e

I

7. 17

s

o

1
i A
YADO
0:':'0
OO
KX
gy

~—
\\~

4

: * //////////// i .

2
"l
"3
\ h,
‘0
&
X7

/
/

/

!

/
I

l

TUG Steering Committee

Donald Knuth, Grand Wizard of TgX-arcana

Richard Palais, Chairman of the Steering Committee
Robert Morris, Secretary and Wizard of Macros

Samuel Whidden, Treasurer

Robert Welland, TUGboat Editor

Luis Trabb-Pardo, Vice Grand Wizard

Ignacio Zabala, Wizard of TEX-in-Pascal

David Fuchs, Wizard of I/O and SAIL

Barbara Beeton, Wizard of Format Modules

Nicholas Allen, Wizard of TOPS-10

Arnold Pizer, Wizard of TOPS-10

Phil Sherrod, Wizard of TOPS-10, Coordinator for DEC10
Patrick Milligan, Wizard of TOPS-20, Coordinator for DEC20
Michael Spivak, Wizard of AMS-TEX

Richard Zippel, Wizard of ITS

Hermann Zapf, Wizard of Fonts

Charles Howerton, Liaison with the
National Bureau of Standards

Richard Friday, Liaison with Digital Equipment Corporation
Michael Bennett, Foreign Distribution of TEX

Site Coordinators

Eagle Berns, Coordinator for IBM 370

Thea Hodge, Coordinator for CDC Cyber
Scott McCourt, Coordinator for Burroughs
Monte Nichols, Coordinator for VAX

Ralph Stromquist, Coordinator for Univac 1100

Very few compositors are fond of algebra.

Thomas MacKellar
The American Printer:

A Manual of Typography,
Philadelphia,

Mackellar, Smiths & Jordan, 1871.

TUGBOAT

THE TgX USERS GROUP NEWSLETTER
EDITOR ROBERT WELLAND

VOLUME 2, NUMBER 1 - - ' FEBRUARY 1981
PROVIDENCE RHODE ISLAND US.A.

2 TUGboat, Volume 2, No. 1
ADDRESSES OF TUGboat AUTHORS
6 February 1981
BEETON, Barbara INCERPI, Janei PRICE, Lynne A.
American Mathematical Society Department of Computer Science Bell Northern Research, Inc.
P.O. Box 6248 Brown University 685A Middlefleld Road
Providence, RI 02040 Box 1910 Mountain View, CA 040438
401-272-0500 Providence, RI 02012 415-969-9170
BERNS, Eagle 401-865-3342 SHERROD, Phil
Polya 207 KELLER, Arthur M. " Box 1577, Station B
Stanford Center for Information Depariment of Computer Science ‘Vanderbilt University
Processing Sitanford Unijversity Naghville, TN 37285
Stanford University Stanford, CA 94305 815-322-7311, ext. 2051
Stanford, CA 04305 415-497-8237 STROMQUIST, Ralph
DIAZ, Max KIM, Scott MACC
Mathematics Department Stanford University University of Wisconsin
Stanford University P.O. Box 9414 1210 W. Dayton Street
Stanford, CA 94305 Stanford, CA 94305 Madison, WI 53706
415-327-8488 415-329-9081 608-262-8821
DOHERTY, Barry LAWSON, Charles L. TOTLAND, Helge
American Mathematical Society Jet Propulsion Lab Computas A/S
P.O. Box 6248 MS 125/128 Box 310
Providence, RI 02940 4800 Ozk Grove Drive N-1322 Hgvik, Norway
401-272-9500 P“‘gmsiﬁs";lms . WELLAND, Robert
ECK, David Department of Mathematics
Depariment of Mathematics MILLIGAN, Patrick Northwestern University
Dartmouth College Bell Northern Research, Inc. 2088 Sheridan Road
Hanover, NH 08755 685A Middlefield Road Evanston, IL. 60201

Mountain View, CA 84043

. 312-864-2808

FUCHS, David - 2
Department of Computer Sclence 415-969-9170, ext. 2837 WEHIDDEN, Samuel B,
Stanford University MORRIS, Robert American Mathematical Soclety
Stanford, CA 94305 Mathematics Department P.O. Box 6248 ’
415-407-1646 UMASS at Boston Providence, RI 02040
HIRST, G . Boston, MA 02125 401-272-9500
1} raem - - o
Depariment of Computer Science 617-287-1900, ext. 2545 WRIGHT, Alan
Browe University PALAIS, Richard 8, Box 1577, Station B
Providence, RI 02012 Department of Mathematics Vanderbilt University
401-883-3300 Brandeis University Nashrille, TN 37285
W: 615-822-73
HODGE, Thes D, D, A 3154 u
University Computing Center ZABALA, Ignaclo
208 Union 8¢. 8.E. Department of Computer Sclence
University of Minnesota Stanford University
Minneapolis, MI 55455 Stanford, CA 94805

812-373-4599

TUGDboat is the newsletter of the TEX Users Group (TUG), and is published irregularly for TUG by the
American Mathematical Society, P.O. Box 6248, Providence, R.I. 02040. Annual dues for individual members
of TUG are $10.00; one subscription to TUGboat is included. Applications for membership in TUG should
be addressed to the TEX Users Group, c/o American Mathematical Society, P.O. Box 1571, Annex Station,
Providence, R.I. 02901; applications must be accompanied by payment.

Manuscripts should be submitted to the TUGboat Editor, Robert Welland, Department of Mathematics,
Northwestern University, 2033 Sheridan Road, Evanston, IIl. 60201; items submitted on magnetic tape
should be addressed to Barbara Beeton or Barry Doherty, American Mathematical Society, P.O. Box 6248,
Providence, R.I. 02940,

Submissions to TUGboat are not refereed. Some are minimally edited, and some are reproduced directly
from copy submitted by the authors. Any questions regarding the content or accuracy of particular items
should be directed to the authors.

TUGDboat, Volume 2, No. 1

Editor’s note: This iseue is especially large because
all items received by press time have been included.
The Editor believes that information should be relayed
to the TUG membership as soon as poasible, so nothing
is being held over for another iseue.

* % % ®* ¥ *x % * % % %

General Delivery
* ¢ % % % % £ % % % *

SITE COORDINATORS
Robert Welland

The following people, who are bringing up TEX
on machines at their institutions, have agreed to
be site coordinators. Their primary responsibility
is to get TEX running and when this is done to write
up a report for TUGboat. They have also agreed
to answer a limited number of questions; they offer
this help for free and the time to do so comes from
very busy schedules. If you are not involved with
bringing up TEX, please wait for the site reports to
appear in TUGboat. Hopefully, they will answer
most questions and make manageable the burden
the site coordinators will have to bear.

H you are bringing up TEX on one of the fol-
lowing machines please inform the appropriate per-
son; otherwise send the information to the TUGboat
editor, Robert Welland.

Machine Coordinator
Burroughs Bé8000 Scott McCourt
Burroughs Corp. B.C.8. Project
Corporate Drive, Commerce Park
Danbury, CT 06810
208-T94-0191 ext 515

Thea Hodge

University Computing Center

208 Union St. 8.E. .

University of Minnesota

Minneapolis MN 55455
612-373-45090

Phil Sherrod

Box 1577 Station B

Vanderbilt University

Nashville, TN 37285
615-322-7811 ext 2951

Patrick Milligan

Bell Northern Research Inc.

685 A Middlefield Rd.

Mountain View, CA 04048
415-989-9170 ext 2837

E Berns

Polya 207

Stan{;)rd Center for Information

T0

Stanford University

Stanford, CA 94305
415-407-4382

Ralph 8tromaquist

Acsdemic Computing Center

University of nsin

1210 W, Dayton St.

Madison, WI 53706
608-262-8821

CDC Cyber

DEC10 ruaning
under TOPS-10

DEC20 running
under TOPS-20

IBM 370

Univac 1100/83

Monte Nichols

Sandis National Laboratories

Livermore, CA 94550
415-422-2706

VAX

% % % ¥ % % % % % ¥

CHAIRMAN'S REPORT
Richard S. Palais

The Steering Committee of TUG met for most of
the day on January 9 at the San Francisco Hilton.
Much of what transpired at that meeting is reported
on elsewhere in this newsletter. I would like to
concentrate here on two aspects of the discussions.
The first of these is a continuing strong division
of opinion on the question of TgX “maintenance®,
a matter that many will remember already evoked
considerable debate at the first TUG meeting. The
disagreement is over which of two goals, both ob-
viously desirable, should take precedence. One goal
is that TgX should remain as “free” as possible and
the other is that TgX should be as carefully and
professionally maintained as possible. At one ex-
treme are the large “production” users who would
like rapid and dependable advice and help with all
their software problems. For them TEX will be one
module in a complex system. They have deadlines
to meet that require that all these modules work,
and they are used to, willing, and able to pay up
to several thousand dollars per year to have real
or imagined bugs exorcised on the spot and have
their software tailored, tuned, and customized for
them. At the other extreme is the single, small

. user with little or no money to spend but com-

petent, willing and able to invest his time and effort
in “hacking TgX” for himself. Complicating mat-
ters is a third and perhaps over-riding goal, the
need to assure that there remains a single, stand-
ard “TgX", compatible across many machine ar-
chitectures and output devices. Fortunately these
goals and the constituencies supporting them are not
really conflicting, but rather orthogonal. With care
and compromise there does not seem to me to be
any serious reason why the various categories of TEX
users cannot all have their needs met. But it is clear
that to avoid nonproductive conflicts and polariza-
tions everyone in TUG will have to keep in mind that
the TUG membership is anything but homogeneous
and several different options will frequently have to
be provided to satisfy all the different classes of TEX
users.

The second matter I would like to discuss is the
Steering Committee’s decision to call for a TEX
Implementation Workshop at Stanford in the middle

4

of May. This will be 2 two day meeting. One day
will be a TgX demonstration day, open to all present
and prospective TUG members. This is meant to
give an opportunity to become familiar with the
various components of the TgX system, and in par-
ticular with the different output device options. (At
present at Stanford it is possible to have a TgX-
produced DVI file output on any one of a Xerox
XGP or a Versatec electrostatic printer/plotter, an
Alphatype CRS typesetter, or a Canon or Xerox
(Dover) laser printer.) The other day is aimed
primarily at those actively or prospectively engaged
in the implementation of TEX systems and the goal
is to maximize the amount of help and information
these people can exchange with each other and with
the central TEX team at Stanford. The ultimate
goal of this implementation project is to be able to
supply “off the shelf® to anyone desiring it all the
components of a completely working TEX system.
Let us consider for the moment what these com-
ponents are:

(A) TeX-in-Pascal.

(1) System independent part.
{(2) System dependent part.

(B) Font files. .
(1) Font information files (device independent).
(2) “Character shape” files.

(C) DVI-to-hardcopy back end.

(1) Output device hardware interfaces.

(2) Software for output device interfaces.

(8) Queuers, spoolers, device drivers for output

devices.
(4) Character shape file “pipeline” from host disk
system.

Part (A) (together with Bl) is what is necessary to
produce DVI output files from a valid TEX input
file. Now Al has long been complete, and A2 is
either completed or nearing completion for a wide
spectrum of host machines of different manufacture,
architecture and operating systems (DEC TOPS-10,
TOPS-20, VAX VMS, VAX UNIX; IBM 360/370;
CDC Cyber; Univac 1100). I think that we can
look forward with some confidence to the May meet-
ing as marking the virtual completion of this first
phase of TEX implementation. Now as for part B,
the creation of a basic font library, that too is es-
sentially complete. The whole family of CM fonts
(and others besides) now exist as METAFONT pro-
grams. Recall from this column in the first num-
ber of the TUG newsletter that METAFONT not
only creates the device independent font informa-
tion file (containing the size, spacing, kerning, and
ligature information needed by TgX to create a DVI

TUGboat, Volume 2, No. 1

file), but also, once a simple interface program is
written for a given output device, METAFONT will
create the character shape files, in the form of raster
patterns stored as, say, matrices of zeros and ones.
Such METAFONT interfaces have now been written
for over a half dozen output devices, running from
the super high resolution (5300 dot/inch) Alphatype
CRS to the low resolution (128 dot/inch) Florida
Data impact printer.

So what is rapidly approaching is the final phase
of the TgX implementation program, the creation
of the back-end systems which for a given host
masinframe and output device will, from the DVI file
and character shape files, produce the hardcopy out-
put. Now as David Fuchs has remarked, life would
be quite easy if output devices had built into them
enough disk-type storage to handle all the character
shape files for sixty-four fonts of 128 characters each
and enough logic to process the DVI files into raster
scan lines. One would still have the (rather trivial)
job of writing for each operating system spoolers
and queuing programs to send DVI files over a serial
line to this ideal output device in an orderly fashion,
but one would be able to avoid a host of other
small headaches that real world output devices force
one to deal with. Since, in fact, output devices
usually have no usable general purpose microcom-
puter built in, one must interface the host computer
to the output device via a microcomputer able to
speak to both. Also, since all the character shape
files that must be accessible to process a complex
DVI file can in principle run in the megabyte range,
economic considerations mandate that with current
technology these files must be kept on the host com-
puter disk memory, and then downloaded as neces-
sary to a small floppy disk system associated to
the microcomputer interface over the (for simplicity)
serial line joining it to the host computer. Now,
designing the hardware interface from off the shelf
items and writing the software to make it all go is
not a major project for an expert systems program-
mer who understands the format of DVI files and
character shape files and knows how to communicate
scan lines to the output device. Perhaps a month
or two of hard work will suffice. What is frustrat-
ing is that these systems are extremely sensitive to
small differences in the various protocols of operat-
ing systems and output devices, so if there are m
of the former and n of the latter one could easily
end up doing this same work mn times. Of course
common sense tells us that good planning should be
able to reduce this to more like m - n times. (For
example, David Fuchs could probably interface one
more output device to TOPS-20 in under a week.)

TUGbost, Volume 2, No. 1

A major reason for the May meeting is to reduce as
much as possible unnecessary duplication of effort in
this final part of the program to make TEX generally
available.

* % % % % % % £ * * 3

REPORT ON THE
TUG STEERING COMMITTEE MEETING

The TUG Steering Committee and several observ-
ers met at the San Francisco Hilton on January 9,
1980. Below is reported the gist of that meeting as
recovered from tape recordings and my notes. Since
several topics re-emerged throughout the meeting, I
have not reported in any order related to that of the
meeting.

Robert Morris
ATTENDANCE

The following attended:

Barbara Beeton, AMS Providence
Max Dfaz, Stanford

Barry Doherty, AMS Providence
David Fuchs, Stanford

Ellen Heiser, AMS Providence

Don Knuth, Stanford

Leslie Lamport, SRI

William LeVeque, AMS Providence
Patrick Milligan, Bell Northern Research
Robert Morris, UMASS/Boston
Evon Motiska, Stanford

Monte Nichols, Sandia Labs
Richard Palais, Brandeis

Lynne Price, Bell Northern Research
David Rogers, University of Michigan
J. L. Selfridge, Math Reviews

Phil Sherrod, Vanderbilt

Michael Spivak, Decatur, Ga.

Rilla Thedford, Math Reviews

Luis Trabb-Pardo, Stanford

Bob Welland, Northwestern

Sam Whidden, AMS Providence

W. B. Woolf, Math Reviews

Ignacio Zabala, Stanford

Tasasurer's Rerorr

Sam Whidden gave the treasurer’s report, at-
tached. The cost of producing the first newsletter
exceeded the treasury by $419. It is estimated that
an additional $3600 is needed for two issues in 1981.
MiscrLLANY

Pat Milligan and Lynn Price of Bell Northern
Research have been extensively developing macros
in-house and have had successes making overhead
slides, Hebrew, and special graphics.

AMS-TEX

Mike Spivak reported that version —1 works
as indicated in The Joy of TEX, where not-yet-
implemented features are indicated in handwritten
marginalia. The Joy was not processed by AMS-TEX,
which will now enter its fleld testing phase as people
begin to use it. An order form for a tape is included
with the manual, for sale at AMS headquarters. The
first finder of each manual misprint will receive a $1
bounty, and the first finder of each AMS-TEX bug
a $5 bounty. Bounty may be claimed by writing
Mike at the address in The Joy of TEX. The Joy
was produced on the Providence Alphatype, which
is exhibiting some backlash problems resulting in
distortion of some vertical lines.

AMS-TEX has too many macros for easy use in the
SAIL TgX running now at Providence. The Pascal
version is not expected to have the size limitations
which caused the problems, which in any case can be
changed by recompiling TgX with bigger values of
hashsize. The Pascal version will provide 3 bits more
address space for internal memory than the SAIL
version and such problems will not be serious. A
similar problem with memsize appears when setting
multi-column output. These should also disappear
in the Pascal version. Making AMS-TEX macros
more efficient will help, which Mike will do this
week.

MAINTENANCE

The administrative burden of maintaining TEX
has become too large for Stanford to support on
the informal basis they do. Throughout the meet-
ing at various times debate raged on the ap-
propriate mechanism for maintenance. Since this
is inextricable from membership fees, a Finance
Committee was formed to recommend a main-
tenance policy, to recommend a membership fee
policy, and to explore sources of support, e.g. foun-
dations. This consists of Sam Whiddenr, Luis Trabb-
Pardo, chairman, Bob Morris, Pat Milligan and
Monte Nichols. It seemed that everyone agreed
that TUG would run a TgX switchboard whereby
someone would be paid to tell callers who can answer
their questions. Luis and the Stanford people are
spending too much time doing this and answering
the questions. The switchboard could also refer
people to an up-to-date list of consultants for hire.

The (unsettled) argument about maintenance
varied between two positions: (a) Some organization
with either an explicit financial interest or an in-
house TEX support facility should maintain TEX at
TUG’s expense. (b) There should be no financial
burden whatsoever on the membership and no par-
ticular TEX maintenance should be endorsed by the

Users Group (see separate articles in this newsletter).
Knuth’s intention is that the released Pascal TgX
will be a single stable core (aside from the system
dependent module) which can be uniformly main-
tained for all versions and should not have any sup-
ported enhancements.

TUG MeeTine

No general TUG meeting will be called until
the Pascal TgX is released. However, an Imple-
mentor’s Workshop has been called for May 14-15
at Stanford. This will be coupled with a TEX open
house comprising demonstrations for people who
don’t know what TgX is. Details are elsewhere in
this issue.

Pascar TEX

A detailed report of each architecture appears
elsewhere in this issue. Knuth expects to read
the Pascal version’s code this spring very carefully
before its public release. When released, it will
be frozen with no enhancements or changes per-
haps aside from bug fixes. At present, the only
fully operational Pascal version is the TOPS-20 im-
plementation. Omne problem is that implementors
have also to get their output hardware working in
order to see output. In general interfacing output
devices is proving a greater share of the implemen-
tation efforts than people imagined, but has nothing
directly to do with bringing up Pascal versions.

Epucation

Knuth is making a video tape to teach TEX to
users. He intends for this tape ultimately to be
available through TUG.

Ourrur DevicES

Phil Sherrod: It took a week to get the SAIL ver-
sion working on TOPS-10, but nearly a year to get
all the output device interfaces conveniently working
(e.g. spoolers) although only a month to get some-
thing up. Finding the right hardware interfacing
was lengthy and mysterious. TUG should maintain
descriptions of what kind of hardware to buy and
what the software interfaces involve.

Phil will write an article describing the tribula-
tions of output device implementors.

There was a belief expressed that the output
device vendors would have to be involved in output
interfaces. Cooperation greater than that already
provided by manufacturers of existing devices will
be needed for wide applicability. Luis Trabb-Pardo
expressed the belief that more intelligence needs to
be provided in devices in order to relieve burden
on the host, which will allow less system dependent
software. The problem is that Xerographic printers
are or soon will be selling for about $3000 for the

TUGboat, Volume 2, No. 1

printing engine. The interface will cost about the
same, bringing the OEM cost to about $6-7,000.
The end-user prices will be around $20,000 for com-
plete printing systems. These will have sufficient in-
telligence to take DVI files more or less directly. A
similar arrangement based on electrostatic printers
should sell for around $10,000 end-user system price.

