #s which occur in (true text)
or (false text) must be typed as ##, a prob-
lem which grows exponentially if \Ifs are nested.
The second definition avoids this problem but has
another deficiency: it won’t nest properly (why?).
The third definition avoids both problems. If (true
text) or (false text)contains another \If, simply
enclose it in {}s. This doesn’t cause grouping, of
course, but it will ensure that each \else or \endif
gets paired with the right \IZ.

3. Recursion

Although the TEX manual apparently never says
so, the macro facility in TEX is completely recursive.
In other words, macros can directly or indirectly call
themselves. Of course, we are not given this little
gem of information because the knowledge would be
almost useless. Nevertheless. there is a little gap
between “almost useless” and “completely useless”,
and this section is devoted to exploring it. Three
applications of recursion we will consider are (i) loop
structures, (ii) counter arithmetic and (iii) macros
accepting variable numbers of arguments.

(i) Loops are quite easy to create in TEX as long
as one respects TEX's finite capacity. In order to
make loops which can be repeated a large number

TUGboat, Volume 2, No. 2

of times, the recursive call must be the very last
thing in the expansion, and in particular it must
not be in a group (TEX won’t nest groups to an
indefinite depth). The last requirement means that
the recursive call can't be part of the result text of
a conditional (see Section 2). Here’s some examples:

\def\savecount#1#2{\itpos#1{\xdef
#2{\count#1}}\else
{\setcount#1-\count#1\xdef#2{-\count#1}
\setcount#1-\count#1}}

\gdef\Wtemp#1#2{#2\Wloop#1{#2}}

\def\Wicop#1#2{\itpos#1{}\else
{\gdet \Weemp##1##2{} } \Weenp#1 {#2}}

\def\while#1#2\endwhile{\Wloop#1{#2}\gdet
\Wtemp##1as2{#82\Wloop#s1{##2}}}

\def\repeat#1\tines#2\endrepeat
{\savecount9\Rtemp\setcount9#1
\while9{#2\advcount9by-1}\endwhile
{\setcount9\Rtemp}}

\savecount{digit){control sequence) saves
the value of a counter in a control sequence.
\while{digit){text)\endwhile will produce (text)
repeatedly until \count{digit) becomes non-
positive. (Presumably (text) will set the counter
non-positive eventually.) \whiles can be nested if
tlev use different counters.

\repeat{value)\times{text)\endrepeat will
produce (text) precisely (value) times, where
{value) can be either a number or a counter.
The use of \Rtemp in \repeat enables \repeats
to be nested to one level, but no further.
For example, \repeat5\times{x-\repeat3\times
aA\endrepeat}\endrepeat produces

x-aAaAaAx-aAaAaAx-aAaAaAx-aAaAaAx-aAaAaA.

(ii) The fact that counter operations like multi-
pli- ation and division are not provided by TEX is one
indication of their likely usefulness. Of course, that
won’t stop us from doing these operations anyhow.
\def\neg#1{\setcount#1-\count#1}

\def\H1f#1#2 {\advcount9by-#2\advcount9by-#2
\ifpos9{\advcount#1by#2}\else
{\advcount9by#2\advcount9by#2}}

\det\halve#1{\savecount9\Htemp
\setcount9\count#1\advcount9\setcount#t 0
\H11#11073741824 \H1f#1536870912
\H11#1268435456 \H1I#1134217728
\H11#167108864 \H11#133554432 \H1{#116777216
\H17#18388608 \H1f#14194304 \H1f#12097152
\H1£#11048576 \H12#1524288 \H1f#1262144
\H1f#1131072 \H11#165536 \H11#132768
\H11#116384 \H1£#18192 \H11#14096
\H1£#12048 \H1f#11024 \H1f#1512 \H11#1256
\H1{#1128 \H1f#164 \H11#132 \H1f#116 \H1f#18
\H11#14 \H1f#12 \H1f#11 {\setcount9\Htemp}}

\def\multiply#1\into#2{\setcount8#1\setcount9
\count#2\setcount#2 0
\while8\ifeven8{}\else
{\advcount#2by\count9}
\advcount9by\count@\halves\endwhile}

47

\det\divide#1\into#2{\setcount9\count#2
\setcount#2-1\advcount9
\while9{\advcount#2by1
\advcount9by-#1}\endwhile}

\def\Divide#1\into#2{\ifpos#2{\divide#1\into
#2}\else{\neg#2\divide#1\into#2\neg#2})}

\det\sqroot#1{\setcount9\count#1\advcount9
\setcount#i-1\setcountsi
\while9{\advcount9by-\count8
\advcount#1by1\advcount8by2}\endwhile}

\halve(digit} will divide any counter other
than counter 9 by two, provided its original value is
in the range 0 to 4294967294. Some of the earliest
calls to \H1f will need to be removed for machines
with small word-sizes. \sqroot{digit) will take the
square root of any non-negative counter other than
counter 8 or 9. In the other cases, the format is
\operation(valuej\into(digit), where {value) is
a number or a counter and (digit) is a counter num-
ber for the other argument and the answer. (value)
must be non-negative in each case. \count(digit)
may be negative for \Divide or \multiply but not
for \divide. The restrictions on which counters
can’t be used and which counters are destroyed are
most easily seen by examining the definitions. Both
\halve and \multiply are quite fast, but \divide,
\Divide and \sqroot take time proportional to the
answer.

