12

— On an IBM 370/3033 with Pascal/VS at
Stanford CIT (Eagle Berns).

- On a VAX (VMS) at Oregon Software (Barry
Smith).

- On an IBM 370/3022 (VM-CMS) with SLAC-
Pascal at the University of Pisa (Gianfranco
Prini). They printed the DVI files on a Versatec.

— On a Univac 1100/82 at the University of
Wisconsin (Ralph Stromquist). Output is to a
Compugraphic 8600. (See report, p. 51.)

From the information sent to Stanford, we gather
that the Pascal compilers being employed in the
installations of TEX are:

IBM 370: Pascal-VS, SLAC-Pascal, Pascal-8000
UNIVAC: U. of Wisconsin Pascal, Pascal-8000
PDP-10: Hamburg Pascal

VAX: (See report by Janet Incerpi, p. 49.)

Note: Charles Lawson (Jet Propulsion Lab.—
Caltech) has produced two short reports that can
help in reprogramming the SYSDEP module of TEX-
Pascal. (Both are reprinted in this issue, pp. 20 and
32)

TEX FONT METRIC FILES
What happens when you say “\font A=CMR10”

David Fuchs

When you tell TEX that you will be using a par-
ticular font, it has to find out information about that
font. It gets this information from what are known
as . TFM files. For instance, when you say \font
A=CMR10 to TEX (\:A=CMR10 in the old TEX lingo),
TgX looks around for a file called CMR10.TFM, and
reads it in. If CMR10.TFM is not to be found, TEX
will give you the error message "Lookup failed on
2ile CMR10.TFM*, and you will be out of luck as far
as using CMR10 is concerned.

What does TgEX want with the TFM files?
Generally speaking, a font’s TFM file contains in-
formation about the height, width and depth of all
the characters in the font, plus kerning and ligature
information. So, CMR10.TFM might say that the
lower-case “d” in CMRI10 is 5.55 points wide, 6.94
points high, etc. This is the information that TEX
uses to make its lowest-level boxes—those around
characters. See the TEX manual (p. 41) for in-
formation about what TEX does with these boxes.
Note that TFM files do NOT contain any device-
dependent description of the font (such as the raster
description of the characters at a certain resolution).
Remember that the program TEX does not deal with

TUGboat, Volume 2, No. 1

pixels. Only device-drivers that read TEX’s DV1 out-
put files use that sort of information.

Where do .TFM files come from? The best way

' to get a TFM file is with METAFONT. Font desig-

ners should include the METAFONT instructions
that specify the width, height, etc. of each charac-
ter they design. The METAFONT manual contains
details and examples of how to do this—see the in-
dex entries for charwd, charht, chardp, etc. If this
is done, then when METAFONT is run on CMRI10,
it produces CMR10.TFM. (Depending on what
“mode” it is run in, it also makes CMR10.FNT,
CMR10.ANT, CMR10.VNT, or CMR10.0C. These
are all different formats for files containing the raster
description of the font. Drivers for various devices
require one or another of these files.)

Whatever happened to the TFX format that the
TEX and METAFONT manuals actually refer to? Is
this just a misprint for TFM? No—TFM files take
the place of TFX files. The differences are concep-
tually small; they both contain more or less the same
information. The main reason for changing TEX and
METAFONT from using/making TFX files to TFM
files is that TFX files were based on 36-bit words.
This proved to be a real problem for people running
Pascal TgEX, especially on 32-bit machines. The for-
mat of TFM flles assumes 8-bit bytes, packed four
to a 32- or 38-bit word. They are readily adapted
for use on 16-bit machines, too. While the format
was being changed, a few new bits of information
were added, too.