Math. Reviews has interfaced a Florida Data dot
matrix printer with the same mechanism (a $3500
one-board Z80 system) to drive it in graphics mode.
The device has 128 dots/inch and might be suitable
for very rough copy. It is doing TEX output at about
30 seconds per page, which is a little slower than the
electrostatic devices.

Varian, Versatec, Dover, and Alphatypes are
working at several sites. The Dover does not accept
DVI files and is in any case not commercially avail-
able.

1980 TUG TREASURER'S REPORT
Samuel B. Whidden

During 1980 the first issue of TUGboat appeared.
The costs associated with its printing and distribu-
tion amounted to $1,719. (Not included in this
figure are costs for services provided by AMS profes-
sional staff.) As of December 31, 1980, 130 member-
ship applications have been received for for a total
income of $1,300.

Income: Membership $1,300
Expenses: Printing $1,232
Postage 371
Mailing/Labor 116 1,719
Balance (as of 12/31/80) (8 419)

Based on the costs for 1980, it is anticipated that
direct costs associated with the production and dis-
tribution of two issues of TUGboat during 1981 will
be approximately $3,600, with the AMS continuing
to contribute the services of its professional staff.

Respectfully submitted,
Samuel B. Whidden, Treasurer
January 5, 1981

(Note: As of 2/6/81 a total of 258 paid member-

ship applications had been received.)

INFORMAL TUG SESSION
Robert A. Morris

On the aftermoon of January 9, various TUG
Steering Committee members and other interested

TUGDboat, Volume 2, No. 1

people met at the Hilton for informal discussion.
Among the people I can remember were there
were: Lynne Price and Pat Milligan (Beil Northern
Research), Leslie Lamport (SRI), Luis Trabb-Pardo
(Stanford), Rilla Thedford (Math Reviews), Arnie
Pizer (Rochester). Possibly I have missed some. I
have reported below some of the wishes, rumors,
and reports from this meeting and other sources.
Nothing is guaranteed accurate!

Lynne and Pat have extensive macro experience
and have made slides, Hebrew, and are advocating
TEX as a standard for in-house technical documen-
tation in their organisation.

Some desires: improved user interfaces. Lynne
will start collecting complaints and suggestions.
AMS-TEX is an example.

Many people want a TEX preprocessor which can
run on small machines with which people can test
the syntax of their TgX input. (But Unidot has its
C version running on an Onyx UNIX system with
a Versatec printer and hopes for release soon. This
could presumably be used even without an output
device. It apparently is based on the SAIL version of
TEX. Will it be released with all the changes which
end up in the Pascal version? It will be for sale.)

Luis: In principle, all that is needed for the use of
an arbitrary printing engine is cooperation from the
vendor in providing (a) Font Metrics for each font;
(b) If the galley proof cost is high, will they provide
proof mode encodings (e.g. at 200 dots/inch), not
only thereby protecting their own font investment
but allowing users to run proof mode versions of
their fonts on a proof device? (c) Is the typesetter
language available to people to write DVI-to-device
drivers? (d) Is the manufacturer willing to include
math fonts made by METAFONT?

A trick if your macro packages are too big to fit
(which shouldnt happen very much in the Pascal
versions): redeflne as null macros which will not
be used again. This will return the space to the
memory manager.

Leslie Lamport: A trick to avoid un-matched
brace syntax errors: When using a screen editor like
EMACS, use a macro which creates matching braces
with nothing between them except the cursor. The
closing brace is then automatically there after the
text entry is finished.

* % % % * % * * % % %

Editor’s note: The ollowing two articles give diver-
gent views on the subject of how the TEX program is
to be maintained in the future. Readers are invited to
comment, and to make knoun their own views on the

7

subject before the mext meeting of the TUG Steering
Committee in May.

* % * % % % *x x % * =%

A POSITION ON TgX MAINTENANCE
Robert Morris, UMASS/Boston

There are at least two diametrically opposed
maintenance/distribution models we can consider.
The production user, like AMS or a commercial
user, wants something like a fully supported TgX.
Such a user has a calculable, or at least identifiable,
financial penalty which it incurs when the software
it is using does not work. On the other hand is the
university user facing little or no budget resources
which it can devote to buying support, but also
having no particular time constraints and having a
pool of talent—its students—which can tweak non-
working software. Since I am in the second com-
munity, I would like to argue in favor of TUG’s in-
volvement being closer to the second model, while
facilitating the other class of users solving their sup-
port needs at their own expense.

I believe that few universities would benefit by
paying $1,000/year membership fee to TUG. Indeed,
$200 seems too much to me for an organization
which can wait weeks to get sick software fixed.
Instead of contributing to extensive TEX support,
I suggest that there be designated distribution sites
for each architecture, selected from some organiza-
tion heavily using TgX on that architecture. These
sites would make standard release tapes at cost and
would incorporate bug fixes at designated intervals
(quarterly?). Their interest would lie principally in
being the funnel for proposed bug fixes (which would
often be proposed by the discoverer of the problem)
and thereby having the first and widest perspective
on maintenance. Presumably these would be or-
ganizations which are already maintaining TEX in-
house and thus have sufficient expertise to recognize
whether a bug report is in fact a TgX problem or a
user problem.

The other side of this essentially un-supported
TEX is that users can tinker with TgX and circu-
late their own “enhancements®. On the one hand,
this is contrary to desires that Knuth has expressed.
On the other hand, it is bound to happen when
sources are distributed, and I am not convinced it is
bad. The most successful model of this kind of un-
supported source distribution is the UNIX operat-
ing system. UNIX is distributed free to educational
users with source licenses. Tapes are made at cost
by the licensor, Bell Laboratories. Often, these

8

releases do not work on the precise configuration
the licensee has and varying degrees of work are
required to bring up the system. Alternatively,
users often get copies of the system not from Bell
Laboratories but from another site with the same
or similar configurations. Many users modify their
systems and/or install major modifications made by
other sites. This process continued for 6-7 years
throughout the life of “version 6 UNIX”, the first
version in wide circulation. All this experimenta-
tion led to two things: a bizarre proliferation of
somewhat incompatible versions of UNIX and a sub-
stantial base of expertise about the system coupled
with a great deal of experimentation toward mod-
ernizing the operating system. The result of the
former was that UNIX came to be regarded as need-
ing substantial systems programming expertise to
keep it running (a false belief which did not take

_into account the simplicity of the operating system
and the ease of dealing with code written in a high-
level language). The result of the latter was that
version 7 UNIX and that for the VAX have incor-
porated the results of these experiments and ap-
parently produced a very contemporary and useful
operating system which internally looks little like
version 8, but to users is very similar. After all this
tinkering, the resulting product seems to be useful
not only in universities, but at high prices in com-
mercial environments.

On the one hand, such a model seems incom-
patible with Knuth’s position that TEX will be
released in such a way that tinkering is un-needed.
He prefers that people think of TEX as something
which will not need enhancement, but rather will be
the foundation of similar future developments which
are not TEX but (hopefully) something better. On
the other hand, it suggests that the way to find what
the something better might be is actually by the
kind of refinement which took place in UNIX with
wide circulation (among licensees in that case, but
presumably among everyone in the TgX case).

It strikes me that any form of TEX support will
have its cost underwritten either by an organiza-
tion seeking to profit from it or by the Users Group
seeking to keep to Knuth’s idea of a single uniform
TegX. My feeling is that the cost, especially to
academic users, of the latter is prohibitive (one es-
timate mentioned at the TUG Steering Committee
meeting was $25,000-50,000/year total distributed
among 50-100 institutional members).

My guess is that the costs of making fixes to all
releases, i.e. all architectures, could climb above this
just because most sites will not have expertise in all

systems.

TUGbDoat, Volume 2, No. 1

I am afraid that any commercial organisation
which assumed “official® responsibility for repairing
TEX would insist on reasonable assurances that no
one would compete with them, for example that I
would not give away bug fixes the way UNIX sites
do. Since no such assurance is possible because the
software is in the public domain, it seems that the
alternative is to have the entire TUG membership
pay for the support by membership fees.

1 would propose that as a group TUG provide
no services other than the dissemination of informa-
tion about TEX, including the Pascal release. Any
bug fixes would be reported but not endorsed by
TUG perhaps except at stated intervals when new
releases would incorporate them. Production users
of TEX would be entirely on their own in finding
support at the level they need. I am inclined to
argue that there should be several distribution sites,
one for each architecture and that they should not
be sites which have a commercial interest in selling
supported TgX. They should be reimbursed for their
direct expenses by each recipient in the form of a
nominal ($50-200) fee for providing the release tape
and documents, and some attempt should be made
to ascertain a reasonable level at which TUG will
annually reimburse them for less tangible related ex-
penses, e.g. time spent consulting with people having
difficulty installing the release, time spent evaluat-
ing bug reports, etc. The balance of TUG’s budget
should be spent for the “switchboard”, the newslet-
ter, and the expense surrounding incorporating bug
fixes at the stated (infrequent) intervals.

Ordinary TUG membership meetings should be
financed largely out of meeting fees which should be
appreciably smaller for educational users than for
production users.

There will be two classes of institutional mem-
berships: educational users and production users.
An educational user is a non-profit educational site
which is using TEX only for instruction or for the
production of publicly accessible research or instruc-
tional documents. A production site is a site which
is using TEX principally for the production of ad-
ministrative, clerical, or commercial or published
documents. A production site is using TEX because
it expects to save or make money by doing so,
whether directly or indirectly. Such sites include not
only commercial enterprises, but also the AMS, the
publications departments of universities, and the in-
house document preparation centers of not-for-profit
research organigations.

* ¥ * *x % % * % * % #

TUGboat, Volume 2, No. 1

TiX SUPPORT

Samuel B. Whidden
American Mathematical Society

In the preceding article, Bob Morris presents his
position on TUG’s role as it relates to the main-
tenance and support of TEX. As I understand
his comments, Bob feels that TEX should be left
to evolve independently at those computer science
departments which have the resources to maintain
it. He takes the position that TEX is in the public
domain for the benefit of the educational user, and
that the production user must make his own ar-
rangements for software support of TEX.

Bob’s comments represent fairly, I think, the
opinions expressed by a majority of the Steering
Committee at its recent meeting in San Francisco.
Most of those present represented the research com-
munity, coming either from universities or from the
research departments of large corporations.

I believe that if TUG does adopt the position ar-
ticulated by Bob, it may limit the ability of produc-
tion users to make use of TEX. I stress these two
points:

1. ¥ no central maintenance facility exists from
which production users can purchase the required
software support, potential production users may
be unlikely to become users at all—especially those
firms which have no need otherwise to acquire the
necessary systems programming resources. In those
cases, TEX’s cost may have been raised beyond a
reasonable level for other than large firms with ex-
isting research programs (or universities, for whom
systems programming is among the most available
of resources).

2. I undisciplined evolution of TEX occurs, the
hope of easy communication of machine-readable
TEX between centers (authors and publishers, for in-
stance) may be dashed. It’s unlikely that a common
interchange language can be maintained in spite of
a proliferation of versions of TEX.

It is hard to overemphasize the importance of cost
reduction in scientific publishing, nor the impor-
tance to the academic community of stable and vi-
able publishing channels. Dick Palais, Chairman of
TUG and a Trustee of the American Mathematical
Society, calculated some years ago that a total
elimination of the tasks of copy-editing, retyp-
ing, proofreading, and correcting manuscripts would
cut nearly in half the costs of publishing the
Society’s journals (and one would expect that that
statistic could be generalised roughly to other
scientific journals). In the last issue of TUGboat,

Ellen Swanson, the Society’s Director of Editorial
Services, described those costly steps in detail.

The Society embarked on its strong support of
TgX in the hope that at least some reduction in
these tasks ultimately could result from the ability
of authors to submit machine-readable, debugged
TEX-input manuscripts to publishers in the lan-
guage of TFX (and not because other mathematical-
composition systems don’t exist—they do, and the
Society uses one of them).

It seems very unlikely that the standardization
necessary to bring about these cost savings can
be accomplished without a central coordinating
facility. It seems equally unlikely that such a facility
can come into being without the active, continu-
ing financial support of the TgX user community—
TUG—which, at least at present, consists almost
exclusively of educational users. It’s my personal
opinion that such support would have to amount, at
least for the time being, to something like $1,000 per
year on the part of each institutional user, to sup-
port a TUG budget of $25,000 to $40,000 for each
of the next two or three years.

These contributions (in the form, perhaps; of con-
tract fees for software support), would be collected
by TUG and applied to the various functions needed
to keep TEX alive, growing, and responsive to chang-
ing needs, ideas, technology—all the things that
good software stays in touch with. An essential
role of the central maintainer, in addition to bug
fixing, program distribution, information exchange
and telephone consulting, will be to continue to
weave into the definitive version of TEX the im-
provements and new features conceived by users—
what I'll call here the process of “dynamic standard-
ization”. This way, the language grows; if it can’t,
it probably withers.

The Steering Committee can find volunteer help
for some tasks, like publishing the newsletter, but it
will almost certainly, if this standardization is to be
achieved, have to pay either a competent employee
(housed, perhaps, at some willing university) or a
“software” firm of some description actually to do
the real maintenance work.

Other ways of providing the necessary sup-
port were suggested at the Steering Committee
meeting. One was for each production user to
provide itself with its own systems programming
capability in énough depth to support its ver-
sion of TEX. But most small or medium-sised
production users (possibly, the majority), even
those like the AMS which have some applications-
programming capability, won’t otherwise need to
undertake operating system maintenance on the

10

level likely to be required for the kind of TgX
software support which will allow enhancements
generated in the user community to be incorporated.
To have to acquire such a competence just for TgX
might price TEX beyond their reach; not to have it
leaves the user with an increasingly provincial ver-
sion of TEX.

A second possibility suggested for “TEX Central”
was to persuade some user to accept responsibility.
Since the very concept of a widely shared language
implies the merging of the interests of a diverse
group of users, an undertaking to support such a
language in any meaningful scope would mean a sub-
stantial commitment, almost certainly beyond the
resources of, say, the AMS by itself. It is even un-
likely that any single university computer science
department could commit itself to such an under-
taking. The more this alternative is considered, the
more it appears that the most reasonable approach
to the centralized support and standardization of
TEX is through the user community as a whole.

A third approach offered was creation of a
separate (or TUG sub-) organisation, composed only
of production users, and for these together to sup-
port the central TEX software support facility they
need. But no active body of production users yet
exists, and even if it did, that solution would be
likely to provide for standardisation of the lan-
guage among commercial TEX users (publishers)
while tending to allow dialects to proliferate among
educational users, where most authors of journal
articles reside. TEX as a language of communica-
tion between author and publisher would still be un-
realizable.

A fourth suggestion was to freeze TgX in its
present form, and refuse to allow changes to des-
tabilige it. Don Knuth will soon stop making al-
terations and improvements to TEX. When he does,
AMS could probably, as the holder of the TEX logo
copyright, maintain an essentially static “official”
TEX system, requiring use of only that system for
computer-readable manuscript submissions to it.
This would limit submissions to those from authors
at installations willing to ignore all other versions

of TgX, no matter what advantages those versions

might have acquired, or willing to maintain both
our “fixed” version and whatever other evolving ver-
sions they chose. In such circumstances, fewer and
fewer computer-readable manuscripts would appear
(if any ever did), until the Society found itself using
TEX only for its own internal purposes, much as it
now uses other computer typesetting systems. The
Society would have gained whatever improvement in
typesetting quality TEX might represent over earlier

TUGboat, Volume 2, No. 1

systems, but would have lost, with other scientific
publishers, the chance to cut that large portion of
its costs representing manuscript re-preparation.

A final suggestion would have a commercial firm
take over TEX as a software product acting as a
vendor, charging a fee for initial distribution of the
programs and an additional fee annually for software
support. This idea would be good except that, since
TeX is in the public domain, it’s not likely that
any firm would offer to involve itself without some
sort of endorsement, if not financial guarantee, from
TUG. Such an arrangement might work, but only if
TUG were willing to put itself on the line to ensure
it. Pursuing this idea further might suggest the
formation of a small, non-profit organisation, under
TUG and backed financially by it, to perform TgX
Central services.

I hope that the members of TUG, when the
Steering Committee meets at Stanford in May, will
see it in their interest to give real financial support
to this effort. If TUG does not make the effort to
convert TEX to a production system, then it will
probably not be converted (except for some special-
ized classes of users), and potential production users
will not be convinced that TEX represents a viable
choice. TgX will remain an educational tool, avail-
able in universities, and perhaps in places like AMS
where it is used for its competence at certain kinds of
typesetting, but it will not become the communica-
tions channel which we had hoped for.

It is important that you express your opinions on
this subject, no matter what your point of view.
Write to TUGboat; your letter will be part of a
report, to the Steering Committee in May. As many
letters as possible will be published in the next issue,
which will report on the May meetings.

UPDATE ON PASCAL METAFONT
Scott Kim

Work has just started on the Pascal implementa-
tion of METAFONT, which was originally written
in SAIL. It is too early to estimate how long the
translation will take—stay tuned to TUGboat for
news as it develops. Those interested in keeping up
with new developments in METAFONT, or knowing
more about digital typeface design in general, are in-
vited to correspond with Scott Kim at the Stanford
Computer Science Department.

TUGboat, Volume 2, No. 1

* % % % $ %X *x * % x *

Interface Software

* % X % % % % * % % %
ERRATUM:

THE FORMAT OF TgX'S DVI FILES
David Fuchs

Editor’s note: Several erroneous vahues were given
in a command description which appeared in TUGboat
Vol. 1, No. 1, page 18. The full corrected entry is given
below,

Command Description

129 BOP n<4> p<4>

Beginning of page n, with pointer p to
the BOP command of the previous page.
By “pointer” is meant the relative byte
number within the DVI file, where the
first byte (the BOP of the first page)
is byte number zero. (ex.: If the first
page had only a BOP and EOP, the
third page’s pointer would be 10, be-
cause the BOP command takes bytes
0 to 8, the EOP is 9, so the second
page’s BOP is in byte 10. Get it?). The
first page has a —1 for a pointer; the
second, a gzero. Start the H- and V-
coordinates out at 0, as well as the w-,
X-, J-, and 3-amounts. The stack should
be empty, and no characters will be set
before a FONT(NUM) command occurs.
Remember that n can be < 0, if the
page was Roman Numbered. Also the
pages need not come in the proper order
in the file, depending on who’s doing the
TEXing.

2 % % % % 2 % * % % %

TEX-PASCAL AND PASCAL COMPILERS
(A STATUS REPORT)

Ignacio Zabala

Following the original SAIL program, TEX-Pascal
has suffered some modifications since our previous
report of September 1980 (see TUGboat, Vol. 1, No.
1, p. 16), but the compiler requirements stated then
are still perfectly valid.

The information that has reached us about the
latest release of the program indicates three sources
of difficulties for some installations:

- The TFX (font information files) that were dis-

tributed contained packad information in units
of 36 bits.

11

— The program uses packed records that have to
be stored in a single machine word.

— CASE statements contain a default case which is
not standard in Pascal.

The first problem is solved in the next release,
because TeX now uses TFM (TEX font metrics) files,
which have only 32 bits of information per word.

The second problem, which really aflects the
amount of memory employed by the program,
is not easy to solve without slowing TEX down.
Essentially, the TEX-Pascal program expects that a
structure of the type:

memorysord = PACKED RECORD CASE 1..4 OF
1: (pnts: REAL);
2: (int: INTEGER);
3: (twohalves: halves2);
4: (fourbytes: bytes4)
END;
where
halves2 = PACKED RECORD
lvord: O..65535;
CASE 1..2 OF
1: (rhword: 0..65535);
2: (byte2: 0..255;
byte3: 0..255)
END;
and
bytes4 = PACKED RECORD
byteO: 0..255;
bytei: 0..255;
CASE 1..2 OF
1: (rhword: 0..65535);
2: (byte2: 0..255;
byte3: 0..255)
END;
is stored in a single 32-bit word. It does not make
any assumption on the order in which fields are
stored: if they are put in the structure and retrieved
from it in exactly the same order, the resuit should
be correct.