(iii) The method by which recursion can allow
a macro to apparently accept any number of argu-
ments is best illustrated by an example. The macro
\options below will accept any number of single
character arguments, each of which will presumably
cause some useful action. If an “x” occurs it must be
followed by two arguments (which somehow belong
to the x). Also, a “d@” implies a “j” as well. The end
of the argument list is indicated by a period. A pos-
sible call would be “\options rx{30pt}{75pt}d.”.

\def\options#1{def\Next{\options}
\If a#1{something)\else\endif
\If j#1(something)\else\endif
\Iz x#1
\def \Next.##1##2{{something)\options}
\else\endit
\If d#1i(something)
\options j. \def\Next{\options}\else\endif
txr .;1\def\lloxt.{}\else\endif
Next,

A macro of this sort is invaluable in writing a
general purpose macro package, especially one to be
used by many people. A large number of different
style options can be provided, and each user can
easily select any combination.

Research Problems:
" (1) Speed up \divide and \sqroot.

48

(2) Write a macro which tests two character strings
for a character in common. Then dream up an
application.

4. Pictures

In this section we describe a few macros which can
facilitate the drawing of complicated diagrams. The
two macros at the heart of the method are these:

\def\picture#1#2#3#4\endpicture{{\varunit#t
\vbox to #2{\vss\hbox to #3{\!#4\bss}}}}

\det\put#1 (#2, #3) {\raise¥3vu\hbox to Opt
{\hskip#2vu#i\hss}\ '}

The result of \picture(dimen,)(dimenj)
(dimenz){hlist)\endpicture is a vertical box of
height {(dimen;) containing a horizontal box of width
(dimenz) which contains (hlist). (dimen,) be-
comes ivu. Each position in the picture has coor-
dinates of the form (z,y), where z is the dis-
tance in vu from the left boundary and y is the
distance in vu from the bottom of the picture.
Thus (0,0) is the reference point of the picture.

To put (something) at position (36,475) simply

type \put(something)(36,475). The second coor-
dinate cannot be negative. Both coordinates can be
specified as the values of counters.

By putting \puts inside \puts, a temporary
change of origin can be affected, allowing sections
of the picture to be moved around in one piece. For
even greater flexibility, picture a \picture within
a \picture. (The inside \picture should be given
width zero.) The overall scale of the picture can be
adjusted by changing (dimen,).

Just for fun, we’ll give macros for inserting
horizontal or vertical rules into & picture and for
drawing dotted lines.

\def\line (#1,#2) (3, #4) {\put\setcounts#4
\advcountSby-#2 ‘
\1fpos8{\hskip-0.2pt
\vrule depthOpt widthO.4pt height \count8wu}
\else{\setcount8#3\advcount8by-#1
\vrule depth0.2pt width \count8vu
beight 0.2pt}(#1,#2)}

\def\speck{\hskip-0.3pt
\vrule height0.3pt depth0.3pt width0.6pt}

\def\dotline#1 (¥2,#3) (#4,#5){\put
\speck (#2,#3) \setcount7#4

. \advcount7by-#2\setcount8#5\advcount8by-#3
\Divide#1\into7\Divide#1\into8
\setcount5#2\setcountE#3
\repeat#1\times\advcount5by\count?
\advcountEby\count8
\put\speck (\count5, \count8) \endrepeat\ '}

\line ({coords;)) ({(coordsy)) will draw a solid
line between the points given. These must be
specified in the order left-right for a horizontal rule
and bottom-fop for a vertical rule.

TUGDboat, Volume 2, No. 2

\dotline(value)({coords;)) ({coordss)) will
draw a dotted line consisting of (value)+1 \specks
between the points specified, which can be given in
either order. The last \speck can be misplaced by
up to (value)vu due to rounding error, so 1vu should
be small if (value) is large. \dotline can be used
to make solid diagonal lines by placing many small
dots very close together, but you won'’t get far before
TEX runs out of space. Both \1ine and \dotline
will only accept integer coordinates, but this is no
restriction if 1vu is small.

\picture can also be used as a very versatile
and simple to use system for creating complicated

- symbols, like &

We conclude with a couple of more complicated
\pictures. Here is the source for the second:

\def\overt{\lower2.5pt\hbox
{\hskip-2.3pt\:u\char’'§}}
\def\cvert{\lower2.5pt\hbox
{\bskip-2.3pt\:u\char’17}}
\picture{0.083pt}{size}{size}
\setcountd4 5000\setcount5 4980
\setcounté 4620\setcount? 0
\while4{\setcount3 3800\setcount2 3780
\setcountl 3420
\while3\ifeven?
{\put\overt(\count3, \countd) }\else
{\put\evert (\count3, \count4) }\ifposi{\line
(\count1, \count4) (\count2, \count4) }\else{}
\itpos6{\1line
(\count3, \count6) (\count3, \count5) }\else{}
\adveount7\advcount1by-400\advcount 2by-400
\advcount3by-400\endwhile
\advcount7\advcountdby-400\advcount5by-400
\advcountéby-400}\endwhile
\endpicture

TUGboat, Volun!e 2, No. 2

o

© I
. >
I}

, A .

Qe

49

50

MACRO MADNESS
Michael Spivak
2478 Woodridge Drive,
Decatur, GA 30033

This article is an extract from the documentation
for the not-yet-completed AMS-TEX maero package.
It discusses certain tricks and pitfalls that other
macro writers might want to know about. Needless
to say, none of this trickery would have been possible
without the help of Don Knuth.

