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APPENDIX A
Output Samples from a Paper by David Eeck

The pages given here are various renditions of one page from a paper
by David Eck of Dartmouth College, a first-time user of TEX and
AMS-TEX. (He describes his experience on page 127.) One page was
selected from his paper, and run through TEX at three locations: the
American Mathematical Society, Massachusetts Institute of Technology,
and Stanford. The composed file was then output to whatever devices
~‘were available at each location. The samples are given in the following
order. '

— input file listing;

— Florida Data Model BNY dot matrix printer, 128 dots/inch;

—~ Xerox XGP, 200 dots/inch;

— Benson-Varian 9211, 200 dots/inch;

— Canon Laser Beam Printer, 240 dots/inch;

- Xerox Dover, 384 dots/inch;

— Alphatype CRS, 5300 dots/inch.

At the AMS a few rudimentary timing estimates were made. For such
a small sample, these times probably represent an upper bound, rather
than a true measure of time required to process this type of material. The
computer involved is a DEC 2060 with 512K words of memory. Output
to the Varian is controlled by a spooler, which removes the processing
from user control once a job has been released to the queue. No times
were obtained for output to any device but the Varian, but an attempt
will be made to obtain and publish such information in a later issue of
TUGboat.

— TEX: CPU time of < 6 sec. included loading the program and read-
ing all font and macro header flles; net time required for processing
the one page of input was probably < 3 sec.

- release to Varian spooler: 1 CPU sec.

~ printing on Varian: < 4 CPU sec.

- Output from another device, a Compugraphic 8600, is shown and
described in the article by Ralph Stromquist, page 51. The macro
packages and other items by Lynne Price and Pat Milligan (pages 87-
126) were output on a Versatec, which is essentially similar to the Varian
9211. The two articles by Lawson, Zabala and Diaz (pages 20-47) were
output on a Dover, as were the macro package descriptions by Max Dfaz
and Arthur Keller. The body of this newsletter was output on the Varian
at the AMS.



$This is eck secl
\chapterbegin{\section 1: The Functors $(\cdot)”n_k$}

\definition Definition 1.1\\ If $n\GE 0? and $k\GE 0$

are integers, we define a functor $\nk {(\cdot)}$ as follows:

If $M$ is a $\C$ manifold, then

$$\nk M = \leftset\j k\varphi O\relv\varphi :\; \R"n\9 M\rightset$$
where $\j k\varphi 0$ is the $k$-jet

of $\varphi$ at $0$. If $£:\; M\9 N$ is a smooth map, then

$\nk £:\;\nk M\9\nk N$ is defined by

$8\nk £(\j k\varphi 0) = \j k{f\circ\varphi}o\;.$$

\par\yskip '

Note that $\nk M$ is a fiber bundle over $M$, with projection
$\pi:\:;\nk M\9 M$ given by $\pi(\j k\varphi 0) = \varphi{Ois.
In particular, $M"1 _1$ is just the tangent bundle $\text{T| MS$.
This is clear if we consider a tangent vector at a point $p$ of $M$
to be an equivalence class of curves in $M$ which agree up to the
first order at $p$. We will need to know the following basic
properties of the functor $\nk {(\cdot)}$. They are easy to
establish, and we omit the proofs.\par\yyskip

\theorem Theorem 1.2\\ a) If $M$ and $N$ are manifolds, then

$\nk M\times\nk N$ and $ (M\times N\nk )$ are naturally equivalent.
\par b) If $M$ is a manifold, then $(\nk M)"m \lscr$ and
$(M"m_\1lscr\nk )$ are naturally equivalent.\QED\endtheorem\par\yyskip

We note that by naturality here, we mean, in a‘, that given any

maps $£:\;M\9 M\,{}"\prime$ and T :\; NM\9 N\,{}"\prime$, the diagram
$$\diagram//(M\times N) “n k, (M\, 1) " \prime\times N\,{}“\prime)“n_k,
(\nk M\times\nk Ni,{m\,{}*\prime\nk y\times (N\, {}"\prime\nk ),
(f\times g\nk y,{},{},\nk f\times\nk g,//88%

commutes, and similarly for b).

\par It may be useful to see what the map $\Psi:\;(\nk M) “m_\lscr

\9 (M"m_\lscr\nk:)$ looks like in coordinates:\par

If $y_1,\ldotss,y_s$ are local coordinates on $M$, we get local
coordinates $y~\alpha_i$, $\alpha = (\alpha_1l,\ldotss,\alpha n)$
with'$|\alpha¥\LE k$, on $\nk M$ by

$$y"\alpha_i(\j k\varphi 0)=\part\alpha x(y_i\circ \varphi) (0)\, -$%
By extension, we have coordinates $y {\alpha;\beta} i$ on

$(\nk M) “m_\lscr$ and $\overline y“%\beta;\alpha _i% on
$(M"m_\1lscr\nk )$, where $\beta = (\beta_l,\ldotss,\beta_m)$ with