If the compiler does not pack as expected, it
does not necessarily mean that the program wiil not
run correctly, but that it may require an enormous
amount of memory (and this may cause the program
not to run at all!{).

Some installations that found the third problem
(CASE statements) have solved it by hand-editing the
program, and it is not yet clear whether it will be
fixed once and for all in the sources.

In all, the results are encouraging. Besides
Stanford, there are reports of the program running
at four other sites:

12

— On an IBM 370/3033 with Pascal/VS at
Stanford CIT (Eagle Berns).

- On a VAX (VMS) at Oregon Software (Barry
Smith).

- On an IBM 370/3022 (VM-CMS) with SLAC-
Pascal at the University of Pisa (Gianfranco
Prini). They printed the DVI files on a Versatec.

— On a Univac 1100/82 at the University of
Wisconsin (Ralph Stromquist). Output is to a
Compugraphic 8600. (See report, p. 51.)

From the information sent to Stanford, we gather
that the Pascal compilers being employed in the
installations of TEX are:

IBM 370: Pascal-VS, SLAC-Pascal, Pascal-8000
UNIVAC: U. of Wisconsin Pascal, Pascal-8000
PDP-10: Hamburg Pascal

VAX: (See report by Janet Incerpi, p. 49.)

Note: Charles Lawson (Jet Propulsion Lab.—
Caltech) has produced two short reports that can
help in reprogramming the SYSDEP module of TEX-
Pascal. (Both are reprinted in this issue, pp. 20 and
32)

TEX FONT METRIC FILES
What happens when you say “\font A=CMR10”

David Fuchs

When you tell TEX that you will be using a par-
ticular font, it has to find out information about that
font. It gets this information from what are known
as . TFM files. For instance, when you say \font
A=CMR10 to TEX (\:A=CMR10 in the old TEX lingo),
TgX looks around for a file called CMR10.TFM, and
reads it in. If CMR10.TFM is not to be found, TEX
will give you the error message "Lookup failed on
2ile CMR10.TFM*, and you will be out of luck as far
as using CMR10 is concerned.

What does TgEX want with the TFM files?
Generally speaking, a font’s TFM file contains in-
formation about the height, width and depth of all
the characters in the font, plus kerning and ligature
information. So, CMR10.TFM might say that the
lower-case “d” in CMRI10 is 5.55 points wide, 6.94
points high, etc. This is the information that TEX
uses to make its lowest-level boxes—those around
characters. See the TEX manual (p. 41) for in-
formation about what TEX does with these boxes.
Note that TFM files do NOT contain any device-
dependent description of the font (such as the raster
description of the characters at a certain resolution).
Remember that the program TEX does not deal with

TUGboat, Volume 2, No. 1

pixels. Only device-drivers that read TEX’s DV1 out-
put files use that sort of information.

Where do .TFM files come from? The best way

' to get a TFM file is with METAFONT. Font desig-

ners should include the METAFONT instructions
that specify the width, height, etc. of each charac-
ter they design. The METAFONT manual contains
details and examples of how to do this—see the in-
dex entries for charwd, charht, chardp, etc. If this
is done, then when METAFONT is run on CMRI10,
it produces CMR10.TFM. (Depending on what
“mode” it is run in, it also makes CMR10.FNT,
CMR10.ANT, CMR10.VNT, or CMR10.0C. These
are all different formats for files containing the raster
description of the font. Drivers for various devices
require one or another of these files.)

Whatever happened to the TFX format that the
TEX and METAFONT manuals actually refer to? Is
this just a misprint for TFM? No—TFM files take
the place of TFX files. The differences are concep-
tually small; they both contain more or less the same
information. The main reason for changing TEX and
METAFONT from using/making TFX files to TFM
files is that TFX files were based on 36-bit words.
This proved to be a real problem for people running
Pascal TgEX, especially on 32-bit machines. The for-
mat of TFM flles assumes 8-bit bytes, packed four
to a 32- or 38-bit word. They are readily adapted
for use on 16-bit machines, too. While the format
was being changed, a few new bits of information
were added, too.

What if I have fonts that I want TEX to know
about that were not made with METAFONT?
Don't despair—we have two programs, TFTOPL
and PLTOTF, that convert TFM files to readable,
editable format, and back again. For instance,
if we run TFTOPL on CMR10.TFM, it makes
CMRI10.PL, an excerpt of which follows (“R” means
a floating-point number is coming up (all dimensions
given in this form are in terms of the DESIGNSIZE);
“C” means that a character is next; “0” means an
octal value for a character that isn't an ASCII print-
ing character is next):

(FAMILY CMR)

(DESIGNSIZE R 10.0000000)

(CODINGSCHEME TEX TEXT)

(TEXINFO
(S8PACE R
(STREICH R
(SHRINK R .111110T)
(XHEIGHT R .4444447)
(QUAD R 1.0000000)
)(EXTRASPACE R .1111107)

.3333330)
.16666T0)

TUGboat, Volume 2, No. 1

(LIGTABLE

(LABEL C 1)

(LIG C 1 0 174)

(LIGC £ 0 1T3)

(LIG C 1 0 175)

(LIG C t D 44)

(810P)

(LABEL C o)

(KRN C o R .02TTTTT)

(KRN C x R -.0277TTT)

)(STIJP)
(CHARACTER C d

(CHARWYD R .5555558)

(CHARHT R .684444T)

(CHARDP R .0000000)

)
‘Which says: This font is in the CMR family, its
size is 10.0 points, and it’s a regular TEX font for
text. When TEX uses this font, it should know that
the glue between words should be 3.33pt plus 1.66pt
minus 1.11pt. TEX will also know that the x-height
of CMRI10 is 4.44 pt, a “quad” of space is 10 pt,
and the extra amount of space at the end of a sen-
tence is 1.11 pt. (see the METAFONT (Appendix F)
and TgX (everywhere) manuals for more on these
parameters). Also, TEX should recognize that when-
ever “f” is followed by “i*, “I", “I”, or “t”, that it’s
time for a ligature: an occurrence of “£1” should be
replaced by the character in octal position 174 in
CMRI10 (“fi"; see the Appendix of the TgX manual
that shows font tables to verify this), etc. Whenever
*o” is next to another “0”, they should be moved
apart by .277 pt more then they would otherwise
be (based on their widths), but an “o” should be
moved .277 pt closer to a following “x”. Finally,
the character “d” has width 5.55 pt, height 6.94 pt,
and depth 0 pt. The full CMR10.PL file has lots
more in its LIGTABLE and many more CHARACTER
descriptions, of course.

¥ we changed the line

(CHARWD R .5555553)
to

(CHARYD R .TO0)
and ran PLTOTF, making a new CMR10.TFM,
TEX would now think that “d® had width 7 pt in
CMR10.

So, if you have your own fonts that you’d like TEX
to know about, just make PL flles for them, and
then run PLTOTF to make TFM files. With luck,
your fonts will be in some computer readable form
such that the PL flles can be made with a fairly
gimple program. Note that it is perfectly legal to
have a TFM (or PL) file that specifies no kerns or
ligatures.

13

In fact, TFM files may contain a fair amount
more information about a font than just the heights,
widths, depths, kerns and ligatures. Most of these
extra paramaters only come up in the special math
fonts. The METAFONT (Appendix F again) and
TEX manuals talk about these parameters in more
detail. Below is a complete but scary description
of all the bits in TFM files. This description was
actually excerpted from a comment in the SAIL-

language version of TEX.

¥ % % % % *x % % * % %

This deflnition of TFM files is due to Lyle
Ramshaw.

Each font used by TgX has an associated font
information fille. The name of this file is obtained
by appending the extension code *. TFM” to the font
file name. For example, the TEX font metrics for the
font CMR10 appear on the file CMR10.TFM. These
.TFM files are written with 32 bits in each word, to
facilitate their transportability. When they sit in
the file systems of 36-bit machines, these 32 data
bits will be lefi-justified in the 36-bit word, leaving
the rightmost four bits sero.

The first 6 words of the .TFM file contain twelve
18-bit integers that give the lengths of the various
portions of the file, packed two to a 32-bit word.
These twelve integers are, in order:

1f = length of entire file in words,

1h = length of header data,

be = first character code in font,

ec = last character code in font,

nw = number of words in width table,

nh = number of words in height table,

nd = number of words in depth table,

ni = number of words in italic correction table,
nl = number of words of lig/kern program,
nk = number of words in kern table,

ne = number of words in extensible character

table,
ap = number of font parameters.

In .TFM format, the subfields of a word are always
allocated in left-to-right (BigEndian) order. Thus,
the first two integers in this list, 1£ and lh, are
packed into the first word of the .TFM file with 12
on the left and 1h on the right.

These lengths are not all independent: they must
obey the relation
11=6+1h+(ec-bc+1) +nw+nh+nd+ni+nk+nl+ne+np.

14

The rest of the .TFM file is a sequence of ten data
arrays as specifled below:

HEADER= ARRAY[0:1h-1] of Stuff

FINFO= ARRAY[bc:ec] of FInfoEntry
¥IDTH= ARRAY[O:nw-1] of FIX

HEIGHT= ARRAY[0:nh-1] of FIX

DEPTH= ARRAY[0:nd-1] of FIX

CHARIC= ARRAY[0:ni-1] of FIX

LIG/KERN= ARRAY[0:nl-1] of LigKernStep
KERN= ARRAY[0:nk-1] of FIX

EXT= ARRAY[O:ne-1] of ExtRecipe
PARAMS8= ARRAY[1:np] of FIX.

A FIX is a one-word representation of a real num-
ber in a fixed-point fashion. FIXes are used in .TFM
format to enhance transportability. A FIX is a
signed quantity, with the two’s complement of the
entire FIX used to represent negation. Of the 32 bits
in the word, 12 are to the left and 20 are to the right
of the binary point. This means that a FIX has 1
bit of sign, 11 bits of integer, and 20 bits of fraction.
Note that this limits the size of real numbers that a
FIX can represent: the largest FIX is roughly 2000.

The first data array is a block of header informa-
tion, general information about the font. Currently,
the header contains 18 words, allocated as described
below. In the future, new flelds might be added at
the end of the header block.

HEADER=
[
ChecksSum: 1 word
DesignSize: FIX (1 word)
CharacterCodingScheme: 10 words
ParcFontIdentifier: 5 words
Random word (=Header [17]
is broken up as follows:)=
[

SevenBitSafe: 1 bit
unusedspace: 23 bits
ParcFaceByte: 8 bits
]

]

The CheckSum field is used to hold a unique
identifler of some sort that describes this version of
the font. This unique ID is put by METAFONT
into both the rasters and metrics. TgX finds it in
the metrics, and stores it in the .DVI file. Thus, a
spooler can check the unique ID in the .DVI with the
unique ID in its rasters, to provide a guarantee that
TeEX was working with metric data for the current
rasters. METAFONT computes this checksum from
the metric information in the .TFM file.

The DesignS8ize of the font is the size that the
font was intended to look good at, or, to put it
another way, the nominal size of the font when it is
printed at a magnification of 1.0. For unusual fonts

TUGboat, Volume 2, No. 1

such as CMDUNH and CMATHX, the DesignSize
is more-or-less arbitrary. The Design8ize is stored
as a FIX with the units “points”.

The CharacterCodingScheme fleld is supposed to
specify what the character code to symbol transla-
tion scheme is in this font. The coding scheme is
stored in 10 words=40 bytes of the .TFM file, as 3
string. The first byte gives the length of the string,
the next n bytes are the characters, and the last
(39 — n) bytes are zeros (where “first® and “next”
imply working from left-to-right). Some common
coding scheme names are:

CharacterCodingSchemes:

TEX TEXT

TEX TYPEWRITER TEXT

TEX MATHIT

TEX MATHSY

TEX MATHEX

UNSPECIFIED — defauit, means no information

GRAPHIC — special purpose code, non-
alphabetic

ALPHABETIC — means alphabet agrees with
ASCII at least

ASCII — means exactly ASCIl

PARC TEXT — Times Roman and Helvetica,
for example

SUAX

cMu

MIT

Fonts are universally referred to by their file
names: for example “CMRI10” for Computer
Modern Roman 10 point, “CMTT" for Computer
Modern TypeWriter Type 10 point, etc. The TEX
user specifies the font by giving this string name,
the TEX output module finds the metric file by using
this name with the extension .TFM, and the various
printers store the rasters as files with this name and
some other extension.

TEX can only handle character codes that are
seven bits in length. But the .TFM format always
allows a full eight bits for a character code, 30 the
high-order bit of all characters specified must be
zero.

The HEADER data is followed by the FINFQ table,
which is an array of FInfoEntrys. This array is
indexed from bc to ec, and hence contains (ec —
bc + 1) entries. Each FInfoEntry is one word in
length. An FInfoEntry is a compacted structure
with the following format (fields allocated from left

to right once again):

TUGDboat, Volume 2, No. 1

FIantoEntry:
(
¥idthIndex: 8 bits
HeightIndex: 4 bits
DepthIndex: 4 bits
CharIcIndex: 8 bits
TagField: 2 bits
Remainder: 8 bits
]

The fleids in the FInfoEntry do not give the
character width, height, etc. directly, they are in-
dices into secondary tables. Thus, up to 256 different
widths may appear among the 256 characters of
a single font, and up to 16 different heights, 16
different depths, and 64 different italic corrections.
The actual widths, heights, depths and italic correc-
tions are stored in the .TFM file as arrays of FIXes
with “em” as their units. TEX reads in these FIXes,
converts them to floating point form, scales them by
multiplying by the desired font size (in points), and
stores them into internal character metric arrays.

The Charlc fleld is used both for the italic cor-
rection of ordinary characters and for mathop kerns.
In particular, for mathops such as summation and
integral signs, the CharIc field points to a “kern”
which, if nonzero, means that limits are normally set
to the right and the lower limit is shifted left by this
kern value. I the kern is O, limits in display style
will be centered above and below the operator. (To
change between centering and attaching at the right,
one writes “\l1imitswitch” after the operator.)

A note on non-existent characters: all character
codes outside of the range [be, ac] represent charac-
ters that do not exist in the font. Any codes in the
range [bc,ec] that represent non-existent charac-
ters will have their FInfoEntrys identically equal
to 0. The WIDTH, HEIGHT, DEPTH, and CharIc ar-
rays will each be guaranteed to have a FIX of 0.0
in their O’th position. Thus, failing to notice that
a character is non-existent won’t lead a program to
use irrelevant metric data for that character code.
Furthermore, any characters that really do exist in
the font will be guaranteed to have a ¥idthIndex
that is nonzero. Thus, a character is non-existent
iff its WidthIndex is szero, and also iff its entire
FInfoEntry is zero. If there are any actual charac-
ters in the font whose width just happens to be
precisely zero, the ¥IDTH array will contain two zero
FIXes: one at index 0, which is used for all of the
non-existent characters, and one somewhere else.

The remaining portion of the FInfoEntry is used
for several different purposes, depending upor the
value of the tag field. The TagField portion of the
FInfoEntry has one of four values:

15

tag=0=} this is a vanilla character, Remainder is

. unused.

tag=1=} character has a ligature-kerning program:
the Remainder field is the index in the
LIG/KERN array of the first step of the pro-
gram.

tag=2=} character is part of a chain of charac-
ters of ascending sizes (“charlist®): the
Remainder field gives the character code
of the next larger character in the chain.

tag=3 =) character code represents an extensible
character, one that is built up out of
smaller pieces and can be made arbitrarily
large: the Remainder field is an index into
the EXT array. The ExtRecipe at that
position in the EXT array describes what
the pieces are.

(The taglist and tagvar options are usually used

only in math extension fonts.)

The LIG/KERN array is a program in a simple
programming language that gives instructions about
what to do for special letter pairs. Each step in this
program occupies one word:

LigKernStep:
[
StopBit: 1 bit :
means this is a final program step
unusedspace: 7 bits
NextChar: 8 bits
if this is the next character, then...
TagBit: 1 bit ‘
unusedspace: 7 bits
Remainder: 8 bits
]

If the TagBit is O, this step in the program
describes a ligature. In that case, the Remsinder
consists of the character code of the ligature that
should be substituted for the current character pair.
If the TagBit is 1, this step describes a kern, and
the Remainder field is an index into the KERN array.
The KERN array is simply an array of FIXes, pure
numbers that should be scaled to give distances in
the same way as the elements of the WIDTH, HEIGHT,
DEPTH, and CharIc arrays.

An ExtRecipe is a one-word quantity that should
be viewed as four bytes (allocated left-to-right, of
course):

ExtRecipe:
§
top: byte
mid: byte
bot: byte
ext: byte

16

The height and width flelds in the FIntoEntry
of the extensible character give the metrics of the
component, not of the built-up symbol itself, since
the built-up symbol will have variable size. If top,
middle, or bottom portions are sero, the extension
component runs all the way through that portion
of the symbol, otherwise it directly abuts these por-
tions. The built-up symbol is formed by includ-
ing an integral number of extension components. If
there is a middle, the same number of extension
components will appear above and below. For ex-
ample, a left brace has all four components specified,
while a double || (the cardinality or norm symbol)
has only an extension part. The floor and ceiling
brackets are like regular brackets, but without top
or bottom, respectively. The width of the extension
component is assumed to be the width of the entire
huilt-up symbol. If any byte is 0, it indicates that
the corresponding piece of the extensible character
does not exist. Otherwise, the contents of the byte
is the character code of the piece: top, middie, bot-
tom, or extender respectively.

The rest of the .TFM file is the PARAMS array,
a table of font parameters that are used by TEX,
stored as FIXes. All of these parameters are dis-
tances except for the first one, “slant”: hence all
except for “slant” should be scaled by the font
sise by TEX when being read in from the .TFM
file. Since slant is a pure number, it should not be
scaled. [The following table of parameters is printed
in clearer form on pages 98-100 of the METAFONT
manual.]

the amount of italic slant (e.g. slant=.25
means that when going up one unit, go .25
units to the right—this is used in placing
accents over characters)
a real number that says how wide blank
spaces are (Note that TEX doesn’t use
character number ’40 for spaces, that
character can be non-blank in the font)
spacestretch
the stretch component of the glue for
spacing
spaceshrink
the shrink component of the glue for
spacing
xheight the height of lowercase *“x* (default
positioning for accents)
quad the width of one “em®
extraspace
the amount added to space after periods
(and in general when the spacefactor is
greater than 2)

slant

TUGboat, Volume 2, No. 1

Mathematics fonts used as \mathsy and \mathex
contain important additional parameter informa-
tion. In a \mathsy font, the extra parameters start
right after “quad”, that is, there is no “extraspace”
parameter. The \mathsy parameters are

mathspace
if nonsero, the amount of space that will
be used for all nonsero space in math for-
mulas (for fixed-width output)
nusi,num?,numsd
amount to raise baseline of numerators in
display or nondisplay or nondisplay-atop
styles, respectively
denon1,denon2
amount to lower baseline of denominators
supl, sup2,sup3
amount to raise baseline of superscripts if
1) display style
2) nondisplay nonvariant style
3) variant style
sub1, sub2
amount to lower baseline of subscripts if
superscript is
1) absent
2) present
supdrop, subdrop
amount below top or bottom of large box
to place baseline if the box has a super-
script or subscript in this sige
delimi,delin2
size of \comb delimiters in
1) display
2) nondisplay style
axisheight
height of fraction lines above the baseline
(this is midway between the two bars of =
sign)
A \mathex font includes the first seven standard
parameters (including extraspace), and then has
six parameters used to govern formula setting:

defaultrulethickness
the thickmess of \over and \overline
bars
bigopspacing(1), (2)
the minimum giue space above and below
a large displayed operator, respectively
bigopspacing(3), (4)
the minimum distance between a limit’s
baseline and a large displayed operator,
when the limit is above, below
bigopspacing(5)
the extra glue placed above and below dis-

played limits

TUGbost, Volume 2, No. 1 B\

TEX Support Programs

by
Phil Sherrod and Alan Wright
Vanderbilt University

The process of installing TEX on a computer system involves more work than
just getting the TEX program itself running. It is also necessary to have support
programs to convert the device independent output produced by TEX (the “DVI”
files) into a device dependent form suitable for driving one or more output devices.