It should be mentioned that the AMS-TEX
macro package initially \chcodes the symbol |
(ASCII-174) to be a letter, and all internal AMS-TEX
macros contain a | as one of their letters. At the
very end of the macro file, | is re-\chcoded to be
of type 12, so that the AMS-TEX user cannot re-
define, or even use, these control sequences (the in-
put \csl will be read as \cs |). For convenience,
we will omit the |s here, and we will use mnemonic
names for control sequences—the actual names used
by AMS-TEX are very short (at most three letters, in-
cluding any |s), in order to preserve memory space.

Please report any bugs to the above address as
soon as possible—before the macro package gets dis-
tributed widely!

L Branching Mechanisms.
The only branching mechanism provided by TgX
is
\if (char;)(char,)}{(true text)}
\else{(false text)}

and its relatives. Unfortunately, there are certain
peculiarities of \if...\else that require special
care.

(a) An \if...\else construction is processed
in TEX's “digestive system”, rather than in its
“mouth”. Suppose, for example, that we have two
control sequences \cza#1 and \csb#1#2, taking one
and two arguments, respectively, and a control se-
quence \flag that is sometimes defined to be T and
sometimes defined to be F. We would like to define
\cs to be \csa if \flag is T, and \csb if \flag is
F [the argument(s) for \cs will simply be whatever
comes next in the input text]. If we try to define

\def\cs{\if T\flag{\csa}\else{\csb}}
then a use of \cs will produce the error message
! Argument of \csa has an extrs }

because TEX sees the } as soon as it looks for the
argument after \csa or \csb. The solution to this

TUGboat, Volume 2, No. 2

problem is to define
\def\es{\if T\flag{\gdef\result{\csa}}
\else{\gdef\result{\csb}}
\result}

® A similar problem arises in the following situation.

Suppose that we have two different macro files,
nfile.1 and mfile.2, and the value of \flag is sup-
posed to determine which file to use (such a scheme is
useful for saving TEX memory space). A definition like

\def\cs{\if T\flag{\input mfile.1}
\else{\input mfile.2}...}

gives a different error message:
! Input page ended on nesting level 1
but the basic problem (and the solution) is exactly the
same.
If we make the definition

\def\If#1\then#2\else#3{\if#1
{\gdet\result{#2}}
\else{\gdef\result{#3}}\result)

then we can safely use constructions like
\If T\flag\then...\else{...}

The token \then is made part of the syntax of \If
so that we can have constructions like \If \cs a\cs
b\then. .., where \cs#1 is a control sequence with one

argument.

(b) Although (char,;) and (char,) may be specified
by control sequences like \flag, which TEX ex-
pands out, they cannot involve \if. .. \else again.
Suppose, for example, that we have already defined
\def\ab#1{\if#1a{T}
\else{\if#1b{T}\else{F}}}
so that \ab#1 is T if #1 is a or b, and F otherwise. We
would now like to define \cs#1 to be {true text)
if #1 is a or b, and (false text) otherwise. We
cannot conveniently define
\def\cs#1{\if T\ab#1{(true text)}
\else{(false text)}}

If we do this, then the input \¢s x will become
\if T\if xa{T}\else{\if xb{T}

\else{F}}{(true text)}\else{{false text)}
which causes TEX to try to compare T with \if,
giving an error message.

Of course, the test for #1 being a or b could be
made part of the definition of \cs, but the following
scheme is far more advantageous:

\def\ab#1{\if#1a{\gdef \Ab{T}}
' \else{\it#1b{\gdef\Ab{T}}
\else{\gdef\Ab{F}}}}
\def\cs#1{\ab#1
\if T\Ab{(true text)}
\else{({false text)}}
(c) In an \if...\else construction, {char,) and
(char) are supposed to be single characters (of type

TUGboat, Volume 2, No. 2

0 to 12), or defined control sequences, possibly with
arguments, that expand out to a character. So we
can’t use an \if . . . \else construction in a situation
where we don’t know for sure what the next input
text will be. Suppose, for example, that \cs#1 is
supposed to be (true text) if #1 is 8 comma, but
(false text) otherwise. If we define

\def\cs#1{\if#1, {(true text)}
\else{(false text)}}

there is always the possibility that our input text
will contain
\es ...

where ... is a token that can't be used with \1if,
or even worse, a group {. ..}, which might produce
total chaos. In order to deal with this we will use
several tricks, which are also useful in other situa-
tions.

II. Basic Kludges
Consider the definitions

\det\false#t{\gdef\ans{F}}

\def\tricka{A}

\def\trickb{B}

\def\tricke#1{\if#1A
{\gdef\result{\false}}
\else{\gdef\result{\gdef \ans{T}}}
\result}

\def\empty#i#2\tricka{\tricke}

The control sequence \trickc will be used only in
situations where the \if is safe. In fact, \tricke
will arise only from an occurrence of \empty, and
the control sequences \tricka, \trickb, \tricke
and \empty will be used only in the construction

\empty...\tricka\tricka\trickb

Here . will be some input text, with perhaps a
few special AMS-TEX control sequences thrown in,
but ... will never involve \tricka (remember that
\tricka is really \trickal, so it can’t appear in a
user’s file).

We have to consider two possibilities for ... in
order to determine the result of this construction.
Suppose first that . .. is not empty. Then argument
#1 for \empty will be the first token or group of
... and argument #2 will be whatever remains (if
anything). Hence

\empty...\tricka\tricka\trickb —

— \trickc\tricka\trickb —
— \false\trickb — \gdef\ans{F}

But suppose that ... is empty, so that we have
\empty\tricka\tricka\trickb

Note that argument #1 for \empty must be non-
empty, since it is not followed by a token in the

Then

51

definition of \empty. So in the present case ar-
gument #1 for \empty will be the first \tricka.
Consequently, the second \tricks will play the role
of the token \tricks in the definition of \empty
(and argument #2 will be empty). Thus

\empty\tricka\tricka\trickb ~»
— \trickc\trickb —» \gdef\ans{T}

In other words,

\empty...\tricka\tricka\trickb
defines \ans to be T if ... is empty,
and F otherwise.