$ |\beta|\LE\lscr$. The map $\Psi$ is given in these coordinates by
$\Psi\left (\left( y"{\alpha;\beta}\right)\right) = \biglp

\overline y"{\beta;\alpha}_i\bigrp$ where $\overline y”{\beta:\alpha} i
=y~{\alpha;\beta}_i$.\par\yyskip

We will use the following notation: ${\bigs M}~ {}n$ will denote the set
of all smooth maps $\R"n\9 M$. Whenever we consider ${\bigs M}{}"n$ as
a topological space, we will always use the $\C$ topology. If $p\in MS$,
then we denote the constant map $\R"n\9 M$ which sends each element

of S\R"n$ to $p$ by S$\A p$.\par\yyskip



Florida Data Model BNY

§1: Tue FuncTors(:)}
DerINITION 1.1: If n > 0 and &k 2 O are integers, we define a functor (-} as
follows: If M Is & C™ manifeld, then
M= {jdvjsjo:R* = M}
where ji{p)o I8 the k-Jet of ¢ a8 0. If f: M — N Is a smooth map, then
/3 M} — Ng is deflned by
Jelgele} = Jel] o 9)o . ,

Note that M} is a fiber bundie over M, with projection 7: My — M given
by 7{7e{©)e) = 9(0). In particular, M} Is just the tangent bundle TM. This is
clear If we consider a tangent vector at s point p of M to be an equivalence class
of curves in M which agree up to the first order at p. We will need to know the
following basic properties of the functor (-)2. They are easy to establish, and we
omit the proofs.

THEOREM 1.2: 8¢} I/ M and N are manifolds, then M2 X N2 and (M X N)§
are naturaily equivaient.

b) If M is a manifold, then (M2)® and (MP)? are naturally equivaient. g

We note that by naturaiity here, we mean, in aj, that given any maps f: M —
M/ and a: N = N/, the diagram

X ¢!t

(M X N)2 U Xelk (M'X N2
jﬂ x gﬂ

(M2X N) ——2 0 (M)2X (N}

commutes, and similarly for b}

It may be useful to see what the map ¥: [AM2)® — (MM]2 looks like In
coordinates: -

It y3,...,9, are local coordinates on M, we get local coordinates yf, a =
{@1,...,0,) with la] < k, on M2 by

vilintple) = ZI=Lig).



Xerox XGP
§1: THE FUNCTORS (-)}

DEFINITION 1.1: If n > 0 and k > O are integers, we define a functor (-)¢
as follows: If M is a C® manifold, then
= {J(p)o|p: R* —+ M}
where ji(0)o is the k-jet of p at 0. If f: M — N is a smooth map, then
Jr: M} — N} is defined by
Ti((®o) = 5x(f 2 0o -

Note that M} is a fiber bundle over M, with projection x : M} — M given
by x(jx(v)o) = ©(0). In particular, M} is just the tangent bundle TM. This is
clear if we consider a tangent vector at a point p of M to be an equivalence class
of curves in M that agree up to the first order at p. We will need to know the
following basic properties of the functor (-)}. They are easy to establish, and we
omit the proofs.

THEOREM 1.2: o) If M and N are manifolds, then M? X NT and (M X N)P
are naturally equsvalent.

b) If M s a manifold, then (M})] and (M)} are naturally equivalent. 1

We note that by naturality here, we mean, in a), that given any maps f :
M — M!'andg: N — N/, the diagram

(M X N)? Uxak (M'X N')

n n
e x vy~ g x e
commutes, and similarly for b).
It may be useful to see what the map ¥ : (M})7 — (M7')} looks like in
coordinates:
If y1,...,ys are local coordinates on M, we get local coordinates y§, a =
(ay, . ,a,,) with |a] < k, on M} by

2 0rele) = ZL22(0).

By extension, we have coordinates y*/ on (M) and §%* on (M)}, where
g = (B1,...,0m) with |f] < & The map V is given in these coordinates by

Y((y*iP)) = (y’ i*) where 7"‘" = y*,




Benson-Varian 9211
§1: TuE FuNcTORS (-)F

- DEFINITION 1.1: i n > 0 and k& > O are integers, we define a functor (-)} as
follows: f M is a C'° manifold, then

: =1l |o:R*"— M}

where ji(p)o is the k-jet of p at 0. If f: M — N is a smooth map, then
f3: M} — N} is defined by

T&((p)o) = 5x(f © ¥)o -

Note that M} is a fiber bundle over M, with projection x: M} — M given
by x(sx(e)o) = ©(0). In particular, M} is just the tangent bundle TM. This is
clear if we consider a tangent vector at a point p of M to be an equivalence class
of curves in M which agree up to the first order at p. We will need to know the
following basic properties of the functor (-)}. They are easy to establish, and we
omit the proofs.