What if I have fonts that I want TEX to know
about that were not made with METAFONT?
Don't despair—we have two programs, TFTOPL
and PLTOTF, that convert TFM files to readable,
editable format, and back again. For instance,
if we run TFTOPL on CMR10.TFM, it makes
CMRI10.PL, an excerpt of which follows (“R” means
a floating-point number is coming up (all dimensions
given in this form are in terms of the DESIGNSIZE);
“C” means that a character is next; “0” means an
octal value for a character that isn't an ASCII print-
ing character is next):

(FAMILY CMR)

(DESIGNSIZE R 10.0000000)

(CODINGSCHEME TEX TEXT)

(TEXINFO
(S8PACE R
(STREICH R
(SHRINK R .111110T)
(XHEIGHT R .4444447)
(QUAD R 1.0000000)
)(EXTRASPACE R .1111107)

.3333330)
.16666T0)

TUGboat, Volume 2, No. 1

(LIGTABLE

(LABEL C 1)

(LIG C 1 0 174)

(LIGC £ 0 1T3)

(LIG C 1 0 175)

(LIG C t D 44)

(810P)

(LABEL C o)

(KRN C o R .02TTTTT)

(KRN C x R -.0277TTT)

)(STIJP)
(CHARACTER C d

(CHARWYD R .5555558)

(CHARHT R .684444T)

(CHARDP R .0000000)

)
‘Which says: This font is in the CMR family, its
size is 10.0 points, and it’s a regular TEX font for
text. When TEX uses this font, it should know that
the glue between words should be 3.33pt plus 1.66pt
minus 1.11pt. TEX will also know that the x-height
of CMRI10 is 4.44 pt, a “quad” of space is 10 pt,
and the extra amount of space at the end of a sen-
tence is 1.11 pt. (see the METAFONT (Appendix F)
and TgX (everywhere) manuals for more on these
parameters). Also, TEX should recognize that when-
ever “f” is followed by “i*, “I", “I”, or “t”, that it’s
time for a ligature: an occurrence of “£1” should be
replaced by the character in octal position 174 in
CMRI10 (“fi"; see the Appendix of the TgX manual
that shows font tables to verify this), etc. Whenever
*o” is next to another “0”, they should be moved
apart by .277 pt more then they would otherwise
be (based on their widths), but an “o” should be
moved .277 pt closer to a following “x”. Finally,
the character “d” has width 5.55 pt, height 6.94 pt,
and depth 0 pt. The full CMR10.PL file has lots
more in its LIGTABLE and many more CHARACTER
descriptions, of course.

¥ we changed the line

(CHARWD R .5555553)
to

(CHARYD R .TO0)
and ran PLTOTF, making a new CMR10.TFM,
TEX would now think that “d® had width 7 pt in
CMR10.

So, if you have your own fonts that you’d like TEX
to know about, just make PL flles for them, and
then run PLTOTF to make TFM files. With luck,
your fonts will be in some computer readable form
such that the PL flles can be made with a fairly
gimple program. Note that it is perfectly legal to
have a TFM (or PL) file that specifies no kerns or
ligatures.

13

In fact, TFM files may contain a fair amount
more information about a font than just the heights,
widths, depths, kerns and ligatures. Most of these
extra paramaters only come up in the special math
fonts. The METAFONT (Appendix F again) and
TEX manuals talk about these parameters in more
detail. Below is a complete but scary description
of all the bits in TFM files. This description was
actually excerpted from a comment in the SAIL-

language version of TEX.

¥ % % % % *x % % * % %

This deflnition of TFM files is due to Lyle
Ramshaw.

Each font used by TgX has an associated font
information fille. The name of this file is obtained
by appending the extension code *. TFM” to the font
file name. For example, the TEX font metrics for the
font CMR10 appear on the file CMR10.TFM. These
.TFM files are written with 32 bits in each word, to
facilitate their transportability. When they sit in
the file systems of 36-bit machines, these 32 data
bits will be lefi-justified in the 36-bit word, leaving
the rightmost four bits sero.

The first 6 words of the .TFM file contain twelve
18-bit integers that give the lengths of the various
portions of the file, packed two to a 32-bit word.
These twelve integers are, in order:

1f = length of entire file in words,

1h = length of header data,

be = first character code in font,

ec = last character code in font,

nw = number of words in width table,

nh = number of words in height table,

nd = number of words in depth table,

ni = number of words in italic correction table,
nl = number of words of lig/kern program,
nk = number of words in kern table,

ne = number of words in extensible character

table,
ap = number of font parameters.