® There would appear to be one exception to this rule:
If ... is a blank space, or a sequence of blank
spaces, then \ans will still be defined to be T, since
spaces after the control sequence \empty are ignored.
But in practice ... will always be an argument from
some other macro, and in this case the exception does
not arise. Suppose, for example, that we define

\def\try#1{\empty#1\tricka\tricka\trickb}
80 that \try{#1} will test whether #1 is empty or not.
If we give TEX the input
\tryd 3}
then the braces will be removed from { }, 50 this will be
translated into
\emptyj\tricka\tricka\trickb

But in this situation the space indicated by U is not
ignored, so \ans will be defined to be F.

® We might have arranged for the result of the com-

bination \empty. . .\tricka\tricka\trickb simply
to be T or F, rather than defining \ans to be T or F. But
if we did this, a construction like

\if T\empty#1\tricka\tricka\trickb{...}
\else{...}

wouldn't work, because TEX would think that we were
trying to compare T with the result of \empty#t\tricka.

The following variant of \empty is also useful:

\def\emptygp#1\eadd
{\empty#i\tricka\tricka\trickb}

\emptygp. . .\endd
defines \ans to be Tif ...
and F otherwise.

is empty or {3,

@ It will be convenient to use the same fiag \ans for
the result of several of our macros. This won't
produce problems if we ever have to perform two tests on
two different arguments: we can alwaye first use \eapty,
then \let\firstans=\ans, then use \esptygp, etc.

52

We aiso want to be able to check if ... is
a single token or group, rather than a string of
several tokens or groups. One ides is to consider
\single...\endd where \single#1#2\endd checks
whether #2 is empty:
\def\single#1#2\endd
{\empty#2\tricka\tricka\trickb}
This won't quite work, since ... might be some-
thing like (token){}; in thie case #2 appesring
in \empty#2\tricka\tricka\trickb will still be
empty, since TEX removes an outer set of braces
from any argument. So to be on the safe side, we
add some extraneous character after ... and let
\single#1#2#3\endd check if #3 is empty:
\def\single#1#2#3\endd
{\empty#3\tricka\tricka\trickb}

Then

\single...*\endd
defines \ans to be Tif . ..
or group, and F otherwise.

is a single token

@ Before using \single...*\endd it is essential
to check that ... isn’t empty. Otherwise there
will be problems, because of the very considerations
that made \empty work. (An \empty check could
be incorporated into the definition of \single, but
whenever AMS-TEX uses \single a separate check
has to be made anyway.)
@ As in the case of \empty, a space may legitimately
occur as argument #1. For example, if we define
\dez\try#1i{\single#1+\endd)

then \try{ X} defines \ans to be F. (But \try{ 1)}
deflnes \ans to be T—the second space never even gets

read by TEX.)

It is now fairly easy to check whether an argu-
ment #1 (which might ¢ prior: be an arbitrary token
or even a group) is a comma. The basic idea is to

define
\def\check#1, #2\endd
{\empty#1\tricka\tricka\trickb}

and then define

\def\comma#1{\check#1, \endd}
8o that \comma{#1} will define \ans to be T if #1 is
a comma, and F otherwise. This won't quite work
for the following reasons:

(i) If #1 is {3 or {{}}, then \comma{#1}
is \conma{} or \comma{{}}. This means
that the #1 appearing in \check#1,\endd
is empty or {}, and thus the #1 in
\empty#1i\tricka\tricka\trickb is empty.

(ii) If #1 is a group {, .. .} that happens to begin
with & comma, then \comma{#1} will define

TUGboat, Volume 2, No. 2

\ans to be T, whereas we want it to be F (this,
admittedly, is a matter of taste).

So we will use \emptygp and \single to check on
these possibilities:
\def\conma#1{\emptygp#1\endd
\if T\ans{\gdef\ans{F}}
\else{\single#1*\endd
\if F\ans{}
\else{\check#1, \endd}}}

Then
\comma{#1}
defines \ans to be T if #1 is , or {,},
and F otherwise.

(The inability to distinguish between , and {,} is a
minor problem that seems insurmountable.)

AMS-TEX needs many such checks, so they are
all made in terms of one generalized check. For
example, \comma is actually defined by

\def\comma#1{\compare*, {#1}}

where \compare is defined as
\def\compare*#1#2{\def\check##1#14#2\endd
{\empty##i\tricka\tricka\trickb}
\emptygp#2\endd
\if T\ans{\gdef\ans{F}}
\else{\single#2+\endd
\if F\ans{}
\else{\check#2#1\endd}}}

The * was made part of the syntax for \compare to
allow \def\space#1{\compare*j{¥1}}.