A DECSystem-10 computer is used at Vanderbilt which is very similar to the
DECSystem-20 used at Stanford. This enabled us to get the SAIL version of TEX
running with only a few days of effort. During the year that we have been using
TEX we have found it to be remarkably reliable and bug-free and have had to
devote very little time to its maintenance. Most of our effort has been directed
toward improving the efficiency and convenience of the support. programs used to
drive the Versatec printer.

The Versatec printer is not connected directly to the DEC-10 but rather is
connected by a parallel port to a Monolithic Systems Corp. Z80 micro-computer
system which consists of a Z80 processor and 84Kb of memory. This system serves
as an intelligent controller for the Versatec and unloads a significant amount of
processing from the DEC-10. The Monolithic micro is connected to the DEC-10
through a 9600 baud RS232 serial line.

The support programs provided by Stanford for driving a Versatec consisted
of two DEC-10 programs written in SAIL, DVIVER and VERSER, and an as-
sembly language program for the Z80 called PAINT. We obtained a cross assembler
for the Z80 from Stanford and wrote our own program to communicate with the
ROM monitor in the Z80 and downline load program images.

The DVIVER and VERSER programs were moderately large (about 60K 36-
bit words) and fairly slow, consuming a total of about 7 seconds of CPU time per
page generated (TEX only uses about 1.5 seconds of CPU time in formatting each
page).

The DVIVER program reads the DVI files produced by TgX, breaks tall
characters into “parts® which will fit in the raster-scan buffer area in the Z80; sorts
the parts on each page into top-to-bottom order and produces an intermediate

1

18 - TUGboat, Volume 2, No. 1

work file that is read by VERSER. VERSER reads this work file and produces
a file of commands and data to be transmitted to the Z80. The actual process
of generating the raster scan pattern for each character and part takes place in
the Z80. However, since the Z80 has no local storage, VERSER must downline
load the raster pattern definition for each character as part of the command and
data file it produces for a document. Once a raster pattern has been defined
for a particular character the invocation of it requires only a simple and short
command.

The total number of character pattern definitions that can be simultaneously
held in the Z80 is constrained by the available memory space in the Z80. In
the original implementation of the Z80 PAINT program, each character (or part)
definition occupied a fixed size of 256 bytes in Z80 memory. The VERSER
program kept track of which character definitions were currently defined in Z80
memory and used a round-robin technique to replace old character definitions
with new ones if more characters were used than could be simultaneously ac-
comodated by the Z80. This meant that any number of characters could be used
in a document but a character definition might have to be reloaded several times.

Our work at Vanderbilt on the TEX support programs has been directed at
improving their efficiency and convenience. The DVIVER and VERSER programs
were combined into a single program called VERTEX which was written in BLISS
for efficiency. VERTEX performs the same basic functions as DVIVER and
VERSER but is more efficient because it does not have to generate the inter-
mediate work file and can avoid having to reaccess font information that was used
by both DVIVER and VERSER. Its memory management is also more efficient
and it uses a least-recently-used technique to keep in memory information about
fonts. The VERTEX program occupies 33K words of memory and uses about 5
seconds of CPU time per page generated.

The Z80 PAINT program was also rewritten. The memory space occupied by
instruction code was reduced to 30 percent of its original size allowing more space
to be used for character pattern definitions. The space allocated for each charac-
ter pattern definition was reduced from 256 to 128 bytes. This resulted in more
characters having to be broken into parts but substantially increased the total
number of characters that could simultaneously be defined in Z80 memory. A
least-recently-used (rather than round-robin) technique is used to select character
definitions to be replaced when more characters are needed than can be defined
simultaneously in Z80 memory. The command protocol used to communicate
between the DEC-10 and the Z80 was also improved. A reinitialization command
sequence was added that allows the Z80 to be restarted under DEC-10 control;
status information about paper and toner supplies are sent from the Z80 to the

2

TUGDboat, Yolume 2, No. 1 19

DEC-10.

The last part of our project was to integrate the TgX support programs into
the spooling system on the DEC-10. We did this by adapting VERTEX to fit into
the GALAXY spooling system which is part of the operating system on the DEC-
10. A time-sharing user can now issue a “VPRINT dyvi-file” command to queue a
file for printing on the Versatec. The conversion of the DVI file to Z80 commands
is performed by the spooler; the Z80 commands are transmitted directly to the
micro-processor without creating any intermediate files.

As part of our rewrite of the PAINT program, we added commands to do
general vector drawing. A DEC-10 program has been written to display on the
Versatec plot files created in a format compatible with our Zeta pen plotter. We
intend to modify TEX to add a command which will specify the name of a plot
file and the amount of space to reserve for it. VERTEX will then merge the plot
commands with the document as it is being processed for printing on the Versatec.

20 TUGboat, Volume 2, No. 1

* Brief Functional Characterizations of the |
Procedures in the TEX/PASCAL Compilation Unit, SYSDEP

by

C.L. Lawson
I Zabala
M. Dias

tanford University, January 27, 1981*

*This document is an enlarged and revised cdition of a paper with the same name, published by C. L.
Lawson; Gompuling Memorandum Neo. 166, Scptember 10, 1980, Jet Propulsion Laboratory, California
Institute of T'echnology.

TUGboat, Volume 2, No. 1 , .21

Contents

Page

Introduction G e et s e e e e o e s s T T T S |
1 Handling Printable Characters and 8trings ¢ . . v o 0t i et it e e ne e 1
APPNDSTRING . & ¢ v v v s v 4 o o o s s s s s 6 s 0 s o o neossasanesssssecess 3
INITSTRINGS . . - .o v v i v vn v meen o P
PRINT, PRINTINT, PRINTLN, PRINTOCTAL, and PB.INTREAL e e et e, 2
PRODUCESTRING . . . ¢ vt v v o o o ot o o 0 s s s onceoanrseseeanssnsens 2
2 HandlingExternal File Names o o o v v vt v vt vt o et as st swasossess 2
PRINTFILENAME . . . ¢« ¢ v v oo o v 6 v s s s s mcesoesnnassnssnosssssss 3
PRODUCESTRING0... ... 8
SCANFILENAME ¢ 0ttt ot o omenousonson e s e s e, 8
3 Operationson Input Files ICHANT ¢ v v c v e e s e s s s e s oo v aseceesoess, 3
BOFCHAN | . i i i i e ittt i it e s s s s s o s o s s oot osesssesoseesooss 4
GETFIRSTLINE v ¢ v 0 v o s s v s os o e e et e e e e e 4
RELEASE N
RSETFILE ¢ .t i s s e o o s s 6 0 0 0 o s n s oot s s saesnosoennisssas
4 Operations on Output Files OCHANx e e e b am e e e s e e e s e e e e
CLOSE . & i i s s s 4 vt o e s s o a s s s s b e e e s s e e et e e e
L ¥ 4 (e
SENDSTARTED it it v v v i ot oo o nm v oo ao oo o smaosoossenane
5 Terminal I/O and Output to the Error File ¢« . vt v i it i e ot v e e v v ot o0 o

FORCEBUFFEROUT4 vttt vo oo v onsesosaasosnna
INCHTER . . . 4 o v st s v a0 s 0 o o oo oo asssaosesanssosasooseonssoes

INITSYSDEP . . . - i v it o v s ot s 6 s ot o aaoacaceotonsoease
INLNTER . . ¢ o ot ot v v ot 00 0o a o oo nassosenneassoes
OUTCHERRt i i i ittt e nn st s s aoeonon
OUTCHTER ¢ i ¢t v vt oo s v oo e o o navosnaaon

OUTLNERR . . ¢« ¢ s e o o n v oo o 0 0 s oo aoeton ot canosnseonssssessss

L4 »
.
.
¢« .
.
-
.
.
.
.

PRINTI‘ILENAME S

. o v
.
.
.
.
.
L PO O LN LR UL UK R b o

22 TUGboat, Volume 2, No. 1

Contents

PRINTINT . . ¢ ¢ v vt v e oonsosaeovasocsoaccasoatssessssssssseese B
PRINTLN st vttt s v e oovesosasssensoasssossssssssoenoss B
PRINTOCTAL ¢t o000t o00acesostsoncesasssassonesosnssoaes B
PRINTREAL . . ¢ v ¢t o ¢ v o ¢t 0 s 06 a0 canssoscsessssesoeocsssesssssses B
TRACELINE ¢ ¢t e ot 6eessasassssossssssanssessosssssseses B
6 Read Font Information o o o ¢ o o o o 0 o 0 v s 0 s 0o o oo nesesoesessonesn 7
READFONTINFO . . 2 ¢ o ¢« ot o 0o acusaasosenssssasastssssossans T
70utput.tmglmthlisedTnblesfmmTBXPRE e e e s s s e s s s e s e e s 7
WRITEDELIMTB . & & & ¢ ¢ ¢ ¢ ¢ ¢ o ¢ s 6 a0 68 206018056 sesesaeoosensaeosn cee-- T
WRITEEQTB ¢« t ¢t ¢ ¢ e o o0 oo oseessssssassssasscsseasecsas T
WRITEPAGETB . . . ¢ i ¢t s s ot i ¢ s s 0 0 a s 0 assasasessessosssssasersans 8
WRITESECONDMEM . . . ¢ ¢ 4 o ¢ o0 o o o oo oosceoenonsoesseseeensen 8
8 Reading Initialised Tablesinto TEX . . . ¢ ¢ ¢ o 4 ¢ e ¢t e v s 00 s s s e sssasncesosssss 8
GETTABLESIZES & 4 v 4 ¢ 4 ¢ e s o s s a8t ooessooeessossenans .. 8
INITDELIMTB . . v & o v o o v 0 6 6 s 0 0 8 0 o o s 0 s s 00 eans s saonsonasannan 8
INITEQTB . . . ¢ i ittt et o s s o o s s 00 caosansossosssssssessoenssss 8
INITFMEM o e o o s 4 6 6 b e s s s b e m s s e e b s s e e s e s e e e e s . 8
INITHYPHENTB ¢ ot c o t ¢ ¢ ¢ s v a8 8o asessassssessssessesass 8
INITPAGETB ¢ ¢ o v o ¢ s s s 00 00 asesessssasessssssasssssesses 8
INITSECONDMEM e s 4 s s st e s e s e e s s e e e e e s . 8
9HandlingtheDevico-independcntOutputFile.DVI D
CLOSEOU T &+ . ¢ &t o ot s e 6 06 s s s esososesassstsososssassssssssss B
DECLAREOFIL . . & v ¢ v v et o s 0 08 s s 0 s aeoaseotsssssscsssssensacs 8
2) B)

TUGDboat, Volume 2, No. 1 . 23

Brief Functional Characterizations of the
Procedures in the TEX/PASCAL Compilation Unit, SYSDEP

Introduction

In working on a Univac computer system with the PASCAL code for TEX, TEXPRE, and SYSDEP, 1
have felt a nced for some types of documentation other than the documentation provided by the Stanford
group. I have had telephone discussions with members of the Stanford group on this topic. The purpose
of this memo is to provide an specific example of one type of document that I feel would be a very useful
auxiliary document for anyone undertaking to install TEX/PASCAL on a different computer system.

1 have used the following guidelines in composing this document."
A. Group the procedures into functionally related classes.

B. For each group describe the general functlional arca covered by the group, and any data structures,
limited ranges of parameter values, etc., common to the whole group.

C. Within each group list the procedurec names in alphabectic order with a bricf functional characterization
of each proccdure. Format this cn the poge : . the preecdure names stand out prominently from the
associated text.

D. Use only terminology that is well-defined in the PASCAL model of computer programming. Any
other terminology must be defined in terms of PASCAL or English language primitives. Examples
of apparently DEC-10 related terms to be eschewed include “WAITS system”, “file extension”, “file
directory”, “directory name”, and “system directories”.

E. Include a tablé of contents so the reader can see the major groupings of procedures at a glance.!

§1 Handling Printable Characters and Strings

The array STRINGPOOL holds strings of printable characters of two types. There is a printable string
associated with each ASCII ordinal in the range [0...127], and there is also a miscellaneous set of printable
sirings for use as errror messages, etc. Pointers into the array STRINGPOOL are held in the array STRNG.

APPNDREAL

Appends a real number to a string (both things are arguments of the function). The rules for the string
and for the returned value are the same as those in APPNDSTRING (below). Before appending, the real
number is converted into a string of tive characters that has a decimal point in the fourth position. Since
it will always be positive, there’s no need for a sign. For example, the siring obtained from 3/2 is precisely
“< space> <space>1.5". ’

1See also, by the same author, Detailed Specification of Procedures in the TgX/PASCAL Compilatio.n- Unit SYSDEP, J. P. L.
Section 366, Memo No. 467. .

24 TUGboat, Volume 2, No. 1

2 C. L. Lawson — TgX/PASCAL SYSDEP Functional Description

APPNDSTRING

This procedure appends string one string to another, fetching the former from either FILENAME or from
STRINGPOOL.
In any case, the function returns an identifier for the string as required by PRODUCESTRING.

INITSTRINGS

Reads printable strings for the ASCII ordinals [0...127] from the external file “ASCII TBL”, and additional
printable strings from the extornal file “STRINITBL”. These are all stored into the array STRINGPOOL,
indexed from the array STRNG.

Reading is done using ICHAN1 which is reset for each of these two external files.

PRINT, PRINTINT, PRINTLN, PRINTOCTAL, and PRINTREAL

These procedures build print images from the strings in STRINGPOOL and their arguments, and output
them to the terminal as well as to the error file. See Section 5 for the specific function of each of these five

procedures.

PRODUCESTRING
Fetches a string from either STRINGPOOL or FILENAME, and returns it to the calling proceddure.

§2 Handling External File Names

This set of procedures keeps track of external file names and their associations with internal file names. These
procedures are very strongly oriented toward a DEC-10 system. It appears that some of this functionality
would be handled quite differently on othes systems.

Ezxternal file names are held in the array FILENAME. Indexes f in the FILENAME array are usually passed
as FILNAM(f) to procedures dealing with strings, to belp them find out whether the argument should be
located in the FILENAME array or in STRNGPOOL.

INITFILENAME

Initializes the data structures that wﬂﬁ be employed to parse an external file name. It is called once for each
external file name. Its effect depends on whether the given file is an input file, an output file, or one of the
font information files. L

Refer to the description of function SCANFILENAME below.

APPENDTONAME
Refer to the description of function SCANFILENAME below.

TUGDoat, Volume 2, No. 1 25

3 Operations on Input Files ICHANX . 3

PRINTFILENAME
Outputs a file name from the array FILENAME to the terminal and the error file. .

PRODUCESTRING
Fetches a string from either FILENAME or STRINGPOOL, and returns it to the calling procedure.

SCANFILENAME

The function SCANFILENAME scans the input for the name of an external file and tries to open it. Its
argument, says whether it is a font file or send stream for which space has been reserved in the data structures
or an input file that has not been allocated yet. This function belongs in the main TEX module, but because
file names are very system dependent, the parsing is done in the system dependent module as follows:

First INITFILENAME is called with the same argument that SCANFILENAME received from its caller.
INITFILi:NAME should then take care of any initialization needed for the parsing of the file name. Using
its argument, it can decide whether the parsed name will refer to a font information file, to a “send” stream
or to an ordinary input file. The negative of the argument is returned if there are too many open files (this
can only happen with input files).

Next APPENDTONAME is called once for each token in the input. Using the data structures set up by
INITFILENAME, APPENDTONAME decides everytime whether the part of the name received so far is
syntactically correct for such a file name {otherwise it returas “malformedname”) and if so, whether it has
already received a complete file name (otherwise it returns “needmore”). In case the whole lile name was
received, APPENDTONAME tries to open that file. If it succceds, it will return done, otherwise it returns
“failure”. In any case, APPENDTONAME saves the scanned string in a place from where it can be retrieved
for use in error messages.

In the Stanford version of SYSDEP, some defaults are set for certain portions of certain file names. note
APPENDTONAME accepts everything until it finds a token that could never be part of a file name. If it is a
delimiter (space, period, etc.} it considers that the whole file name was received and tries to open it. Otherwise
it returns “malformedname”. Upon an unsuccessful return from APPENDTONAME, SCANFILENAME
rcturns a value that allows its calling routine to rccognise the failure and locate the stored name if it has to
be printed in some error message.

§3 Operations on Input Files ICHANx

v

These procedures do various operations on the six input files ICHAN1 through ICHANG. The file is selected
by an integer parameter in the range {1...6].

External file names associnted with these internal file names are stored in the array FILENAME with index
values [MAXF'NT+1+410-}-1.. MAXINT+1-}-104-6]. This is the last part of the FILENAME array, and
operates in a LIF'O manner. The name of the last \input command is stored i in the first free entry in that
range. When the end-of-file is reached, that entry is liberated.

NOTE: SYSDEP uses ICHANx with x in the range [1...6] because of the existence of a compiler imposed
limit on the number of files that a PASCAL program can keep open. This is clearly a system dependent
parameter. Six input files may not be enough for some complicated TEX sources.

26 : TUGboat, Volume 2, No. 1

< " G. L. Lawson - TEX/PASCAL SYSDEP Functional Description

CHANPTR

Returns the ordinal value of the current inj:ut character in INCHANZ; namely, it executes CHANPTR:=
ORD(ICHANx1).

EOFCIAN
Returns the value of EOF(ICHANX).

GETCHAN
Executes GET(ICHANx).

GETFIRSTLINE

Skips system header stuff, il any, at the beginning of a file to get a position for reading first meaningful
information. This is highly system dependent.

INLN
Reads one line from ICHAN=x.

RELEASE

Releases the input file ICHANX by executing RESET(ICHANX) followed by FILPTR:=FILPTR-1. The
latter statement frees the top entry in FILENAME, the top of the stack of input files.

RSETFILE

Opens ICHANx for input using RESET with a nonstandard parameter list.

This procedure is completely analogous to the PDP-10 PASCAL reset procedure. Its arguments FNAME,
FDIRECTORY, and FDEVICE are required by it precisely in the given form.

§4 Operations on Output Files OCHANx

These procedures do various operations on the ten output filcs OCHANO through OCHANY. The file is
selected by an integer parameter in the range [0...9).

External file names associated with these internal file names are stored in the array FILENAME with index
values [MAXFONT.. MAXFNT+11]. (Entry “MAXFNT-}1” is reserved for temporary storage of font
names, when the font itself was preloaded by TEXPRE)

CLOSE
Executes RESET(OCHANX) to close a file.

TUGboat, Volume 2, No. 1 27

5 Terminal I/O and Output to the Error File 5

RWRITEFILE

Opens file 0CHANx for output using REWRITE with a nonstandard parameter list.

This procedure is completely analogous to the PDP-10 PASCAL rewrite procedure. Its arguments FNAME,
FDIRECTORY, and FDEVICE are required by it precisely in the given form.

SENDCH

Outputs one character to 0CHANx,

SENDLN

Outputs a carriage return and line feed to 0CHAN=x.

SENDSTARTED

Executes SENDSTARTED:=EOF(0CHANX). The result is true only if this output file has been started but
not opened. .

§5 Terminal I/O and Output to the Error File
These procedures handle I/O from and to the terminal and output to the error file. The internal file names
used are TERIN, TEROUT, and ERRFIL. The external names for both input and output to the terminal

is “FOOBARTTY” and thus TERIN and TEROUT must each be reopened every time there is a switch
between input and output or vice versa. The external name of ERRFIL is “ERRORSTEM”.

FORCEBUFFEROUT

Completes output to the terminal before doing input from the terminal. Uses the nonstandard Pascal
function BREAK(TEROUT).