THEOREM 1.2: @) If M and N are manifolds, then M} X N} end (M X N)}

are naturally equsvalent.
b} If M is a manifold, then (M7)7* and (M7*)} are naturally equivalent. |

‘We note that by naturality here, we mean, in a), that given any maps f: M —
M and g: N —» N', the diagram

(M X N)P Uxak, (M'X N')?
I X 9%
(M3 X N}) — (M) X (N');

commutes, and similarly for b).

It may be useful to see what the map ¥: (M})* — (M)} looks like in
coordinates:

If y1,...,ys are local coordinates on M, we get local coordinates y§, a =
(ay,...,a,) with || < k, on M} by

v3Gtel) = 222 (q).




Canon Laser Beam Printer

§1: THE FUNCTORS ()}

DEFINITION 1.1: If n > 0 and & > 0 are integers, we define a functor ()}
as follows: If M is a C'* manifold, then

M} = (ju(plo | o:R" —» M)

where ji(©)o is the k-jet of p at 0. If f: M — N is a smooth map, then
SR M3 — N} is defined by

F2Uk(P)o) = (S 0 ©)o -

Note that M7} is a fiber bundle over M, with projection 7: M7 — M given
by 7(ji(v)e) = ©(0). In particular, M! is just the tangent bundle TM. This is
clear if we consider a tangent vector at a point p of M to be an equivalence class
of curves in M that agree up to the first order at p. We will need to know the
following basic properties of the functor (-);. They are easy to establish, and we
omit the proofs.

THEOREM 1.2: a)If M and N are manifolds, then Mz X N} and(M X N
are naturally equivalent.

b} If M s a manifold, then (M3)7 and (M7); are natumuy equivalent.

We note that by naturality here, we mean, in a), that given any maps f: M —
M! and g: N — N/, the diagram

(Mx N)p - (f x ok

(M'x N\

£ n
(g x Np) —EX B (e x (v
commutes, and similarly for b).
It may be useful to see what the map ¥: (M) — (MP)} looks like in
coordinates:
I y,...,y, are local coordinates on M, we get local coordinates y¥, a =
(ay,...,a,) with |a| < k, on M} by

Rl = L2 2 0).




Xerox Dover

§1: THE FUNCTORS (-)}

DEFINITION 1.1: If n > 0 and & > 0 are integers, we define a functor (-)}
as follows: If M is a C*° manifold, then

M ={phle: R" > M}

where ji(0)o is the k-jet of p at 0. If f : M — N is a smooth map, then
J2: M} — N} is defined by

120k(0)o) = 5u(f o )0 -

Note that M7} is a fiber bundle over M, with projection » : M} — M given
by #(jx(¢)o) = ©(0). In particular, M} is just the tangent bundle TM. This is
clear if we consider a tangent vector at a point p of M to be an equivalence class
of curves in M that agree up to the first order at p. We will need to know the
following basic properties of the functor {-);. They are easy to establish, and we
omit the proofs.

THEOREM 1.2: a)If M and N are manifolds, then M3 X N7 and (M X N)i
are naturally equivalent.
) If M is a manifold, then (M 2)7* and (M7')? are naturally equivalent. B

We note that by naturality here, we mean, in a), that given any maps f :
M- M'and g: N — N/, the diagram

(M X N)p ——({—2(-32-;‘:—» (M'XN')R

e X9k

(M X Np) —22 (M) X (N)

commutes, and similarly for b).

It may be useful to see what the map ¥ : (M) — (M7')p looks like in
coordinates:

If y1,...,¥, are local coordinates on M, we get local coordinates y’, o ==
(ag,...,an) with |a| < &k, on M by

¥ilillo) = 222 2(0).



Alphatype CRS

'

§1: Tue FuncTORS ()7

DEFmITION 1.1: If > 0 and k > O are integers, we define a functor (-)} as
follows: If M is a C*™ manifold, then

My = {j(plo| o:R™ = M}

where ji()o is the k-jet of p at 0. If f: M — N is a smooth map, then
fi: M2 — N} is defined by

TiU(©)o) = Ju(f o o -

Note that M7} is a fiber bundle over M, with projection m: M} — M given
by m(jx(®)o) = ©(0). In particular, M} is just the tangent bundle TM. This is
clear if we consider a tangent vector at a point p of M to be an equivalence class
of curves in M which agree up to the first order at p. We will need to know the
following basic properties of the functor (-)2. They are easy to establish, and we
omit the proofs.

THEOREM 1.2: @) If M and N are manifolds, then M3 X N} and (M X N)}
are naturally equivalent.
b) If M i3 a manifold, then (M2)T* and (M*); are naturally equivalent. §

We note that by naturality here, we mean, in a), that given any maps /: M —
M/’ and g: N - N/, the diagram

(M X N —g-x—g)'ﬁ-» (M'X N

Te X gk

(ME X NY)

commutes, and similarly for b).

It may be useful to see what the map ¥: (M) — (M7 looks like in
coordinates:

If y,...,y, are local coordinates on M, we get local coordinates y¥, o ==
(o, .., an) with |a} < k, on M} by

Y2 Uin()o) = “”‘°‘°(o)

(M) X (N)R