IIl. Saving Braces
We have just seen that there can sometimes be
problems when braces are removed from the argu-
ment of a control sequence. Actually, the prob-
lem can be much more critical. For example, the
AMS-TEX control sequence \dots#1 first examines
#1 to determine what sort of dots and spacing are
needed, and then produces these dots, followed by
#1 (and the remaining input). The removal of braces
would be a minor annoyance if #1 were something
like {+}, where the braces are meant to make the
+ into a \mathord (something that AMS-TEX users
aren’t supposed to know about anyway). But it
could be a major catastrophe if #1 were something
like {a\frac b}. To handle such problems we define
\def\braced#i{\empty
#1\tricka\tricka\trickb
\if T\ans{\gdef\Braced{{#1}}}
\else{\single#1+\endd
\if F\ans{\gdef\Braced{{#1}}}
\else{\gdef\Braced{#1}}}}

In other words, \braced puts back a pair of braces
if #1 is {} or a group with more than one token or

TUGboat, Volume 2, No. 2

group in it. Thus, \braced{#1} defines \Braced to
be #1 except when #1 is {(token)} or {{...}}, in
which case the outer set of braces is removed. So,
aside from the unavoidable {{token)} case, \Braced
has enough braces to give the same result as #1.

IV. Recursions
There are several ways of handling recursions, all

of which are used at some point in AMS-TEX.
(2) Suppose that we want to define \qms #1 so that

\qus 1 is ?
\qus 2 is ??
\qms 3 is ???
| \qms.:[i(')i'is ?77?777777
ete.
We can define
\det\qgms#1i{\setcountl #1
\def\string

{\itposi{\advcounti by -1
\gdef\newstring{?\string}}
\else{\gdef\newstring{}}
\newstring} Xend of \def\string
\string}
This only appears to violate the rule not
to define a control sequence in terms of it
self: An occurrence of \string may produce
\gdef\newstring{?\string}, but TEX will simply
record this definition, and not try to expand out the
\stzring that occurs in it until \newstring is ex-
panded, at which time an \if test is made, which
produces a new \gdef.

@ \newstring should be defined as ?\string
rather than as \string? to keep TEX's internal
“input stack” from growing unboundedly.

(b) Suppose that we have some input of the form

{string,),(strings), ..., (string,)
with strings separated by some character, like a
comma, and we want the control sequence \operate
to perform some operation on each string. For ex-
ample, we might want to replace each (string;) by
A{string,)Z, so that
\operate{(string;),(strings},...,(string,)}
will produce
A{string;)ZA(string;)Z. . .A(stringn)Z
(We might also want to consider the case where there
are no separators, so that an A and a Z will be
inserted before and after each token or group.) We
will use the token \marker as a “marker” to tell us
when our recursion is over, so we define

\def\1ismarker#1{\compare*\narker{#1}}

Now the basic idea is to define

\def\op#1, #2{\ismarker{#2}
\if T\ans{A#1Z\gdef\nextop{}}
\else{A#1Z\gdes\nextop{\op#2}}
\nextop}

\def\operate#1{\op#1, \marker}

(omitting the commas in these definitions for the
case of no separators).

Unfortunately this won’t work, because there are
problems concerned with the removal of braces.
Each time \op#1,#2 is used, argument #2 is the
first token or group following the comma, and if it
is a group the braces will be removed. The removal
of braces again causes problems if #1 is something
like {a\frac b}, and also if #2 is something like
{(a,b)}, where the braces are meant to “hide” the
comma. We could use \braced here, but it isn’t
quite foolproof, since #2 might be a “hidden” comma
{,}, which \braced can’t distinguish from an ordi-
nary comma. Moreover, \braced can’t help us with
argument #1. Although this argument is usually
a sequence, terminated by a comma, it just might
happen to be a single group followed by a comma,
and there is no way of distinguishing between these
possibilities once argument #1 has been read.

In the cases where AMS-TEX uses a recursive
scheme of this sort, the particular circumstances,
or simple tricks, usually circumvent these problems.
The following definition illustrates a general scheme
that will always work:

\def\kill#1{}
\def\op#1, #2\endd{\ismarker{#2}
\if T\ans{A\kill#1Z\gdef\nextop{}}
\else{A\kill#1Z\gdef\nextop
{\op+*#2\endd}}
\nextop}
\def\operate#i{\op*#1, \marker\endd}

Notice that each time \op#1,#2\endd is used, ar-
gument #1 now begins with * (which is removed by
\kill), so it can’t possibly be a group. And argu-
ment #2 is always the remaining input, terminated
by \marker, so it can’t be a group either.

(¢) A recursive procedure can be used to count the
number of cominas in a string:

\def\cni#1, #2\endd{\ismarker{#2}
\if T\ans{\gdef\nextcm{}}
\else{\advcounti
\gdef\nextcm{\cm#2\endd}}
\nextem}
\dez\countcomnas#i{\setcounti 0
\ca#1, \marker\endd}

54

Then
\countcommas{#1}
makes the value of \countl be the
number of commas in #1.

The \endd trick is used to handle “hidden” commas,
but the * trick isn’t needed, since we don’t care what
\cm does to #1.
(d) If we do \countcommas{#1}, then \ifpos1 will
tell us whether #1 contains at least one comma. But
it is preferable to use the following scheme, which
doesn’t involve any counters, and which stops as
soon a8 the first comma is found:
\def\cn#1, #2{\ismarker{#2}
\if T\ans{\gdef\nextcm{}}
\else{\gdef\Hascomma{T}
\gdef\nextcm##1\marker{}}
\nextem}
\def\hascomma#1{\gdet\Hascomma{F}
\cm#1,\marker}

(e) Suppose we want to perform the operation in
part (b) on some input of the form
(string;)\ \(strings)\\...\\(string,)

where the separator is the control sequence \\
(which is never used in isolation, and is initially
defined by \def\\{}). We could use exactly the
same scheme, replacing \def\op#1,#2\endd by
\def\op#1\\#2\endd. But we can also take ad-
vantage of the fact that the separator is a control
sequence to obtain a definition that is both more
elegant and more efficient:

\def\op#1\\ {A\kil1#1Z\\}

\def\operate#1{\def\\{\op*}

\op*#1\def\op{\kill1}\\

@ The \def\op{} needs to be replaced by
\gdef\op{} if \op puts things inside braces;

in this case, the original definition of \op shouid be

made part of the definition of \operate.