INCHTER

Ezecutes BREAK(TEROUT), opens TERIN for input, inputs the ordinal value of one character from TERIN,
and skips to a carriage return.

INITSYSDEP
Opens TERQUT and ERRFIL -and does other initializations.

INLNTER
Reads one line from TERIN.

I . TUGboat, Volume 2, No. 1

8 C. L. Lawson - TEX/PASCAL SYSDEP Functional Description

OUTCHERR
Outputs one character to ERRFIL.

OUTCHTER

Outputs one character to TEROUT.

OUTLNERR
Outputs a carriage return and line feed to ERRFIL.

PRINT
Outputs a string trom STRINGPOOL to TEROUT and ERRFIL.

PRINTFILENAME
Outputs a file name from the array FILENAME to TEROUT and ERRFIL.

PRINTINT

Outputs 2 print image of an integer to EROUT and ERRFIL.

PRINTLN
Outputs a carriage return and line feed and a string from STRINGPOOL to TEROUT and ERRFIL.

PRINTOCTAL
Qutputs the octal print image of an integer to TEROUT and ERRFIL.

PRINTREAL
Output a print image of REAL number to TEROUT and ERRFIL.

TRACELINE

Displays a line to the terminal and the error file. Awaits a signal from the terminal. Anything except a
carriage return causes this procedure to read a new line from the terminal replacing the displayed line.

TUGDboat, Volume 2, No. 1 20

7 Outpuiting Initialised Tables from TEXPRE 7

§6 Read Font Information
Each font used by TEX has an associated font inforrtlm.tion file —called TFM, for TEX Font Metrics— that must

be read into the arrays FONTINFO, FMEM (updating also the pointer FMEMPTR), WDBASE, HTBASE,
DPBASE, ICBASE, LGBASE, KRBASE, EXTBASE, and PARBASE, for internal use by the TEX program.

In DEC machines, the name of this file is obtained by appending the extension code “TFM” to the font file
name. For example, the TEX font metrics for the font CMR10 appear on the file CMR10 . TFM.

READFONTINYO

Takes the font information from a file and puts it in the internal character metric arrays employed by TEX.
The contents of these arrays is described in TEX.DOC. Notice that, sometitnes, FONTINI'O is set to integer
0, and that FONTFIL.FOURBYTES is assigned directly to FONTINFO entries. This works correctly for
the PDP-10 pascal compiler where fields arc packed left-to-right in each word (thus, unused bits are always
on the right).

§7 Outputting Initialized Tables from TEXPRE

These procedures output various tables from TEXPRE for later input to TEX to initialisac TEX. The file
being written has the internal name TBLFIL and the external name “IEXINITBL".

Thus, TEX does net have to go through all the initialization; it is enough to read the tables {romn that file.

SETTABLESIZES

Opens file TBLFIL and outputs twelve numbers giving sizes of tables to follow.

WRIEDELIMTB

Outputs the delimiters table.

WRITEEQTB

Outputs the cquivalents and related tables.

WRITEFMEM

Qutputs the font memory.

WRITEEYPHENTB

Outputs hyphenation tables.

30 , TUGDboat, Volume 2, No. 1°

8 C. L. Lawson — TEX/PASCAL SYSDEP Functional Description

WRITEPAGETB

Writes-out original contents of the memory table. This table contains such paremeters as \hsize, \vsize,
\parindent, \topbaseline, \varunit, etc.

WRITESECONDMEM

Outputs the latter part of the array MEM. It is necessary to initialize this part because it may contain names
(character strings) of control sequences that were defined in the files preloaded by TEXPRE.

§8 Reading Initialized Tables into TpX

These procedures read various tables into TpXfor initialization. The file being read has the internal name
TBLFIL and the external name “TEXINITBL”.

GETTABLESIZES
Opens file TBLFIL for input and reads twelve integers giving sizes of the tables which follow on this file.

INITDELIMTB

Inputs the delimiters table.

INITEQTB

Inputs the equivalents and related tables.

INITFMEM

Inputs the font memory.

INITHYPHENTB

Inputs the hyphenation tables.

INITPAGETD
Inputs the page memory. Cf. WRITEPAGETB.

INITSECONDMEM
Inputs the latter part of the array MEM. Cf. WRITESECONDMEM.

TUGboat, Volume 2, No. 1 31

9 Handling the Device-independent Output File, DVI 9

§9 Handling the Device-independent Output File, DVI

This file contains the main output from TEX. Its internal name iz OUTFIL. Its default external name is
“TEXTOUTDVI",

CLGSEOUT

Called by TEX just before stopping to write postamble information on OUTTIL. This information is partially
system dependent, because it contains font file names.

DECLAREOFIL
Initializes the output on the file indicated by its argument; that is, sets up correspondence between the
internal file name QUTFIL and the external name.

This procedure is called when the name of the output file is first known. It then opens file OUTFIL for
writing on a certain external file. The name of that external file name is the default (system, dependent,
“TEXTOUTDVI” or something like that) if no input file was ever mentioned, that is, if all user input was
given on the terminal. Otherwise, it is a name related in some form with the name of the first mentioned

input file.

DVI

Packs a byte into a quarter word position of a single word buffer DVIWORD.INT, and outputs this word to
OUTFIL when filled.

INTOUT

Breaks an integer into four bytes and outputs these to QUTFIL.

32 TUGDboat, Volume 2, No. 1

Detailed Specifications of Procedures in the TEX/PASCAL
Compilation Unit, SYSDEP

by

C. L. Lawson
1. Zabala
M. Diaz

Stanford University, January 28, 1981* .

*This document is an enlarged and revised edition of a paper with the same name, published by C. L.
Lawson; Computing Memorandum No. 467, September 15, 1980, Jet Propulsion Laboratory, California
Institute of Technology.

TUGboat, Volume 2, No. 1 . 88

Contents

Inbroduetion & ¢ i v b e e e e e e st e h e e e s s s e e s e s e e s e e e
APPMDREAL, Ve s e e e b e s e e s e s e e e s
APPNDSTRING . . ¢ i . it ot e et bt s v v s s v s
APPENDTONAME ¢ ¢ N e e e s e e e s s e e s aae e e e
CHANPTR . . . it i it e v v v v s e n s o e e e b e s b et e et e e e e e e
CLOSE C e e e e e e e e e e s et et s e e e e e e s e e e
CLOsSEoUT T e e e e s e s 4 s e b e s e e e s e e e e e et
DECLAREOFIL i ¢ i v v v vt v eo. C 4 e e b e e e e e e e e s e e e
DVI . . . e s e e e e e e e e e e e e b e e e e m e e e e e s e e e e e e e e,
EORFCHAN i s ittt ettt e v e
FORCEBUFFEROUT e e e e e e e e s e e e e e et e et e e e e e e
GETCHAN Gt e et e e e et e s e e e e e e e
GETWIRSTLINE e e e s s e e e s e b m e et e et e e s e e e e e e a e e
G T ABLESI S . . . v v v e o e v ot s o s s ot o o bt o o s e b s e s s e e e e e
INCHTER . . . f i i i e s et e e v oo s e e e e e e e e e e e e e e e e e
INTIDELIMTB . . . v i o e et e e o v v s s e r e e e e e e e e e e e e e e e e
INMEQTB e et e e e e s e s e s s et e e e e s et e et e e e e
INTIPILENAME e e e e
INITOMEM0 e e e e e e e e e e e e
INITHYPHENTB . . . ¢ s ¢t v 6 et e v o v o e e e s e e s e et e et e e e e e
INITPAGETB. e e e e e e e s e e e e e e e e v e e e e
INITSECONDMEM e e e v e e e e e s e e e e e e e e e e,
NI T RINGS & v v it it e i e o e e e o s s o o s o s o v o o o o o s s o s e oo o e e e
INITSYSDEP e e e e e e e e e e e s e e e e s e e e e et e e
INLNo b et e e e e e e e e et e e e e e e
INLNTER & . . i v o ot s o e v o o a0 s e s o o s o s s ¢ o o s oo a o s o oeseoesoa s e e e e e
INTOUT i i it i s v e o e v oo e oo v et e v e e b e e e e e e e e e e ..
OUTCHERR e e b e e e h e e s e e e e e ea e Ve e e e e
OUTCIITER ¢ e h et e e e s e e s e e et e e e e e C e e e e e e
OUTLNERR: . . ¢ & i it 6t e e e o s a v s s o e s s oo a o v oo oeosa
PRINT . . .t i i i i it et e it et o s m st e s s e a o s et
PRINTFILENAMEt vt 4 o s v a6 o st s e s 6 o s n s s
PRINTINT . . . v i ot o i et o a a s o oot n e s o asa s o e b et e s e e et e e
PRINTLN i i i i v v s v s v et b e h e e s e e e e e e e s e e
PRINTOCTAL v v v v v v v o v 0 o e et e e s e e et e e e e e e e e
PRINTREAL e st b s e e e et e e e e e et e e e
PRODUCESTRING ¢ i vt v vt o vt mn aensaas

DO ODOO VWO =I=2DNDHD®O RO B b b COCCICOC DD B B I b b

3

TUGDboat, Volume 2, No. 1

Contenta

READFONTINFO . . .
RSETFILE
RWRITEFILE
SCANFILENAME . . .

SENDLN........

SENDSTARTED
SETTABLESIZES . . .

WRITEFMEM

...... SN . .
.......... e e h e et e et e e e e e e e e
t e e s e s e s e e m st e e e ae e e e e e e e e o ..
.. . S T
N e e e e e e s e e e e et e e ..
e e e e e e e e e et e Gt e et e e a e e e ..
...........
e e e C e e et e e e a e e e e P e e e e e e e s e ..
e e e e s e e e e e et e e e e e e e e e e s .
TRACELINEc0c00.. e e e s e e s e s e e s r e e
WRITEDELIMTB i e i i et s v a o s o s oo oo oo o s ss oo e o oaeas
WRITEEQTB i it it e it vttt it o m ot e s o s e e oo o nmeonsoneneos
O N e et e e e e
oo s c e e e e e e et e e e e e e e e e e

WRITEHYPHENTB . .

WRITEPAGE TB i i i it et it e o st s n e s o s ot et oo e e enennsas

WRITESECONDMEM .

10
10
10
1
1
11
1
12
12

TUGDboat, Volume 2, No. 1 35

Detailed Specifications of Procedures in the TEX/PASCAL
Compilation Unit, SYSDEP

Introduction

The PASCAL compilation unit, SYSDEP, contains some fifty PASCAL procedures; i.e., PROCEDUREs
or FUNCTIONs. The purpose of this document is to give complete program specifications for each of these
procedures.

The procedures are listed in alphabetical order. Fach procedure is identified by name, the names and
types of all formal parameters, and the type of its result if it is a FUNCTION.

Some information is given as to the purpose of each procedure, the method used in the procedure, the
purpose of each argument and FUNCTION result, and restrictions (such as valid ranges of input parameters).

The author does not have any depth of knowledge about the code being described. This is offered as a
first cut at a document that would be more complete and correct.

For more details, see the complementary document called “Brief Functional Characterizations of the
Procedures in the TEX/PASCAL Compilation Unit SYSDEP”, which gives a higher level perspective on the
functional groupings of these procedures, and descibes more accurately the purpose of each procedure. Here
we shall content ourselves with shorter functional descriptions.

APPNDREAL

Integer function with the following two parameters:

Name Type
D INTEGER
S REAL

Appends the real number S to string D. The rules for D and the returned value are the saine as those
in APPNDSTRING below. Before appending, the veal nuraber S is converted to a strmg of five characters
that has a decimal point in the fourth position.

APPNDSTRING

Integer function with the following two paramecters:

Name Type
D INTEGER
S REAL

Appends the real number $ to string D. If S<FILNAM(0) then the corresponding string can be found in
the FILENAME array, otherwise it is an ordinary string in STRNGPOOL. If D> FILNAM(0) this procedure
does not append but instead creates a new string at the end of the STRNG and STRNGPOOL arrays and
fills it with the contents of the source. In any case, the function returns an identifier for the string as required
by PRODUCESTRING.

38 TUGboat, Volume 2, No. 1

2 . . : TEX/PASCAL SYSDEP Procedure Specifications

APPENDTONAME

Function of type INTEGER with two parameters.

Name Type
CMMD INTEGER

CH INTEGER

This is related to procedure SCANFILENAME.

CHANPTR
Function of type ASCIICODE with one parameter.
Name Type
D INTEGER

The integer ID must be in the range [1..6]. It selects one of ICHAN1 through ICHANG and executes
CHANPTR:=ORD(ICHANx{).

This returns the ordinal value of the current input character in ICHANx.

CLOSE

Procedure with ono parameter.

Name Type
STREAM INTEGER

The integer STREAM must be in the range [0..9]). It selects one of OCHANO through OCHANY and
executes RESET(OCHANx).

According to page 12 of the Stanford documentation this has the effect of closing and saving the external
file previously associated with OCHANx for writing.

CLOSEOUT

Procedure with five parameters.

Var.? Name Type
DVIBYTECNT INTEGER
LASTPAGEPTR INTEGER

MAXPAGEHEIGHT REAL
MAXPAGEWIDTH REAL
Var PARBASE FBASEARRAY

This procedure is called by TEX just before stopping. It writes the postamble information to file OUTFIL
by use of the procedure DVIL.

This information appcars to be partially system, depéndent.

TUGboat, Volume 2, No. 1 B

GETCHAN 3

DECLAREOFIL

Procedure with one parameter.
Name Type
FYL INTEGER

Initializes .he output on the file indicated by FYL; that is, sets up correspondence between the internal
file name OUTFIL and the external name.

The file OUTTIL will be opened using REWRITE.

DVI

Procedure with one parameter.
Name Type
BYTE INTEGER

Packs inteer BYTE into a quarter-word position in DVIWORD.BIT as selected by the global variable
BYTENUM which is in the range [1..4]. BYTENUM is incremented.

When DVIWORD.INT is filled it is output to the file OUTFIL.

EOFCIHAN
Punction of type BOOLEAN with one parameter.
Name Type
ID INTEGER

The integer ID must be in the range [1..6]. It sclects one of ICXHANL through ICHANG to be tested,
returning the value EOI'(INCHANx).

FORCIBUFFEROUT

‘Procedure with no parameters.
This procedure executes the single nonstandard procedure, BREAK(TEROUT).

GETCHAN

Procedure with one parameter:
Name Type
ID INTEGER

The integer ID must be in the range [1.:6]. It sclects one of ICHAN1 through ICHANG to be accessed
using GET(ICHANX).

38 TUGDboat, Volume 2, No. 1

4 TEX/PASCAL SYSDEP Procedure Specifications

GETFIRSTLINE
Function of type BOOLEAN with six parameters.

Var.? Name Type

FYL INTEGER
Var BUFFFR BUFFER
Var BUFPTR INTEGER
Var BRCHAR ASCIICODE
Var EOFF BOOLEAN
Var PAGE INTEGER

The integer FYL must be in the range [1..6]. It selects one of the files ICHAN1 through ICHANS.

This procedure is highly system specific. It is used to skip systern header stuff at the beginning of file
number FYL. It also prints a “page” number which relates to the fact that DEC-10 files are partitioned into

“pages”.
The value of GETFIRSTLINE is set to true if the function is successful.

GETTABLESIZES
PFuaction of type BOOLEAN with one parameter.
Var.? Name Type
Var SIZESTABLE SIZESARRAY

Opens a file for input with internal name TBLFIL and external name “TEXINITBL”.

Reads twelve integers into the array SIZESTABLE. Sets GETTABLESIZES:=TRUE if no end of fle is
encountered.

INCHTER

Function of type ASCHCODE with no parameters.

This function reads one character from the terminal and returns its ordinal value. It first executes
BREAK(TROUT) and RESET(TERIN,'FOOBARTTY", , ,). After reading a character it skips to a carriage
return.

INITDELIMTB

Procedure with one parameter.

Var.? Name Type
Var DELIMTABLE DELIMARRAY

Reads-in original contents of delimiters table.

TUGbozat, Volume 2, No. 1

INITFMEM

39

INITEQTB

Name
EQTB
HASH
HHEAD
HASHPAR
HASHSEND

Type
EQTBARRAY
HASHARRAY
HHEADARRAY
INTEGER
INTEGER

Reads-in original contents of equivalents and related tables.

INITFILENAME

The function INITFILENAME initializes the data structures that will be used by APPENDTONAME

Name
FNUM

to obtain the name of a file and open it.

If its argument lies in the range 0...MAXFNT--1, the file is a font. The name should be allocated in
the corresponding place in the first NFONTS-1 entries of FILENAME and default name conventions for
font nares apply (Only 0... MAXFNT are used for fonts properly, the extra entry is used for comparisons
in DEFINEFONT.) If FNUM is in the range NFONTS-}-1. . .NFONTS-|- 10, the file contains an output send
stream. A negative FNUM indicates an input file whose name must be allocated in the top position of

FILENAME.

INITFMEM
Procedure with nine parameters.

Var.?

Var
Var
Var
Var
Var
Var
Var
Var
Var

Name

FMEM
WDBASE
HTBASE
DPBASE
LGBASE
MSBASE
PARBASE
FONTINFO
FMEMPTR

Inputs the font memory from file TBLFIL.

Type

INTEGER

Type
FMEMARRAY
FBASEARRAY
FBASEARRAY
FBASEARRAY
FBASEARRAY
FBASEARRAY
FBASEARRAY

FNTINFOARRAY

INTEGER

40 . TUGboat, Volume 2, No. 1

[] TEX/PASCAL SYSDEP Procedure Specifications

INITHYPHENTB

Procedure with six parameters.

Var.? Name Type

Var READOUTVARIABLE TABLEREADOUTTYPE
Var EXCEPTABLE - EXCPARRAY

“ar EXCEPHYPH EXCPHYARRAY

Var SUFFIX SUFFIXARRAY

Var PREFIX PREFIXARRAY

Var BTABLE BARRAY

Inputs hyphenation tables from file TBLFIL.

INITPAGETB

Procedure with one parameter.
Var.? Name. Type
Var PAGEMEM PAGEMEMARRAY

Inputs the page memory from file TBLFIL.

INITSECONDMEM

Procedure with one parameter.
Var.? Name Type
Var =~ MEM MEMARRAY

Inputs from file TBLFIL to MEM[J].INT for J;=SECONDMEM to MEMSIZE.

INITSTRINGS

Procedure with no parameter.

Reads the ASCH table from external file “ASCII TBL", and the printable strings from external file
“STRINITBL”, into the array STRINGPOOL. Reading is done using ICHAN1, which is reset or each of
these two exterpal files.

Pointers into STRINGPOOL are set in the array STRNG.

INITSYSDEP

Procedure with one parameter.
Var.? Name Type
Var FOURBYTESIZE INTEGER

Initializes the values of FOURBYTESIZE, FOURBYTEMASK, FILPTR, BYTENUM, DVIWORD.INT.
Clears the array FILENAME to NULLs.

Opens terminal for ASCII output. Internal name is TEROUT, external name is “FOOBARTTY”.
Opens error file for output. Internal name is ERRFIL, external name is “ERRORSTEM?”.

TUGboat, Volume 2, No. 1 41

QUTCHERR 7

INLN

Procedure with five parameters.

Var.? Name Type

FYL INTEGER
Var BUFFER BUFFIT
Var BUFPTR INTEGER
Var BRCHAR ASCIICODE
Var EOF BOOLEAN

The integer FYL must be in the range [1..6]. It selects one of ICHAN1 through ICHANS and reads from
the selected file into the array BUFFER up to a carriage return, form feed, end of file, or the capacity limit
of BUFFER.

On return BUFPTR will be the index of the last item in BUFFER, BRCHAR will be a copy of
BUFFER[BUFPTR], and EOF will be true if an end of file was encountered.

INLNTER

Procedure with five parameters.