In .TFM format, the subfields of a word are always
allocated in left-to-right (BigEndian) order. Thus,
the first two integers in this list, 1£ and lh, are
packed into the first word of the .TFM file with 12
on the left and 1h on the right.

These lengths are not all independent: they must
obey the relation
11=6+1h+(ec-bc+1) +nw+nh+nd+ni+nk+nl+ne+np.

14

The rest of the .TFM file is a sequence of ten data
arrays as specifled below:

HEADER= ARRAY[0:1h-1] of Stuff

FINFO= ARRAY[bc:ec] of FInfoEntry
¥IDTH= ARRAY[O:nw-1] of FIX

HEIGHT= ARRAY[0:nh-1] of FIX

DEPTH= ARRAY[0:nd-1] of FIX

CHARIC= ARRAY[0:ni-1] of FIX

LIG/KERN= ARRAY[0:nl-1] of LigKernStep
KERN= ARRAY[0:nk-1] of FIX

EXT= ARRAY[O:ne-1] of ExtRecipe
PARAMS8= ARRAY[1:np] of FIX.

A FIX is a one-word representation of a real num-
ber in a fixed-point fashion. FIXes are used in .TFM
format to enhance transportability. A FIX is a
signed quantity, with the two’s complement of the
entire FIX used to represent negation. Of the 32 bits
in the word, 12 are to the left and 20 are to the right
of the binary point. This means that a FIX has 1
bit of sign, 11 bits of integer, and 20 bits of fraction.
Note that this limits the size of real numbers that a
FIX can represent: the largest FIX is roughly 2000.

The first data array is a block of header informa-
tion, general information about the font. Currently,
the header contains 18 words, allocated as described
below. In the future, new flelds might be added at
the end of the header block.

HEADER=
[
ChecksSum: 1 word
DesignSize: FIX (1 word)
CharacterCodingScheme: 10 words
ParcFontIdentifier: 5 words
Random word (=Header [17]
is broken up as follows:)=
[

SevenBitSafe: 1 bit
unusedspace: 23 bits
ParcFaceByte: 8 bits
]

]

The CheckSum field is used to hold a unique
identifler of some sort that describes this version of
the font. This unique ID is put by METAFONT
into both the rasters and metrics. TgX finds it in
the metrics, and stores it in the .DVI file. Thus, a
spooler can check the unique ID in the .DVI with the
unique ID in its rasters, to provide a guarantee that
TeEX was working with metric data for the current
rasters. METAFONT computes this checksum from
the metric information in the .TFM file.

The DesignS8ize of the font is the size that the
font was intended to look good at, or, to put it
another way, the nominal size of the font when it is
printed at a magnification of 1.0. For unusual fonts

TUGboat, Volume 2, No. 1

such as CMDUNH and CMATHX, the DesignSize
is more-or-less arbitrary. The Design8ize is stored
as a FIX with the units “points”.

The CharacterCodingScheme fleld is supposed to
specify what the character code to symbol transla-
tion scheme is in this font. The coding scheme is
stored in 10 words=40 bytes of the .TFM file, as 3
string. The first byte gives the length of the string,
the next n bytes are the characters, and the last
(39 — n) bytes are zeros (where “first® and “next”
imply working from left-to-right). Some common
coding scheme names are:

CharacterCodingSchemes:

TEX TEXT

TEX TYPEWRITER TEXT

TEX MATHIT

TEX MATHSY

TEX MATHEX

UNSPECIFIED — defauit, means no information

GRAPHIC — special purpose code, non-
alphabetic

ALPHABETIC — means alphabet agrees with
ASCII at least

ASCII — means exactly ASCIl

PARC TEXT — Times Roman and Helvetica,
for example

SUAX

cMu

MIT

Fonts are universally referred to by their file
names: for example “CMRI10” for Computer
Modern Roman 10 point, “CMTT" for Computer
Modern TypeWriter Type 10 point, etc. The TEX
user specifies the font by giving this string name,
the TEX output module finds the metric file by using
this name with the extension .TFM, and the various
printers store the rasters as files with this name and
some other extension.