® There might appear to be possible confusion if some

(string;) contains \\ within a group {...\\...}
In AMS-TEX this occurs only in constructions like

{\align...\\...\endalign}
where \\ is temporarily re-defined anyway.

V. Searching For Strings

TEX’s method of determining where an argument
in a definition ends has the following peculiar fea-
ture. Suppose we define ‘

\det\cs#1ab#2{...}

Then the first argument is the smallest (possibly
empty) token or group that is followed by a, not the
smallest group that is followed by ab. So the input

\cs xayabe

TUGboat, Volume 2, No. 2

gives the error message
! Use of \cs does not match its definition.

So if we want to know whether ab occurs in some
string we can’t simply replace the comma by ab in
the method of part IV(d), because an & might occur
alone. Instead we have to do something like the
following:
\def\1isb#1{\comparesb{#1}}
\deZ\finda#1a#2#3\endd{\ismarker{#2}
\if T\ans{\gdef\nextfinda{}}
\else{\isb{#2}
\if T\ans{\gdef\Hasab{T}
\gdef\nextfinda{)}}
\else{\gdef\nextfinde
{\finda#2#3\endd}}}
\nextfinda}
\def\hasab#1{\gdet\Hasab{F}
\finda#ia\marker\endd}

* %2 * % & %X % ¥ ¥ x *»

Problems

* X x X X % % %X 3 x »

The first formatting problems posed in this
column come from the videotaped TEXarcana Class
taught by Don Knuth last March. Solutions will be
presented in the next issue. Readers with working
TEX systems are encouraged to attempt solutions
to these problems, in order to better appreciate the
problems and their solutions. .

Lynne A. Price

Problem no. 1:

Type:
\vskip 12pt
\noindent\hide{--}Allan Temko

\vskip 2pt
\ncindent Architecture Critic

To get:

—Allan Temko
Architecture Critic

TUGboat, Volume 2, No. 2

Problem no. 2:

Type:
\fancy Senator and Mrs.\Stanford had reserved to themselves control of the
University's affairs during their lifetimes, including the parceling
out of "~‘all the money that could be wisely used. " Mrs.\Stanford hed remained in
her husband'’'s shadow---on opening day she could not bring herself to deliver
the short speech she had written out. But following the death of the Senator
she, at age 65, took on full responsibility for the University with
unsuspected strength.

To get: '
enator and Mrs. Stanford had reserved to
themselves control of the University’s affairs
during their lifetimes, including the parceling out
of “all the money that could be wisely used.”
Mrs. Stanford had remained in her husband’s
shadow—on opening day she could not bring her-
self to deliver the short speech she had written
out. But following the death of the Senator
she, at age 65, took on full responsibility for the
University with unsuspected strength.

Problem no. 3:

Type:
\hsize 25em
\noindent This is a case where the name and address fit in nicely
with the review.\signed{A. Reviewer}{Ann Arbor, Mich.}

\vskip 8pt
\neoindent But sometimes an extra line must be added.\signed{N. Bourbaki)}{Paris}

To get:
This is a case where the name and address fit in nicely
with the review. A. Reviewer (Ann Arbor, Mich.)

But sometimes an extra line must be added.
' N. Bourbaki (Paris)

55

56

Problem no. 4:
Type:

\point 0 O

\point 1 2

\point 2 1

\point .5 5
\point -1 -1

To get:

¢(.5,5)

*(1,2)
o(2,1)
(0,0)

¢(—1,—1)

TUGDboat, Volume 2, No. 2

Problem no. 5:

Type:
\hsize 20em
End of a paragraph.\par
\rightjustifythefollowing
This is the first line
{\it This is the second line.}
{\sl The third.}
{\bf The last.}
\endrightjustify
Beginning of another paragraph.

To get:
End of a paragraph.

This is the first line.
This 13 the second kine.
The third.
The last.

Beginning of another paragraph.

Problem no. 6:

Type:
How do you do this?
$$\1lineskip 2pt -
\baselineskip 1.3ex
\vcenter{\halign{\hfil#\hfil\cr
\linedown{Look at this {strange} pile.}}}\qquad
\vcenter{\bhalign{\hZil#\cr
\lineup{And at this {stranger} ome.}}}$$

To get:
How do you do this?

g

. Ql—lu-'ﬁé WLyt o OO
o
POA. we ﬁﬂ'—-ng oba.

TUGboat, Volume 2, No. 2

Balancing C;rlumnl of Text and Translation

I would like to typeset translations in parallel
with original texts using TEX. Perhaps there is a
TEXnician who can solve a formatting probiem con-
cerning this type of typesetting.

It should be possible to recalculate the size of
blocks taken by each language until both languages
end on the same word at the bottom of their block.
Suppose that an initial estimate is made such that
language A consumes 50% of the page and language
B consumes 40% of the page. Ten percent of the
page is taken for margins. When language A is at
the bottom of its block, language B has only con-
sumed 90%% of its block. By making the column of
language A approximately 5% wider and the column
of language B 5% narrower, the last word of both
languages will more nearly come to the end of the
black. ‘Is there an easy macro that will do this in

Johnny Stovall

* % %x ¥ X * ¥ % x ¥ %

Input-Dependent Macro Redefinition

I would like a way of combining various (non-
successive) occurrences of certain types of input as
the values of a macro. For example, initially we
might define \list#1{}. Then an occurrence of
\data{.. .} in the input file should redefine \list
go that \1ist 1 is ..., while \1list 2, \1list 3,
etc. are empty. Another occurrence of \data{***}
sometime later should redefine \list so that
\list 1is ..., \list 2 is **%, \1list 3 is empty,
ete., etc.