Var.? Name Type

Var BUFFER BUFFER

Var BUFPTR INTEGER
Var BRCHAR ASCIICODE |

Reads text into the array BUFFER from the terminal, up to a carriage return or the capacity of
BUFFER. It stores ordinal values of the characters in BUFFFER.

Sets BUF'PTR to index the last value stored into BUFFER.
Sets BRCHAR a3 a copy of BUFFER[BUFPTR]. This will be either the ordinal value of carriage return

or else a zero indicating the capacity of BUFFER was reached.
INTOUT

Procedure with onc parameter.
Name Type
1 ASCIICODE

Breaks the integer I into four quarter-wordbytes and outpubs the four bytes to QUTFIL using four calls
to the procedure DVL
OUTCHERR

Procedure with one parameter.
Name Type
C ASCICODE

This procedure outputs the character whose ordinal number is C to the error file, ERRFIL.

42 TUGboat, Volume 2, No. 1

8 TEX/PASCAL SYSDEP Procedure Specifications

OUTCIOTER

Procedure with one parameter.
Name Type
c ASCIICODE

This procedure outputs the character whose ordinal number is C' to the terminal, using the internal ule
name, TEROUT.

OUTLNERR

Procedure with no parameters.

This procedure outputs a carriage return and line feed to the error file using the internal file name,
ERRFIL.

PRINT

Procedure with one parameter.
Name Type
MES INTEGER

QOutputs string number MES in STRINGPOOL to the terminal, TEROUT, and to the error fill, ERRFIL.

PRINTFILENAME

Procedure with one parameter.
Name Type
FYL INTEGER

This procedure prints the name of the file whose integer identifier is 'YL. The procedure PRINT is used
to output to the terminal and the error file. The terminal printing is forced to complete by use of procedure
FORCEBUFFEROUT.

The file name is fetched from FILENAME({FYL].

PRINTINT

Procedure with one parameter.
' Name Type
N INTEGER

Converts te integer N to decimal digits from printing and outputs the decimal digits, and a minus sign
if N < 0, to the terminal and the crror file using procedure PRINT.

TUGboat, Volume 2, No. 1 : 43

PRODUCESTRING ?

PRINTLN

Procedure with one parameter.

Name Type
MES INTEGER

Outputs a carriage return and line feed to the terminal, TEROUT, and the error file, ERRFIL, and
then uses PRINT to output message number MES from STRINGPOOL to these same wo destinations.

PRINTOCTAL

Procedure with one parameter.

Name Type
N - INTEGER

Converts the integer N to a string of twelve octal digits and outputs these to the terminal and the ercr
file using procedure PRINT.

PRINTREAL

Procedure with one parameter.

Name Type
X REAL

Prints the real number X as an optional sign [ollowed by decimal digtts, a period, and four more decimal
digits. This string is output to the terminal and the error fie using the procedure PRINT.

PRODUCESTRING

Procedure with two parameters.

Var.? Name Type

X INTEGER
Var NAMESTRING ASCIHSTRING

It ¢ < —2, this procedure returns the file name associated with font number €. The file name will be
placed in NAMESTRING terminated by a NULL.

If ¢ > —2, this procedure moves string number ¢ from STRINGPOOL iato NAMESTRING, with a
terminating NULL.)

44 TUGboat, Volume 2, No. 1
10 TiX/PASCAL SYSDEP Procedure Specifications
READFONTINFO '

This is an integer function that has the following parameters:

Var.?

Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var

Reads font information from filte FONTFIL. The integr FYL is used as au index ju the various array

Name

FYL
FONTINFO
FMEM
WDBASE
HTBASE
DPBASE
ICBASE
LGBASE
KRBASE
EXTBASE
PARBASKE
FCKSUM
FPTB
FSIZE

FPF1
FMEMPTR
PSIZE
ATCLAUSE

Typc
INTEGER

FNTINFOARRAY

FMEMARRAY
FBASEARRAY
FBASEARRAY
FBASEARRAY
FBASEARRAY
FBASEARRAY
FBASEARRAY
FBASEARRAY
FBASEARRAY
FBASIEARRAY
FBASEARRAY
FSIZEARRAY
FPIARRAY
INTEGER
RIZAL
BOOLEAN

parameters to establish the destination of this information.

RELEASE

Procedure with one parameter.

The integer FYL must be in the range [1..6]. Tt selects one of ICHAN1 through ICHANGS and executes
RESET{ICHANX) followed by FILPTR:=FILPTR-1.

This closes and rcleases the indicated file and frees the entry in FILENAME,

RSETFILE

Procedure with four parameters.

The integer ID must be in the range [i..6]. Tt selects onc of ICHAN1 through [CIIANG to be opened

Name
YL

Name

ID

FNAME
FDIRECTORY
FDEVICE

Type

INTEGER

Type
INTEGER
CHAR9
INTEGER
CHARSG

for input and associates it with FNAME, FDIRECTORY, and FDEVICE.

TUGboat, Volume 2, No. 1 ~ : 45

SENDLN) 11

RWRITEFILE

Procedure with four parameters.

Var.? Name ‘ Type
ID INTEGER
FNAME CHARY
FDIRECTORY INTEGER
FDEVICE CHARSG

The integer ID must be in the range [0..9]. It selects one of OCHANO through OCHANSY to be opened
for output and associates it with FNAME, FDIRECTORY, and FDEVICE.

SCANFILENAME

Thie function has only one parameter.

Name Type
FYL INTEGER

1t belongs to the main module of TEX/PASCAL, but because file names are very system dependent, the
parsing is done in the system dependent module. Refer to the Functional Description of SYSDEP.

SENDCH

Procedure with two parameters.

Name Type
STREAM INTEGER
C ASCUCODE

The integer STREAM must be in the range [0..9]. It selects one of OCHANO through OCHAN9 and
outputs the character CHR(C) to file OCHANZ. '

SENDLN
Procedure with one parameter.
Name Type
STREAM INTEGER -

The integer STREAM must be in the range [0..9]. It selects one of OCHANOQ through OCHANY and
outputs a carriage return and line feed to OCHANX.

48 TUGboat, Volume 2, No. 1

12 TEX/PASCAL SYSDEP Procedure Specifications

SENDSTARTED

Function of type BOOLEAN with one parameter.
Name Type
STREAM INTEGER

The integer STRLAM must be in the range [0..9]. It selects one of OCHANO through OCHANY and
executes SENDSTARTED:=EOF(OCHANx). The result is true only if this cutput stream has been started
and not closed.

SETTABLESYZES

Procedure with no parameters.

This procedure opens a file for output with internal name TBLFIL and external name “TEXINITBL".
It writes twelve numbers to this. file giving sizes of various tables.

TRACELINE

Procedure with four parameters.
Var.? Name Type

Var BUFFER BUFFER
Var BUFPTR INTEGER

This procedure prints the line in BUFFER to the terminal, and the error file, and then reads a character
from the terminal. A carriage return means leave BUFFER as it is. Anything else means read a new line
from the terminal into BUFFER.

WRITEDELIMTSB

Procedure with cne parameter.
Name Type
DELIMTABLE DELIMARRAY

Outputs the delimiters table to TBLFIL.

WRITEEQTB

This procedure has the following parameters:

Name ' Type
EQTB EQTBARRAY
HASH HASHARRAY
HHEAD HHEADARRAY

HASHPAR INTEGER
HASHSEND INTEGER

Outputs the parameter arrays and variables to file TBLFIL.

TUGboat, Volume 2, No. 1

WRITESECONDMEM

47

13

WRITEFMEM

Procedure with nine parameters.

Name Type
FMEM FMEMARRAY
WDBASE FRASEARRAY
HTBASE FBASEARRAY
DPBASE FBASEARRAY
LGBASE FBASEARRAY
MSBASE FBASEARRAY

PARBASE FBASEARRAY
FONTINFO FNTINFOARRAY
FMEMPTR INTEGER

Write the font memory to TBLFIL.

WRITEHYPAENTB

Procedure with six parameters.

Name Type
READQUTVARIABLE TABLEREADQUTYPE
EXCEPTABLE EXCPARRAY
EXCEPHYPH EXCPHYARRAY:
SUFFIX SUFTIXARRAY
PREFIX PREFIXARRAY
BTABLE BARRAY

QOutputs the parameter arrays to the file TBLFIL.

WRITEPAGETB
Procedure with one parameter.

Name Type
PAGEMEM PAGEMEMARRAY

Qutputs the parameter array to TBLFIL.

WRITESECONDMEM
Procedure with one parameter.

Var.? Name Type
Var MEM MEMARRAY

Outputs MEM[J].INT for J:==SECONDMEM to MEMSIZE to the file TBLFIL.

OUTPUT DEVICES: A NEW COLUMN
Barry Doherty

To aid the development of output device inter-
faces, we would like to collect and report informa-
tion on work in progress on interfaces. It would
greatly help both those who are considering install-
ing an output device and those who are working on
interfaces to have information on who is working on
interfaces for which devices. If you are involved in
such a project, please send TUGboat the following
information for this column:

- host computer (and operating system);

- output device;

— status of the work;

~ your name and phone number and your or-

ganization’s name and address.
Please send all information to TUGboat. We’ll start
reporting it with the next issue.

* % % % * * * * * ¥ %

Site Reports

X % % % ¥ * & *x % % %

STATUS OF TgX ON THE
STANFORD IBM 370/3033 SYSTEMS

Eagle Berns

After obtaining a copy of the IBM PASCAL/VS
system, work was begun in conjunction with Luis
Trabb-Pardo and Ignacio Zabala, on the implemeta-
tion of TEX at Stanford. After a bit of debugging of
both the PASCAL /VS and the TEX systems, I was
able to get as far as generating a device independent
output file from TEX which was sent on tape over to
the Computer Science Department. The next day
I received back my output from Luis with a note
saying “looks good!”.

However, the version of TgX which was work-
ing was far from being the end product. This
was due mainly to the fact that the version of
PASCAL being used permitted only 8-byte REAL
variables. TgX, on the other hand, required only
4-byte REALs. Since these reals overlayed some
integer 4-byte variables in an array which is 32K
words long I was essentially using 128K bytes more
than necessary. (This number was even larger in
total as there were other reals in the system.) The
PASCAL/VS group came through, and on a pre-
release of the next version of PASCAL/VS, the vari-
able type SHORTREAL existed as a 4-byte real vari-
able. However, due to other changes, my original
running version of TgX no longer would run! (Sound

TUGboat, Volume 2, No. 1

familiar?) Along with this came other smaller prob-
lems, including the problem of making PASCAL
run, in an interactive mode in ORVYL (Stanford’s
timesharing system). My primary objective was to
get PASCAL/VS up and running for the Stanford
community. Hence, this is where the main burst
of activity is taking place. Of course, TEX will be
the first major program to be run using interactive
PASCAL. Projections about when a working version
of TgX will be available run in the neighborhood of
the end of February to mid-March (1981), although
no fixed commitment is being made at this time.

Some initial looking into the hardware to be used
for printing TEX at Stanford has begun, but thisis a
separate project and nothing substantial can be said
at this time.

Those interested in information on the availability
of the TgX implementation at C.I.T. can send me
a letter (no phome calls—I have a terrible time
not losing phone messages) with an address to for-
ward information to, and when firm dates for its
availability can be made, a letter will be sent out.

¥ Kk % % % *x % ¥ % % %

AMS SITE REPORT
Barry Dokerty and Barbara Beeton

AMS equipment consists of a DEC 2060 run-
ning under TOPS-20, a Varian 9211 printer/plotter,
an Alphatype CRS and a Florida Data dot-matrix
printer (the latter located at the Math. Reviews
office in Apn Arbor). Both the Varian and
the Florida Data are driven by Momnolithic Z80s
configured according to the Stanford specification.

‘We have been using the SAIL version of TgX for
well over a year. Most effort so far has been devoted
to converting various administrative publica-
tions (Combined Membership List, Administrative
Directory, Catalogue of Publications) and the
issue indexes for Math. Reviews and Current
Mathematical Publications to TgX format. Certain
regular departments of the Notices have been con-
verted to TEX, and an experiment is underway to
typeset material for the Absiracts, using AMS-TEX.
Some of the TgX files are program-generated and
maintained, while others have been created and
maintained manually.

Varian output is used primarily for proofing, al-
though some camera copy is still generated om it
(primarily due to lack of a complete set of fonts
for the Alphatype); we expect that most camera
copy will soon be produced by the Alphatype. The
Florida Data is set up to produce output identical

TUGDoat, Volume 2, No. 1

in size to that from the Varian, using fonts con-
structed especially for this purpose; a compatible set
of fonts is being developed by the Ann Arbor staff
(an article on this project will appear in a later issue
of TUGboat). The Florida Data, with its ability
to print on card stock and preprinted forms, will
be used to generate records (via TEX) for Math.
Reviews; the Florida Data is also being used as a
line printer.

Both the Varian and the Florida Data are cur-
rently run by separate spoolers, although we have
designed an integrated spooling system and are in
the process of implementing it.

We expect to extend our use of TEX to mathemati-
cal journals, relying to a great extent on AMS-TEX,
perhaps beginning some time this year. The timing
of the transition depends on the completion of neces-
sary, but currently nonexistent fonts, particularly of
mathematical symbols and non-roman alphabets.

We also have a strong interest in METAFONT,
and have managed to get a version (modified from
the Stanford original) running on the DEC20, al-
though it is currently unable to prepare fonts for
the Alphatype. So far we have used METAFONT
mainly to generate fonts for the Florida Data, using
Knuth’s existing Computer Modern designs with
different size parameters; a similar technique has
been used to generate some Varian fonts in sizes
that were unavailable. We are also developing a
special compact (“telephone book®) font based on
CMSS6, which in turn was adapted from CMRS and
CMSS10.

We are hoping to develop full METAFONT
capability, so that we can produce in-house any new
fonts needed for full journal production.

¥ % *x % % x k % * * ¥

THE STATUS OF VAX!/TgX AT BROWN
Janet Incerpi

At Brown University we are implementing
Pascal TEX wusing a virtual memory approach
without any special purpose hardware to drive the
printer/plotter. Pascal TgX has been compiled un-
der Berkeley UNIX? on a VAX 11/780. Also, a scan
conversion program that sends output to a Benson-
Varian 9211 has been completed.

Those who are working on implementing Pascal
TEX know that there is more involved than just get-
ting a very large Pascal program to run. The four

Insiders pronounce the X of VAX as an "z, not as 2 Greek
chi, so that VAX rhymes with the word “hacks”.

$UNIX is a trademark of Bell Laboratories.

49

components necessary for a working system are the
Pascal TEX program, font metric files, font files and
a scan conversion program. The font metric files
contain character measurements (e.g. height, width
and depth), ligature and kerning information, and
various information used in setting mathematical
formulas. TEX uses the font metric files to do the
typesetting. TEX outputs a description of the pages
being typeset by specifying font and character place-
ment. The font files contain the actual bit rasters
(dot-by-dot pictures) for the characters. A scan con-
version program is necessary to convert from the
ASCII characters in the flle output from TEX to the
bit raster format (from the font files) needed to print
the characters. The scan conversion program uses
the output of TEX and the bit rasters from the font
files to produce a large bit array which defines the
printed page.
Using Virtual Memory for TEX

In standard implementations the TEX output,
called a DVI file, is passed throngh a program,
DVIVER, which creates an intermediate file. This
is passed to a second program, VERSER, which
communicates through a low-speed line with a
microprocessor that does the scan conversion to
a printer/plotter. Our system does not use a
microprocessor; instead it uses the direct memory
access (DMA) facility of the printer/plotter interface
when doing the scan conversion.

On our system, the DVI file is used as input to
a position-sort program that is similar to DVIVER.
This generates an intermediate file that contains the
necessary packed information, including the charac-
ter’s horizontal (z) position, the change in vertical
(y) position, the font to use, the character and the
part number. The part number is necessary if the
character is too large and therefore must be broken
into parts. This intermediate file is constructed a
page at a time with each page sorted on the g coor-
dinate before the information is placed in the file.
This file is used as input to the scan conversion pro-
gram which sends the output to the printer/plotter.

The virtual memory facility provided by Berkeley
UNIX enables us to handle a large number of font
files, while requiring only the pages used to be in
main memory. The way we handle the large number
of font files is to have an array of font file pointers.
Space is allocated for a font file only if that font
number is to be used. Although the space is allo-
cated, only those pages of the font file which are
referenced using the font file pointer are actually
read in. It is no longer necessary to switch font
flles in and out of memory when the space allocated
has been used. This approach does, however, make

50

the system harder to export to non-virtual memory
machines. For example, with the VNT font files,
which are used for output to the printer/plotter,
the pages containing the character information (i.e.,
pixel height, width, etc.) are read in, as well as
any pages that contain the bit rasters of any charac-
ters that are used from the font. The scan conver-
sion program uses the information from the inter-
mediate file and the VNT font files to send bits to
the printer/plotter. It uses a wraparound buffer into
which it places the bit rasters for characters or ver-
tical and horizontal rules. When the buffer must be
emptied (if a character is too tall or a change in y is
too large), the scan conversion program writes the
appropriate rows to the printer/plotter. To mini-
mize the number of transfers, each write sends the
maximum number of rows, taking advantage of the
printer /plotter interface’s DMA feature.

When the scan conversion program gets the bit
rasters from a VNT font file, it is important for it
to know that each row of the raster starts on & word
boundary. Any bits of the last word in a raster row
which are not used are zero. The scan conversion
program skips over these trailing zeroed bytes since
the buffer is always cleared after its contents are
written out.

Pascal and Word-Size Problems

As mentioned earlier, we have compiled Pascal
TEX. This was only possible after manually fixing
the ease statements in the TEX source code since
our Pascal adheres to the standard of no default
(OTHERS) case. The remaining problems that must
be fixed to get TEX running are system dependent.

One such problem is the conversion of the 36-bit-
word oriented TFX files, the TEX font metric files,
to our 32-bit machine. TEX uses these files to do the
typesetting. We obtained both the VNT font files
and the TFX font metric files from AMS, which runs
TEX on a 36-bit machine. The transition onto our
32-bit machine was straightforward for VNT flles,
since these files only use the low-order 32 bits of
each word. Unfortunately TFX files are not as easily
adaptable. The TFX file descriptions we have seen
use all 38 bits of a word, but in two sources there
are references to possible solutions.

The two possible solutions deal with ignoring bits
in the TFX file words. The words in TFX flles are
divided into various fields. Two such fields are the
device-width (6 bits) and the ligature (9 bits) fields.
One source claims the device-width field is not used,
while another says that only 5 bits are necessary for
the ligature field. Either way our problem would be
solved; unfortunately we do not know whether these
are really twoc solutions to the problem. Once we

TUGDoat, Volume 2, No. 1

have our TFX files set up we need cnly be concerned
about TEX’s accessing them.

‘We had difficulty making variant records in Pascal
as clean as in standard Pascal TgX, because our cur-
rent compiler makes packing and unpacking infor-
mation in file words more difficult. For example,
in Pascal TEX, to output a word to the DVI fle,
four bytes are packed into a word using a variant
record which is one of two possible cases. The record
is either four scalars (ranging from 0 to 255) or is
an integer, so the TEX procedure, dvi, uses scalars
(bytes) to pack the information and then writes the
integer to the DVI file.

However, complications arise because our Pascal
tmplementation does not overlay the scalars and the
integer as one might expect. For our compiler, we
found a way to correct this but the solution is far
from ideal. We expect the same type of revisions to
be necessary to access the TFX file information.

The other changes that must be made to Pascal
TEX are those dealing with the file system and user
interaction. These routines will be rewritten.

The Status of Sean Conversion

Though we haven’t yet run Pascal TEX on the
VAX (to generate DVI files) we have tested the scan
conversion program. (We were able to obtain DVI
files from AMS through Sail TEX; in fact, this paper
has been printed using our VAX scan conversion pro-
gram.) The scan conversion program generated the
bits for the correct output. Therefore we do have
both the position-sort program and the scan conver-
sion program working. Both of these programs are
written in C because it allows easy bit manipulation
and the use of virtual memory facilities. Later, we
will make these programs more transportable.