TEX can only handle character codes that are
seven bits in length. But the .TFM format always
allows a full eight bits for a character code, 30 the
high-order bit of all characters specified must be
zero.

The HEADER data is followed by the FINFQ table,
which is an array of FInfoEntrys. This array is
indexed from bc to ec, and hence contains (ec —
bc + 1) entries. Each FInfoEntry is one word in
length. An FInfoEntry is a compacted structure
with the following format (fields allocated from left

to right once again):

TUGDboat, Volume 2, No. 1

FIantoEntry:
(
¥idthIndex: 8 bits
HeightIndex: 4 bits
DepthIndex: 4 bits
CharIcIndex: 8 bits
TagField: 2 bits
Remainder: 8 bits
]

The fleids in the FInfoEntry do not give the
character width, height, etc. directly, they are in-
dices into secondary tables. Thus, up to 256 different
widths may appear among the 256 characters of
a single font, and up to 16 different heights, 16
different depths, and 64 different italic corrections.
The actual widths, heights, depths and italic correc-
tions are stored in the .TFM file as arrays of FIXes
with “em” as their units. TEX reads in these FIXes,
converts them to floating point form, scales them by
multiplying by the desired font size (in points), and
stores them into internal character metric arrays.

The Charlc fleld is used both for the italic cor-
rection of ordinary characters and for mathop kerns.
In particular, for mathops such as summation and
integral signs, the CharIc field points to a “kern”
which, if nonzero, means that limits are normally set
to the right and the lower limit is shifted left by this
kern value. I the kern is O, limits in display style
will be centered above and below the operator. (To
change between centering and attaching at the right,
one writes “\l1imitswitch” after the operator.)

A note on non-existent characters: all character
codes outside of the range [be, ac] represent charac-
ters that do not exist in the font. Any codes in the
range [bc,ec] that represent non-existent charac-
ters will have their FInfoEntrys identically equal
to 0. The WIDTH, HEIGHT, DEPTH, and CharIc ar-
rays will each be guaranteed to have a FIX of 0.0
in their O’th position. Thus, failing to notice that
a character is non-existent won’t lead a program to
use irrelevant metric data for that character code.
Furthermore, any characters that really do exist in
the font will be guaranteed to have a ¥idthIndex
that is nonzero. Thus, a character is non-existent
iff its WidthIndex is szero, and also iff its entire
FInfoEntry is zero. If there are any actual charac-
ters in the font whose width just happens to be
precisely zero, the ¥IDTH array will contain two zero
FIXes: one at index 0, which is used for all of the
non-existent characters, and one somewhere else.

The remaining portion of the FInfoEntry is used
for several different purposes, depending upor the
value of the tag field. The TagField portion of the
FInfoEntry has one of four values:

15

tag=0=} this is a vanilla character, Remainder is

. unused.

tag=1=} character has a ligature-kerning program:
the Remainder field is the index in the
LIG/KERN array of the first step of the pro-
gram.

tag=2=} character is part of a chain of charac-
ters of ascending sizes (“charlist®): the
Remainder field gives the character code
of the next larger character in the chain.

tag=3 =) character code represents an extensible
character, one that is built up out of
smaller pieces and can be made arbitrarily
large: the Remainder field is an index into
the EXT array. The ExtRecipe at that
position in the EXT array describes what
the pieces are.

(The taglist and tagvar options are usually used

only in math extension fonts.)