Does anyone know how to do this?

: Michael Spivak

Dear TUG Members:

It was mentioned at our last meeting that
TUGboat has yet to receive any “letter to the
editor” submissions. I would like to help rectify that
lack by stating my worries about the effectiveness of
TUG. The Steering Committee is extremely reluc-
tant to adopt any formal structure or bylaws. We
certainly want to avoid unnecessary regulation and
such looseness is fine as long as it does not prevent
the committee from functioning. We do want to
impose certain constraints—I believe the Steering

57

Committee did decide, for example, that, while each
of its members is free to define his own réle, site coor-
dinators should not discourage relevant telephone
calls.

The committee members are very aware that
opinions differ and are reluctant to take action
that might impose their views on the group as a
whole. I fear that this admirable attitude, in con-
junction with an informal structure, may result in
an ineffective Users Group. As a case in point,
Sam Whidden mentioned in May that the Steering
Committee had decided against assigning the main-
tenance and distribution of TEX to a software house.
There was considerable discussion of this point in
January. Bob Morris eloquently argued about the
dangers to university users of such an approach. 1
was not aware, however, that Bob had succeeded
in convincing the committee as a whole. 1 had
supposed that the finance committee would have
prepared alternate proposals before this last meet-
ing, that there would have been more discussion,
and that a final decision would have been based on
a vote. Certainly we cannot continue to abandon
proposals simply because they engender heated dis-
cussion. .

The same attitude emerged in the schedule for
the “Implementors’ Workshop”. The program for
the entire second day of the two-day meeting was left
unplanned in order to allow attendees to raise issues
of their own interest. With the limited amount of
time available, the breadth of the information to be
covered, and the number of opinions to be solicited,
it might have been better for someone to have taken
the responsibility of making the decisions ahead of
time. The intent of the meeting was to provide
demonstrations of output devices and discussions
of TEX implementations on various architectures,
These topics were postponed until the end of an
intense conference. While the other material was
of unquestionable value, it was of most interest to
users who currently have access to TEX and to in-
dividuals considering acquiring TEX rather than to
those who have decided to install TEX but have not
yet succeeded in doing so. It is ironic that Richard
Palais pointed out that it has been over a year since
a general meeting of all TUG members—surely, had
it been so advertised, this meeting could have been
one. It is also ironic that Phil Sherrod suggested
small workshops hosted by assorted TEX sites to
describe their own installations. Such a suggestion
indicates that this meeting did not fulfill its intended
purpose.

The May 14t Steering Committee meeting was
open to the membership as a whole. The Steering

58

Committee certainly wants its actions to be visible,
it wants to solicit the opinions of others, and to
encourage new volunteers. However, by the time alt
participants in such a large group have voiced their
opinions, it is impossible for decisions to be reached.
We need an effective decision-making process.

The Steering Committee has also proposed rais-
ing individual membership fees and establishing
institutional memberships. This action has been
delayed until TUG determines the services it will
offer in exchange for such funds. A current situation
illustrates both the need for some formal organisa-
tion and the need to raise money. The ANSI X3J6
committee on text processing language standards is
meeting June 22-26. Experienced users of two other
mathematical typesetting systems have been invited
to present the software with which they are familiar.
This ANSI committee has asked that a TEX user also
participate. Although it is likely I will join X3J6, I
am unable to attend the upcoming meeting. Mike
Spivak has volunteered to substitute for me, but
does not have institutional support for his travel ex-
penses. The officers of the TUG Steering Committee
strongly feel the Users Group should support this
activity. However, our treasury is empty and it is
not clear who can authorize such expenses.

The cure for this chaos is more work by the
Steering Committee. Sub-committees should meet
(even electronically or by telephone) between general
meetings. Someone must accept the responsibility
of organizer and must be willing to make decisions,
even if they are temporary decisions later vetoed by
vote of the entire membership. I am as guilty as
anyone else of neglecting my Steering Committee
responsibilities except during meetings and the few
days before TUGboat submission deadlines. I, for
one, will attempt to be more active in the coming

months.
Sincerely yours,
Lynne A. Price

* X % ¥ % * ¥ ¥ *

Dreamboat

* %X %X % * * x * *

* =

* %

Send Submissions to:
Lynne A. Price
Calma R&D
212 Gibraltar Dr.

Sunnyvale, CA 94086
One refreshing quality of the TEX user com-
munity, and particularly of the system’s creator, is
that TEX is viewed, in fact intended, to be the an-

TUGboat, Volume 2, No. 2

cestor of an evolving family of document formatters
rather than as a static piece of software that will
be used for decades. DREAMBOAT is a feature
of TUGboat where users can describe (in whatever
detail) capabilities they would like to see imple-
mented in some successor system.

A brief “Son of TEX" session was held at Stanford
in May. Extensions of immediate interest include
applications to non-mathematical documents, even
those printed in languages other than English. The
foreign language application requires replacement of
the English-based hyphenation module. For Hebrew
and Arabie, right-to-left formatting would be con-
venient. There is also current interest in interfacing
a general graphics capability with TFX. As described
in the last TUGboat, Vanderbilt University has
modified the Versatec spooler to allow output of plot
files created in a format compatible with their Zeta
pen plotter. They intend to modify TEX so that
plot files can be merged with TEX output. Other
installations are working on graphics extensions.