Future Plans

Our work will be concentrated in three major
areas once we have Pascal TgX up and running.
First, we plan a detailed performance study to help
evaluate our implementation approach for the scan
conversion program (i.e., relying on virtual memory
as opposed to special purpose hardware). Second,
we intend to get Pascal TgX working under different
gystem environments, including VAX/VMS, various
IBM systems and implementing scan conversion for
experimental graphics and printing devices. Third,
we plan to eventually build high-level facilities on
top of TgX for document production.

Please direct any questions or suggestions to
either Prof. Robert Sedgewick or the author, at The
Department of Computer Science, Box 1910, Brown
University, Providence, RI 02912.

¥ ¥ % % % % % % % * %

TUGboat, Yolume 2, No. 1

REPORT FROM THE NORTH STAR
— or —
TEX AT THE UNIVERSITY OF MINNESOTA
T. D. Hodge

In December, 1980, we received a new tape copy
of TEX-in-Pascal from Stanford. Working with this
tape, we have gotten the TEX preprocessor to read
the text file and have partially converted the font
files (TFX files) on our CDC Cyber 74.

The main problem we have encountered is the
fact that the TFX files contain DEC10 floating point
numbers. Ignacio Zabala has promised us that the
font files on the next version we receive will all be
in integer.

Meanwhile, we will go ahead with the font files we
have and try to get the preprocessor and TgX itself
to produce workable output.

Initially, we expect to run TEX as a batch program
because of its apparent large size. We hope to have
more specifics about size in the CDC version and
about other factors by the next TgX Users Group
meeting in the spring.

Minneapolis, 30 January 1981

* % * % % % % % * % %

Editor’s note: The following étem has been repro-
duced divectly from copy submitted by the author.

TeX IS AVAILABLE
FOR UNIVAC 1100 SYSTEMS

Ralph Stromgquist
1100 TEX Coordinator

The Academic Computing Center at the University
of Wisconsin-Madison (MACC) has implemented
TX on a Univac 1100/82 computer using the UW-
Pascal compiler. Testing had been limited by lack
of a typesetter until the last two weeks, but output
to a line printer and initial typesetter testing indicate
that only minor problems remain.

We have tested most of TgX’s features success-
fully: font changing, macro definitions, ligatures,
footnotes, fractions, exponents, subscripts, variable
size parentheses, matrices, alignments -- to name
a few. We do not yet have extension foats, so
have not extensively tested mathematical typesetting.
Tests on uncomplicated documents show TEX uses
about 0.14 seconds of CPU time per 6.5 by 9 inch
page with memory usage of 119,000 words.

51

Aside from being the first Univac implementation
of TEX, our site is also unusual because we have
a new Compugraphic 8600 phototypesetter. The
8600 produces high-quality 1300 scan lines per inch
output. The model we have can hold about 100
digitized fonts on disk storage. The 8600 is operated
offline via a magnetic tape drive. This has the
advantage of easy control and backup if reruns are
necessary for any reason.

TeX-1100 is available for distribution.
Documentation is currently in preliminary form, but
should be adequate for installation. Our package
includes TgX, a font preprocessor program that
converts readable font descriptions into TeX font
files, our program for line printer proofing, the 8600
driver program, useful macros, and documentation.
Although we don’t expect most installations to have
an 8600, our driver should still be useful as a model
or framework.

To divide part of the cost of TEX-1100 develop-
ment, distribution and maintenance among the sites
using the package, we are charging $500.00 for the
package described above. The charge also covers
program maintenance by MACC with distribution
of enhancements and updates for a period of one
year. We will also do limited telephone and written
consulting.

The maintenance support may be continued after
the first year by paying an annual fee of $400.00. 1f
you have questions concerning TEgX-1100, contact

Ralph Stromquist
MACC

1210 W. Dayton St.
Madison, W1 53706
(608) 262-8821

Orders can be placed directly with the MACC
Program Librarian at the above address.

This report was typeset by TEX on the Univac
1100/82.

¥ * % ¥ % * 2 ¥ 3 * *

REPORT ON THE USE OF TgX
AT COMPUTAS A/S, NORWAY
NORD 100 COMPUTER 16 bit “big mini”
Helge Totland
Computas A/S
Box 310, N-1322 Hgvik, Norway

Hello, all of you far away in the wilderness some-
where. This is a report on two people’s (Tore
Pstensen and Helge Totland) exciting work with
TEX. Well, perhaps we are not doing TgX work
at all, some would say. Temporarily, we call what

52

we are working with FTEX (which means Formula
part of TEX). We have a phototypesetting system
(Nortext), and we are cooperating with the com-
puter firm Norsk Data (they make “Nord® com-
puters, sell Nortext systems and are funding the
TeX activity). What we missed most in Nortext is
the ability to typeset formulas. While sometimes
it might be advantageous to start a project from
scratch, we started with the existing typesetting
system Nortext (originally intended for newspaper
work, the system might drive different phototypeset-
ters). What we decided to do was to grab hold of
the math part of TEX, write formulas in TEX code
and other text in Nortext.

We started to work on this project last Spring (the
“thinking” started November 1979). Our first aim
was to have a compiler version of FTEX, with in-
put in TEX math code and output in Nortext code.
Later we will integrate this compiler into Nortext,
which will be turned into something TEXlike when
writing some appropriate “start code” (working like
$ or $9 in TEX). The first main user of this sys-
tem will probably be CERN in Geneva (Switzerland)
(Derek Ball). “Det Norske Veritas” (DnV) will also
be a user, we expect. COMPUTAS A/S is the data
division of DnV, which is an institution concerned
with ship classification and other activities (so many
technical documents are produced).

Our main source of information has, of course,
been Donald Knuth’s description of TEX, which we
have found very useful. Compared with other sys-
tems, the macro feature is especially useful. We had
a few beneficial talks with Mike Bennett, while he
was staying in Aarhus (Denmark). During our im-
plementation we probably have invented the wheel
(again) several times, but then at least we know
what’s going on. Alternatively, we would have to
makse rather significant changes in the Pascal code
(which is not yet available anyway), if we should
convert TgX (or rather extract/convert the math
part, change the output part and squeeze this into
a 16-bit machine). Our FTEX compiler, by the
way, is written in PLANC, which is a rather new
systems programming language to Nord (not yet
released—this has occasionally caused some new-
language troubles).

In order not to stir up the TEX wizards far, far
away, we have tried to implement the math mode
very close to what we imagine it works like at
Stanford. As a side effect, this makes user documen-
tation much less of a problem to us than it would
otherwise be. We have a few special debug macros,
which are not of any great concern. Our special
macros begin normally with *, which is not normally

TUGDoat, Volume 2, No. 1

defined as a letter (these macros are not aveilable to
users unless using \chcode). Example: \»help (list
macro names on one or more levels), *1ist (list
macro definition), *status (miscellaneous status
info). Omne of the macros we have introduced in our
system is \kdef (keydef), giving identical results to
setting \chcode to 13 and defining a one-symbol
macro (as described in the TEX errata, TUGboat,
October 1980, page 11). This makes definitions
similar to \def and \xdef. It is of special interest
to us as the Nortext terminals use 8-bit TET code
and then more codes are available than in the 7-bit
ASCII code.

‘We have a few other changes as well:

- cc means cicero (1 cc = 12 dd, ref. dimensions
page 40 in TgX manual. In Europe we often use
cicero instead of pica (7% bigger (and better)).

- The category code table is extended (Special
key, NUL and comment (end-of-line {category
5) is not (!) identical to comment (%))).

~ Our internal precision is “only® 1/500 mm (to
save space). .

- We produce Nortext code instead of DVI-flle
(DVI-file would be a bit easier to make, but then
we would still have one more chain the formulas
had to pass before finally being typeset).

— The font files contain left- and right-space in
addition (?) to height, depth and width (and we
assume the symbol reference point is identical to
an assumed focus point in centre of the lens—
or similar on CRT’s). We use 8 bits on each
measure and multiply the measures to different
sizes when in use.

The structure of the FTEX compiler is mainly
as others have described in TUGboat Vol. 1 No. 1.
We have a macro-expansion-section, a formula-tree-
builder-section and a formula-tree-traverse-output-
section. The first two of these sections work in paral-
lel. We have not segmented the programs or made
external intermediate flles, as this would only delay
the compiling process. When testing we have suc-
cessfully produced code for typesetting rather com-
plicated formulas (and flags, to test our rule code
routine), but there are still features we have not
implemented.

Thanks for the TUGboat newsletter. We enjoyed
it, and the accompanying TEX errata list will cer-
tainly be followed by some actions by us (where
practically possible).

Oslo, 8 January 1981

TUGboat, Volume 2, No. 1

¥ % % * % % * * % * ¥

Warnings & Limitations

* % % &% x % * *x % % %

Disappearing Digits; Undiseiplined Uppercase

If a macro definition ends with any control ge-
quence taking a {number) as a final argument, care
must be taken to isolate the {number), either by fol-
lowing it with a space (as in the definition of \¥ on
page 151 of the TEX manual) or by burying the con-
trol sequence in a set of braces (the \mix definitions,
page 167). For example,

\def\addr{ ... \penalty 1000}
... write to \addr 201 Charles 8t. ...
yields
... write to ... Charles St.
with no street address. The secret is in TEX’s in-
terpretation of {(number), as described .on page 34:
{number) is a string of digits of any length.

In a similar-looking situation, Mike Spivak
reports: “Complete havoc was wreaked on one of my
macros when I typed

\chcode "046=12\newcontrolsequence
instead of

\chcode ‘046=12 \newcontrolsequence
Caveat chcoder!”

The following control sequences take {(number)
or integer arguments: \char, \chcode, \chpar,
\hangindent (for and after options),'\penalty,
\setcount and \spacefactor.

\uppercase nicely ignores control sequences in its
{token list}, but not dimensions, so an \hskip .5em
becomes \hskip .5EM, which TEX finds to be an
! Illegal unit of measure. One way of circum-
venting this problem is to anticipate it:

\uppercase{...\lowercase{\hskip .5em}...}
(\lowercase may not be interposed between the
skip and its (dimen).)

Barbara Beeton

¥ % % % % % * % % % *%

Macros

¥ % % % % % * % x % *

\title HOW TO PREPARE A FILE\cr
FOR PUBLICATION IN TUGboat\cr

\\Barbara Beeton\cr
American Mathematical Society\cr\end

An author writing an article for publication in
TUGbDoat is encouraged to create it on a com-
puter flle and submit it on magnetic tape. Most of

53

TUGDboat is composed by TgX, and makes use of
the AMS-TEX macro package. TUGboat is thus a
prototype of the journal-of-the-future as described
by TUG’s Chairman, Dick Palais, in his message to
readers of TUGboat #1.

Like any specialized journal, TUGboat, has its own
particular style, and a set of formatting macros has
grown up to accommodate its needs. These can be
used by an author to make his job (and that of the
TUGboat production staff) easier. Depending on the
author’s local computer resource, he may or may not
actually be able to TEX his file. Even if he can’t,
appropriately identifying material in his file by using
these macros will serve to identify his intentions to
the TUGboat staff TEX’er, with (we hope) salutary
effect. .

The first instruction is a simple one. A blank line
or the control sequence \par indicates the beginning
of a paragraph. This author prefers the blank line,
since she finds densely packed and interminable text
nearly impossible to read on either a terminal screen
or a page of line-printer output.

Most TUGboat articles so far have consisted
mainly of text, with occasional section headings,
lists, addresses, and similar constructions. It is
these that the TUGboat formatting macros try to
cope with, not complicated tables or macro listings
and other display material—these latter construc-
tions will most likely be submitted by authors who
have relatively great experience in scouting TgX'’s
byways, and any workable TEX coding will be ac-
ceptable for this kind of material. The present ar-
ticle is aimed mainly at the itinerant author who
simply wishes to share his experiences with others
in the TEX community.

Where practical, the macros will be illustrated
rather than described. For example, the title of this
article looks strange on purpose: the input format
for atitleis \title (title)\\(author, etc.)\end, with
the end of each line (as it is to be printed) marked
by the instruction \cr. (Don’t forget the space after
a control sequence.)

\subtitle Subtitles\end

are also (rarely) desired. The “Disappesring
Digits” article (page 53) is headed by a subtitle
rather than a full title.
\lparhead SmcTiON HBADINGS,\1bIk
WHICH MAY BE MORE THAN\1bTk
OnE LINE LONG\6nd
and
\lparheadb Bold section headings\end
will look like the headings on pages 5 and 49.

54

\parhead RUN-IN HEADINGS, WHICH MAY OCCA-
SIONALLY OCCUPY MORE THAN ONE LINE IF THE AUTHOR
ceTS CARRIBD AWAY\ond There is also a bold version,
obtained with \parheaddb ... \end.

\parsub Short, run-in subheadings.\end These
also come in several flavors.

\parsubp (a) With parenthesised tags.\end The
input for this automatically places parentheses
around whatever precedes the first space in the ar-
gument string. \parsubpr ... \end differs only in
that the text is roman. And if parentheses aren’t
wanted, but even spacing is desired between the tag
and whatever follows, \parsubr ... \end will ac-
complish that, as in the numbered paragraphs on

page 9.

\hparhead PARAGRAPH HEADINGS WITH HANGING IN-
penTs.\end are used only rarely, and may also
come in boldface: \hparheaddb ... \end. A more
conventional use for hanging indent is

\hparsubr
— to list things (page 11) or\end

\hparsubr
2. to make a bibliography. In any case,\end

\hparsubr

** \hparsubr *x is the ... \end is the input
command which must delimit every tagged line
at both ends.\end

\endhpar terminates a body of hanging indented

material, and restores normal paragraphing.

An address can be set off from text for easy refer-
ence. Here’s where you write if you wish to submit
a TUGbDoat article on tape and have some questions
that can’t be answered by this article or by your
local TEXpert:

\textaddr{

Barbara Beeton\lbrk

American Mathematical Society\lbrk
P.O. Box 6248\1brk

Providence, R.I. 02940}

For people whose fingers get tired of typing the
same thing over and over, a bunch of control se-
quences have been defined which just produce logos
or strings of text:

\1EX TEX
\1uG TEX Users Group
\tug TUG
. \1UB TUGboat
\AMS American Mathematical Society
\ams AMS
\AMSTEX AMS-TEX
\MF METAFONT
\Pas Pascal
\TIP TEX-in-Pascal

\PT Pascal TEX

TUGDboat, Volume 2, No. 1

Remember that a space after a control sequence
is gobbled up, to allow such constructions as
“TgXpert”, and a control space \LI should be used
to make the space appear in the output. Awuthors
are welcome to create control sequences for terms
and phrases that they use frequently; anything of
general usefulness may be cribbed by the TUGboat
staff, and added to the list above.

When creating a file, it is usually a good idesa to
limit lines to the width of a terminal screen (usually
80 characters), even though your computer may al-
low much longer lines. This means, when you ap-
proach the right-hand end of the screen, hit the car-
riage return. (Also remember to insert a carriage
return at the end of your file.) TEX arbitrarily as-
sumes that no line should exceed 150 characters,
and if one does, TEX dissects it after 150 charac-
ters, shoving the remainder onto the next (inserted)
line. If a word is split at character 150, TEX recovers
gracefully, but if a control sequence is split, results
are unpredictable, and invariably incorrect. So for
this reason, and also to make the processing of tapes
routine, we ask you to limit lines to 80 characters,
including the carriage return.

Finally, a word on magnetic tapes. TUGboat is
produced at the AMS on a DEC 2060, which can
read 9-channel magnetic tapes written at 800 or
1600 bpi, in a number of different, but well-defined,
formats. To save time and avoid problems, tapes
should be created by someone who has had ex-
perience in doing this. Most universities have a user
service staff who can answer questions or even get
the job done. If your local computer is a DEC10,
the BACKUP program should be used to write the
tape; if it’s a DEC20, use DUMPER. Otherwise, the
records written onto the tape should be 80 charac-
ters, blocked 10, and the ASCII character set should
be used. A detailed list should accompany the tape,
stating exactly what flles are present. A form for
submitting tapes to TUGboat is included with this
issue; a copy of this form, with all the requested in-
formation filled in, should accompany each tape sub-
mitted. If you request it, your tape will be returned
to you.

® % * % % ¥ % % % % =*

Editor’s note: The response to our request for in-
formation on macro packages and related software for
publication in TUGboat has been encouraging. Our
thanks to all.

This 48 your column. Your contributions and com-
mends are needed. Deadline for the next issue 48 June
15, 1981.

TUGDoat, Volume 2, No. 1 . 55

TeEX Macro Package
by
Max Dfasz*

This macro package, consisting of about 450 control sequences, is suited for most applications: memoran-
da, letters, papers, reports, thesis, books. Provisions e.:ist for working with ease {one-cliaracter accents,
without exceptions, for instance) in one of three languages at the turn of a switch: \english, \espanol,
\francais.

It contains all standard simple features one would expect: paragraphing (enumerate, display, itemize,
etc.), footnotes, annotations, comments, quotes, verses, etc. And, for papers and longer documents, it
also includes handling of chapters and subsections (up to three levels), with automatic tables of contents
and plates (figures, tables) and headings. There are many other useful macros, such as “no-fill® mode
(for computer programs, say) and a collection of “Mickey Mouse macros” for glamorous effects.

Special care has been put to make output routines simple. For example, document’s preambles may look
like this (there are default setings for everything, of course):

\romannumbering{7} % Start on page vii
\bothsides % Adjust for both-side printing
\sethmargin{i.253{1} % Margin on odd pages=1.25", even=1"
\columnsperpage{4}{1.5}{.08}{6.25} % On 6.25” sheets, set 4 pages per sheet:

% width 15", interpage spacing .08,
\setvsize{9} % and vertical size .9°
\onelinsheading © % Select style

The last command will select among some six possible types of page’s style: this includes the headings,
headlines, title pages and normal pages formats. The macros that set dimensions adjust these, and any
other macros, automatically.

Given any page design, no matter how appealing you think it is, there exists someone who will utterly
dislike the font used for subsubsections, or the § sign, or the spacing in an itemized paragraph (the
author has typed or helped typeset about five thesis, several reports, and many letters). For that reason,
most macros utilize “parameters” that can be redefined without digging deeply into the whole package
to locate the site where a particular object is being processed.

The package is by no means “complete.” At the time of this writting, index and “grafix-mode” macros are
being written. Frugal documentation exists, but a better non-TgXpert document is being composed. The
macro package is totally compatible with the TiiX manual; no standard control sequences are redefined,
and no special extensions of TEX are required either (so far).

Macros are currenlty lodged in the S.A.LL. machine, and a non-SAIL version exists at SCORE. To .
obtain them, send (ARPAnet users) a message to MMD@SAIL, or write to the author.

*Mathematics Department/ Stanford University/Stanford CA 94305

58. ' TUGDboat, Volume 2, No. 1

Anatomy of a TeX Macro Package
Arthur M. Keller
Stanford University

Abstract. A TgX macro paélcage is described that produces various formats of output. Parts of the macro
package are based on the basic and book formats described in the TEX manual as well as the format for

the TEX manual itself.
1 Introduction

This macro package was developed over approximately a year and a half. It started when I first began
to use TEX, and proceeded as I began to write macros that others found useful. Much of the development
has been for a forthcoming book to be published by McGraw-Hill teaching PASCAL to students without a
knowledge of computers® Further, the work of others has been borrowed and adapted in preparing these
macros.

It is assumed that the reader is familiar with TEX. This documentation is intended to be read while
perusing the code itseif.

The macro package consists of a file called ARKTEX. TEX which should reside in the TEX system files area.
This file refers to other files which are loaded if needed. This package was designed on the SU-AI system and
uses the SAIL character set as described in the TEX manual. Others not using the SAIL character set may
find it useful to change the \chcode’s at the start of the file as well as some of the one character macros.

2 ARKTEX.TEX

The file ARKTEX. TEX is divided up into about twenty sections separated by horizontal rules. In the file,
these are usually on separate pages (i.e., separated by control-L’s).