The LIG/KERN array is a program in a simple
programming language that gives instructions about
what to do for special letter pairs. Each step in this
program occupies one word:

LigKernStep:
[
StopBit: 1 bit :
means this is a final program step
unusedspace: 7 bits
NextChar: 8 bits
if this is the next character, then...
TagBit: 1 bit ‘
unusedspace: 7 bits
Remainder: 8 bits
]

If the TagBit is O, this step in the program
describes a ligature. In that case, the Remsinder
consists of the character code of the ligature that
should be substituted for the current character pair.
If the TagBit is 1, this step describes a kern, and
the Remainder field is an index into the KERN array.
The KERN array is simply an array of FIXes, pure
numbers that should be scaled to give distances in
the same way as the elements of the WIDTH, HEIGHT,
DEPTH, and CharIc arrays.

An ExtRecipe is a one-word quantity that should
be viewed as four bytes (allocated left-to-right, of
course):

ExtRecipe:
§
top: byte
mid: byte
bot: byte
ext: byte

16

The height and width flelds in the FIntoEntry
of the extensible character give the metrics of the
component, not of the built-up symbol itself, since
the built-up symbol will have variable size. If top,
middle, or bottom portions are sero, the extension
component runs all the way through that portion
of the symbol, otherwise it directly abuts these por-
tions. The built-up symbol is formed by includ-
ing an integral number of extension components. If
there is a middle, the same number of extension
components will appear above and below. For ex-
ample, a left brace has all four components specified,
while a double || (the cardinality or norm symbol)
has only an extension part. The floor and ceiling
brackets are like regular brackets, but without top
or bottom, respectively. The width of the extension
component is assumed to be the width of the entire
huilt-up symbol. If any byte is 0, it indicates that
the corresponding piece of the extensible character
does not exist. Otherwise, the contents of the byte
is the character code of the piece: top, middie, bot-
tom, or extender respectively.

The rest of the .TFM file is the PARAMS array,
a table of font parameters that are used by TEX,
stored as FIXes. All of these parameters are dis-
tances except for the first one, “slant”: hence all
except for “slant” should be scaled by the font
sise by TEX when being read in from the .TFM
file. Since slant is a pure number, it should not be
scaled. [The following table of parameters is printed
in clearer form on pages 98-100 of the METAFONT
manual.]

the amount of italic slant (e.g. slant=.25
means that when going up one unit, go .25
units to the right—this is used in placing
accents over characters)
a real number that says how wide blank
spaces are (Note that TEX doesn’t use
character number ’40 for spaces, that
character can be non-blank in the font)
spacestretch
the stretch component of the glue for
spacing
spaceshrink
the shrink component of the glue for
spacing
xheight the height of lowercase *“x* (default
positioning for accents)
quad the width of one “em®
extraspace
the amount added to space after periods
(and in general when the spacefactor is
greater than 2)

slant

TUGboat, Volume 2, No. 1

Mathematics fonts used as \mathsy and \mathex
contain important additional parameter informa-
tion. In a \mathsy font, the extra parameters start
right after “quad”, that is, there is no “extraspace”
parameter. The \mathsy parameters are

mathspace
if nonsero, the amount of space that will
be used for all nonsero space in math for-
mulas (for fixed-width output)
nusi,num?,numsd
amount to raise baseline of numerators in
display or nondisplay or nondisplay-atop
styles, respectively
denon1,denon2
amount to lower baseline of denominators
supl, sup2,sup3
amount to raise baseline of superscripts if
1) display style
2) nondisplay nonvariant style
3) variant style
sub1, sub2
amount to lower baseline of subscripts if
superscript is
1) absent
2) present
supdrop, subdrop
amount below top or bottom of large box
to place baseline if the box has a super-
script or subscript in this sige
delimi,delin2
size of \comb delimiters in
1) display
2) nondisplay style
axisheight
height of fraction lines above the baseline
(this is midway between the two bars of =
sign)
A \mathex font includes the first seven standard
parameters (including extraspace), and then has
six parameters used to govern formula setting:

defaultrulethickness
the thickmess of \over and \overline
bars
bigopspacing(1), (2)
the minimum giue space above and below
a large displayed operator, respectively
bigopspacing(3), (4)
the minimum distance between a limit’s
baseline and a large displayed operator,
when the limit is above, below
bigopspacing(5)
the extra glue placed above and below dis-

played limits