TEX's user interface, particularly the input lan-
guage and error messages, was also discussed, as
an area to be improved in the less immediate fu-
ture. One specific point mentioned was the difficulty
of identifying which spaces and carriage returns
are significant. Macro languages in general were
criticized. The controversial suggestion was made
that future systems be more like programming lan-
guages. Joe Weening, a Stanford student, described
his work on a TEX derivative called LaTgX, which is
a hybrid of TEX and Lisp. In LaTEX, one can escape
from TEX into Lisp, to do complex computations or
text manipulations which are difficult or impossible
to do in TEX.

Other topics included page markup and an inter-
active (“what you see is what you get”) version of
TEX. There was some discussion of a feature that
enabled users to tell where on a page material was
being placed. David Fuchs pointed out that such
a feature is incompatible with TEX’s algorithm for
determining page breaks.

TUGBoOAT ' ' VOLUME 2, NUMBER 2

Contents
July 1981
Addresses of Officers, Authors and Others. oottt ii ittt v tonoceas 2
ORcis] ADNOURCEINENTS. . . .« v v v« e+ e e e o s s o o s s s o e v o s oo v o v oaoooesnnnsns 3
General Delivery
Robert Welland. Editor’s Remarks ¢ i o o v v e ittt et v o oo v o snnnooeenean 3
Michael Spivak. Chairman’s Report « . o ottt i it ittt it e it st 3
Robert Morris. Report on the TUG Steering Committee Meetmg 4
Samuel B. Whidden. TUG Treasurer’s RePOrt« ¢ v vt o o v vt v v oo oo evnnnonoos 5
Robert Morris. Proposal for Institutional Support of TUGo vv s .. 5
Barry Doherty. Report on the TEX Implementors’ Workshop, Stanford, 14-15May 1981 6
Workshop Attendees« o v v i i v vt o i it ettt et e 8
Tom Pierce. Preliminary Announcement: TUG Meeting, Cincinnati, January 1982 8
Patrick Milligan. Ask Not What TUG Can Do For You,
Ask What You Can Do For TUG! i i i ittt vnnnen 9
Patrick Milligan. A Proposal for 8 Machine Independent Tape Interchange Standard 10
Boftware
David Fuchs. The Format of TEX’s DVIFiles, Version 1 o v i v v s e v s s ann s 12
Ignacio Zabala. Some Feedback from PTEX Installations 16
Frank M. Liang. TEX and Hyphenation « v i vt it it i it e e e s s s nnan oo 19
Kent S. Harris and Robert M. McClure. TEX on Small Machines et 21
Output Devices
David Fuchs. Output Device News Flash (APS-5 and Linotron 202) 25
Summary of Computing Equipment and Output Devices00t 25
Luis Trabb-Pardo. Imagen (Canon LBP-10) ettt enonns EERERE 26
Site Reports
CDC Cyber
Thea Hodge and Michael Frisch. TgX Under the North Star 28
DEC 10 and 20
Phil Sherrod. DECSystem-10/20 Implementation Workshop Announcement 28
Barbara Beeton. AMS Site Report o v v i v o v it e st e e e e e 29
Patrick Milligan. TEX at the 1981 Spring DECUS U.S. Symposium 29
Rachel Schwab. TEX at NIH.« o ¢ v i it ittt it it e st e tsene e 29
Univac 1100
Bill Kelly. An Implementation Report for the Univac 1100« ¢ o e oo v nv 30
VAX
Monte Nichols, Barry Smith. Availability of
Oregon Software Implementation of TEX for the VAX/VMS 33

*kkEk Continued *kEk¥

TUGbost, Volume 2, No. 2

Contents — Continued
Fonts
Barry C. W. Doherty. TUG Font Committee ¢ i v i it i it et v et e e o 34
Thomas B. Hickey. The Status of METAFONT st OCLC it i vi v e v 35
- William J. LeVeque. Font Development at the American Mathematical Society 39
Ronald Whitney. TPHON @ it i it ettt ot e et e ettt eneeeanas 40
Barry Doherty and Ronald Whitney. Proofmode and Magnifieatior. 40
Warnings & Limitations
Barbara Beeton. Uppercase Update; Fickle Fonts. ¢ i it eeneeen 42
Macros :
Lynne Price. Greetingsfromthe Editor« o o v i vttt et et e e neesneenan 43
Macros on Microfichec... e e e e e e e e e e e e 43
Patrick Milligan. Erratum: NOFILL Program o i ot v v n v oo ot e s 43
Patrick Milligan. DefineFontt i it i it i et e et e e e e 44
Brendan McKay. AMacro Menagerie v v v o v v e v it ot vttt s s ot et e 46
Michael Spivak. MacroMadness e et i e e e e s e e a e 50
Max Diaz. Fécil TEX . . (omitted -~ obsolete) . . Appendix A
Problems
Lynne Price. Greetingsfromthe Editor o i i it v it et et o e enesonas 54
Problems from the TEXarcans CoUrse v v it v v vt vt ot e et os o oeenns e 54
Johnny Stovall. Balancing columns of text and translation stovall
Michae] Spivak. Input-Dependent Macro Redefinition spivakprob
Letters ‘
Lymme Price. i e e e e et e e e e e 57
Dreamboat