2.1 Standard Basic Stuff

This section consists primarily of text that appears in BASIC.TEX. The \chcode’s should be changed as
necessary for your system. ’

2.2 Font Definitions and Related Macros

This section consists of macros for fonts of various fonts and sizes. The \chcode on the first line is to
all @ to be parsed correctly on this page because elsewhere @ has \chcode of 13. The fonts on this page are
primarily for eight, nine, and ten point typesetting. Other random fonts also exist. The \: macro has been
redefined to save the font letter in \fontcode. This is used by the macros in “Definitions of Odd Characters”
that produces output of different characters depending on which font is currently in use. Do not use the
\usefont macro, but the \curfont macro may be used as an alternate to the \: macro.

The \loadfont macro is used to allow documents to use fonts that exist only on some systems to refer
to these fonts symbolically. Ordinarily these fonts are not preloaded. However, a document attempting to
use such a font for a particular output device for which the font exists may do so. For example, at Stanford,
some of the fonts loaded by \loadfont exist only on the XGP or on the Dover but not on the Alphatype.

This work was supported in part by the TEX project under Prof. Donald E. Knuth and Dr. Luis Trabb-Pardo, and by a
National Science Foundation Graduate Feliowship.

Author’s address: Computer Science Dept, Stanford University, Stanford, CA 94305. ARPANET address: ARK at SU-AL

*The book will probably be titled A First Course in Gomputer Programming Using PASCAL aud it will be available about
Janpuary 1982.

TUGboat, Volume 2, No. 1 ' 57

2 Arthur Keller

‘The various sizes of type are refered to by the macros \tenpoint, \ninepoint, and \eightpoint to
obtain ten, nine, and eight point type faces respectively. For each size there are the following fonts provided
roman (\rm), slanted roman (\sl), boldface roman {\bf), italic (\it), math italic (\mi), teletype (\tt),
and symbol (\sy). In addition, small caps (\sc) is provided for ten point. Each size of type also includes
definitions for the width of a digit (\9) as well as complete math mode information.

To start text in one of these sizes specify \tenpoint, \ninepoint, or \eightpoint. Customized macros
for various point sizes may be constructed by redefining the macros \usertenpoint, \userninepoint, and
\usereightpoint. However, if the most of the document is to be in that type size, say \usetenpoint, ete.,
instead at the start o t!:: document. If you use \startcode and \endcode, \fontsize will be used to
determine what font size -© return to. This macro may be defined at any time prior to such usage, but it
can be done easily by saying \usetenpoint if desired.

2.3 Definitions of Odd Characters

This section includes definitions that will allow characters such as @ and # to be parsed correctly in
any mode. Characters that have no other usage, such as @ may appear without a preceding \, as they have a
\chcode of 13. Characters that have other usages, such as #, must be preceded by a \ if they are to appear as
the character instead of being used for their standard purpose. However, because they are control sequences
without an argument, you must put \lifollowing them to avoid the space after them getting ignored.

Characters in teletype mode are fixed width characters. Therefore, the \tt.char macro takes a specified
character and puts it in the desired size box so that the remainder of the line will line up.

The \fontclassify macro determines which mode or typestyle is being used and chooses the correct
argument to emit. This allows \# to produce a # in the right font.

2.4 Redefinitions of One Character Macros

This section consists of redefinitions of one character macros so that they work in any mode. Users who
redefine macros such as \< to print < will also find the redefinitions useful. Macros starting with \M are
defined to save the original definitions. Macros without an M are defined_to work in or out of math mode.
These original macros are redefined to match the new set. The exception is \! as it means different things
in math mode than in non-math mode.

2.5 Make Some Math Things Work Anywhere
This group of macros works just like those in the previous section.
2.8 Page Numbering

The section on page numbering is rather complicated by the existence of macros to defer text. The
pertinent macro for users is \setpagecount which sets the page number on the following page to the
specified number. The page number on the current page is set to one less than that number. This mess
is done because the author likes to put out an extra page describing what is going on whenever changing
page numbers. In particular, output devices that do not put out header pages permit several users output
to appear without intervening pages. Putting out your own separator page reduces the chance that your
output will be misfiled. Lastly, the \chapterbegin macro in book format ejects the page first, so the author
usually puts fixed garbage on the previous page. It's also a good place to put copyright notice if the file is
going to be copyrighted. Most importantly, using \settitle of book format on the ejected page guarantees
that the next page will have the correct headings.

2.7 \output, Style, and Format Routines

These macros are the heart of the claim of providing many formats of output. They fall into four

58 TUGboat, Volume 2, No. 1

Anatomy of a TX Macro Package 3

categories: overhead, output, style, and format routines. Overhead routines are used in many places and are
obvious. These are \normal, \resetsize, and \everyoutput.

The output routines set the \output macro. Also , they should also set the macros \normalhsize and
\normalvsize. See OPLAIN.TEX for the minimum required in an output routine.

Style routires s~* such things are paragraph spacing. See OBLOCK.TEX for the minimum required in an
style routine.

Format routines are simply style and output routines in the same file or macro.

See the descriptions of the individual files for more information.

2.8 Footnotes

The footnote macro has gone through several generations. The latest one uses the \botsep to insert
the horizontal bar. If your system does not yet support \botsep, you may have to be more clever about
when to put in the bar and when to delete it. The author’s previous method was to insert a bar if this was
the first footnote on a page. The output routine would reset the first-footnote-on-the-page switch. However,
this would occasionally fail in that the first footnote o the page would' actually be generated before the
output routine was called (e.g., if the paragraph is split on two pages). Then the \firstfootnote macro
would be used which would hack the switches appropriately so that the next footnote would not get a bar.
This involved setting a switch that the output routine cleared so that the output routine would not clear a
second switch that indicated that a bar had already been output for that page. What a mess! Anyway, get
a new version of TEX.

The macro \nfootnote provides automatically numbered footnotes. The numbers are started at 1—the
macrto pre-increments it.

There are three macros of characters for using for footnotes. These are \upstar, \dagger, and \ddagger.

2.9 Paragraphs

This section consists of macros for various hanging paragraphs. The \hangbox macro creates a box of
width based on argument 1 containing argument 2. The remaining lines of the paragraph will be indented
the same width. For example, \hangbox to 30pt {fool}bar etc., will produce a paragraph containing bar
etc., indented to 30 points with the first 30 points of the first line containing foo. The macros \levelone,
\leveltwo, and \levelthree generate such hanging boxed paragraphs to 20 points, 40 points, and 60 points,
respectively. However, the contents of the boxes are left justified in a twenty-point box that is right justified
in the 40- or 60-point box. The following are uses of \levelone, \leveltwo, and \levelthree:

1. This is a short box followed by a long paragraph. Isn’t it amazing to see what drivel can be published

in the guise of an example. Put your ad here; to find out whether you can call 936-1212.

2. This is a medium box followed by a long paragraph. Isn't it amaszing to see what drivel can be

published in the guise of an example. For a good time call 767-8989.

3. This is a long box followed by a long paragraph. Isn’t it amazing to see what drivel can be
published in.the guise of an example. FFor example, did you know that when the author finishes
his Ph.D., he'll be looking for a teaching job? A reference to this article will pad his C.V.

The macros \number and \nnumber create indented paragraphs with boxes of 20 and 50 points respec-
tively. That’s right, \number is just like \levelone.

The \indpar macro takes the argument and creates an paragraph indented on both sides to 40 points.
Normal paragraph indentation or paragraph separation must be done by you. A \strut has been inserted
to get the correct line spacing between the paragraph and preceding and following text to handle risers
and descenders properly. However, no \parskip glue is inserted and 1 point is inserted for the assumed
\lineskip.

The \hdr macro creates a centcred holdface heading consisting of its argument that makes a good
section heading if you are not using book format.

TUGbosat, Volume 2, No. 1 59

4 Arthur Keller

2.10 List Definitions

Now that you know all about the paragraph macros, you might expect macros for doing numbered lists
automatically. There are three levels of numbering. The first level uses \1ist followed by an argnment which
is the initial number for counting. Then \item is used to precede each item. You may use \itemindent to
indent the same amount as \item for continuing the following paragraph, for example. The macro \bitem
gives a centered bullet in a 20 point box starting the hanging paragraph.

The second level of counting is in roman numerals. Put the number you want to start counting from
after the \sublist. Note that this number should be positive, so —3 gives “iii.” As you might expect, there
are \subitem and \subitemindent. :

The third level of counting is letters. Put the letter you want to start countine from after the
\subsublist. And there are \subsubitem and \subsubitemindent.

2.11 Underlining and Boxes

This section consists of macros for doing various kinds of under- and overlining as well as lined boxes.

The \undertext and \overtext macros underline and overline in horizontal mode. And \leaderline gives
a leader of a rule.
" The \boxit macro is from exercise 21.3 of the TEX manual. However, \sizeboxit makes the box a
specific size. Also, \boxitnoglue boxes the box without 3 points of space on all sides. If you want to put
\boxit’s in a \valign or put straight text inside, use \Boxit or \Boxitnoglue, which reverse horizontal.
and vertical mode. To put corner L’s around a box, use \Lboxit.

The demonstrate interactive system output, it is useful to display the user entered data underlined.
To underline the second half of a line, say \type prompt>underlined text. Use \ttype the same way for
indented dialogue.

2.12 Penalties
Aren’t these obvious. They do save space in macros over their expansions.
2.13 \nofill \endnofill

This is the first of the verbatim mode set. To use it, say \nofill followed by the text, followed by
\endnofill. Line breaks appear exactly where they do in the input text. Exactly as many spaces appear
in the output as in the input. The code is listed verbatim without page breaks. To allow page breaks, say
\allowbreak. A blank line is generated if there is no page break. To have no space generated if there is no
page break, use \allowbreaknoglue.

Tabs are not allowed in verbatim mode. This is because it is not clear how many spaces to generate for
a tab. If you think you know better, say \def\tab{definition}.

2.14 \startcode \endcode

The \startcode code \endcode sequence produces verbatim code in \displayfont. See the previous
section and the code for more details.

In \startcode mode, \< and \2> produce < and >, respectively. These revert back to their former
meanings at the end.

2.15 Verbatim Mode Using $$\halign$$

Verbatim mode is just like \startcode mode except that the calling conventions are different and it
may appear in an \halign. To use it precede the code with \halign{ and follow the code with a right brace
on its own line. To allow a page break, code \breakhere’. Note that the % is required.

60 : TUGDboat, Volume 2, No. 1

Anatomy of a TEX Macro Package 5

The \threecol macro generates \verbatim mode except with three columns instead of one.
To put a box around verbatim code, say \Boxit{\verbatim{code}}.

2.16 Notes

Notes are useful to provide descriptions of things that you want to fix. The description of the file
MNOTES . TEX appears later.

2.17 Index Macros
An index package is described in Vol. 1, No. 1 of TUGboat.

2.18 Defer Mode

Defer mode is useful for specifying an entire page that is to appear as soon as possible. The description
of the file DEFER. TEX appears later.

2.19 Table of Contents

This set of macros generates a table of contents compatible with book format. The description of the
file MTOFC. TEX appears later.

2.20 Intercsting Hacks

This section consists of interesting macro hacks that are useful for one and all.

The \ifnull macro determines if argument 1 is null. If so it expands argument 2; otherwise, argument
3 is expanded. To call say; \ifaulltext\then{code}\else{code}.

The \bracex, \dnbrace, and \upbrace macros are from page 103 of the TEX manual. On the other
hand, \blackslug is from page 167.

The \boxtop macro sets the baseline at the top of the box. This is useful for lining up variable sized
boxes at the top. For example, to line up \hbox par’s in a \haligan, use \boxtop around the \hbox par’s.

The \topspace and \magnify macros is from the new version of BASIC.TEX.

There are two macros for playing with counters. Use \setq to set the control sequence which is the firat
argument to the counter number in the second argument. Use \advcountq to increment the ¢ounter in the
control sequence. With these macros, you can save counters for what they are really needed for: setting up
the correct numbers for output routines.

The \done macro goes at the end of the document.

The \capitalpar macro creates a paragraph like the “Gentle reader” at the start of the TgX manual.

2.21 Default Options

See \startcode and \endcode for a description of \displayfont. See section 1.6 for a description of
page numbering.

2.22 Documentation
Every macro package should have some.
3 MBOOK.TEX

The book format macro package is the most developed of the macro formats. The \bookoutput routine
handles \titlepage (it sets \tpage to T), as well as proper placement of the page numbers. The page

TUGDboat, Volume 2, No. 1 81

6 Arthur Keller

numbers will appear on the top of the page if \pagenumberarea is T, on the bottom if B; otherwise, no page
numbers appear. It defaults to T.

The \pagenumberregion macro defines the format of the page heading (or footing). It defaults to the
macro \boxpagenumberregion, which produces the format in the TEX manual and this document. The right
and left headings are specified by \titlemarlk{right}{left}.

To get a page without a page heading, say \titlepage.

Chapters, sections, subsections, and diminished sections are all numbered automatically. To use, say
\chapterbegin, \sectionbegin, \subsectionbegin, or \dimsectionbegin, all followed by the chapter
or section name in braces. For an unnumbered chapter, such as an appendix or a table of contents, use
\specialbegin followed by the name in braces. Use \settitle to set the left and right headings if you
aren’t using the other macros in this paragraph.

To get data for a table of contents, use \inittofc{filename}.

4 MACACM.TEX

This produces 25% oversized output for the ACM camera-ready copy specifications. At the start of the
paper, code \useacmformat. Then define \title and \authors. Then define the title portion of the paper.
Next, say \endoftitle. When done with the paper, say \endofpaper\end.

Note that \defer does not work with this format.

5 OPLAIN.TEX

This produces output unadorned with page numbers or anything,.
6 OBASIC.TEX

This produces output with page numbers as in BASIC. TEX.
7 OWOODS.TEX

This produces output with page numbers on the bottom of the page with hyphens around the numbers
as popularigsed by Don Woods at Stanford.

8 SBLOCK.TEX

This produces blﬂ style paragraphs with about 6 points of space between paragraphs.
9 SBASIC.TEX

This produces indented paragraphs as in BASIC.TEX.
10 MNOTES.TEX

This file contains macros to generate notes to the writer. Say \initnotes to create the file. Say
\sendnotes{text} to output text. The \putnotes macro takes the notes and cutputs them in the listing.

11 DEFER.TEX

Defer mode is used to produce a floating figure that takes one or more whole pages. Like \topinsert
for floating figures, it is used in vertical mode. However, defer mode handles multiple page figures and will
as keeping several figures in the order specified.

To use, say \defer followed by the figure followed by \enddefer.

Defer mode does not work with multicolumn formats.

62 TUGDboat, Volume 2, No. 1

Anatomy of a TEX Macro Package 7

12 MTOFC.TEX

The table-of-contents package produces a table of contents based on the data files produced if \inittofc
is used in book format. To use, say \begintoZc followed by \chaptertofc, \sectiontofc, etc., macros
each followed by a title in braces and a page number terminated by a period. Use \endtofc at the end of
the table of contents.

13 Acknowledgments

This paper could not have been written and published without TEX designed by Donald E. Knuth.
He also provided some advice and encouragement, as did Luis Trabb-Pardo. Many of the macros were
written with the help of Jim Boyce. Brent Hailpern designed the original defer mode. Max Diaz provided
additional suggestions and several macros as well. Denny Brown suggested some of the macros and the idea
of supporting many formats. My advisor, Gio Wiederhold, gave encouragement and enlightened criticism
through his attempts to use these macros. The staffl of the American Mathematical Society were very helpful
and interested in getting this manuscript written and published.

14 The Macros

The source for the macro package follows.

™) Standard BASIC Stuff
\chcode ’'45¢5 % % w+»x N.B. this must be first
\chcode '173+1 % {

\chcode ’176+2 %

\chcode ’44+¢3 %3

\chcode 26«4 % 9

\chcode ’43¢6 X4

\chcode °136+7 %1

\chcode '1¢8 % A

% Shorthands for certain definitioms
\def \trace{\chpar0+} \trace’1400345
\det \jpar{\chparie)

\det \hpen{\chpar2+}

\def \ragged{\chpars+}

% conterings

\def \1rt#i{#1\h2ill }

\def \ctr#1{\hfill #1\hfill)}
\def \rt#1{\hfill #1}

\det \top#i{#i\vrill }

\def \mid#i1{\vrill #1\vrill }
\def \bot#i{\vrill #1}

\de? \ljustline#i{\hbox to size{#1\hss})}
\de? \etrline#i{\hbox to size{\hss #1\hss)}
\def \rjustlinefil{\hbox to size{\h=s #1}}

TUGboat, Volume 2, No. 1

83

8

Arthur Keller

\det
\det
\det
\de?
\det
\dezt

\def
\det
\dof

\det

\det

\ldots{{.\condthinspace.\condthinspace.}}

\cdots{{\char °401\condthinspace\char °401\condthinspace\char °401)}
\ldotss{{.\condthinspace.\condthinspace.\condthinspace}}
\cdotss{\cdots \condthinspace}
\ldotsn{{\condthinspace.\condthinspace.\condthinspace.\condthinspace}}
\vdots{\vbox{\baselineskip 4pt \vskip 6pt \hdox{.}\hbox{.}\hbox{.}}}

\cpile #1i{\vcenter {\halign {\k£i1l $## $\h£ill \cr #1}}}
\lpile #i{\vcenter {\halign {$## $\hf11l \cr #1}}}
\rpile #1{\vcenter {\halign {\hfill $2# $\cr #1)))

\null{\hbox {}}

\spose #1{\hbox to Opt{#1\hss)}}

\dez\log{\mathop{\char l\char o\char g}\limitswitch)}
\det\1lg{\mathop{\char 1l\char g}\limitswitch}
\def\1n{\mathop{\char 1\char n}\limitswitch)
\def\1in{\mathop{\char 1\char i\char m}}
\def\limsup{\mathop{\char 1l\char ilchar m\,\char s\char u\char p}}
\def\liminf{\mathop{\char 1\char i\char m\,\char i\char n\char £}}
\def\sin{\mathop{\char s\char i\char n}\limitswitch}
\def\cos{\mathop{\char c\char o\char s}\limitswitch)
\def\tan{\mathop{\char t\char a\char n}\limitswitch)}
\det\cot{\mathop{\char c\char o\char t}\limitswitch}
\def\sec{\mathop{\char s\char e\char c}\limitswitch}
\def\csc{\mathop{\char c\char s\char c¢)}\limitswitch}
\def\max{\mathop{\char m\char a\char x}}

\def\min{\mathop{\char m\char i\char n}}

\def\sup{\mathop{\char s\char u\char p}}

\4ef\inf{\mathop{\char i\char n\char £}}

\def\det{\mathop{\char d\char e\char t}}

\def\exp{\mathop{\char e\char x\char p}\limitswitch)}
\def\Pr{\mathop{\char P\char r}}

\def\gcd{\mathop{\char g\char c\char d}}

\def\lem{\mathop{\char 1l\char c\char m}}

\det\choose{\comb{()}

\def\1leftset{\mathopen{\{\,}}

\det\rightset{\mathclose{\,\}}}

\def\modop{\<\, \mathbin{\char m\char o\char d}\penalty 900\<\,}
\def\mod#1{\penaltyo\; (\char m\char o\char d\,\,#1)}
\daf\aqv{\mathrel\char’421 }

\def\neqv{\mathrel{\not\eqv)}

64 TUGDboat, Volume 2, No. 1

Anatomy of a TEX Macro Package 9

\def\eqalign#1{\baselineskip15pt\lineskip3pt
\vcenter{\halign{\hfi11$\dispstyle{s#}$0$\dispatyle{\null#2}$\heill
\cr#1}}) :
\def\eqalignno#1{\baselineskipi5pt\lineskip3pt
\vbox{\tabskip Opt plus 1000pt minus 1000pt
\halign to size{\hfill$\dispstyle{##}3\tabskip Opt
®$\dispstyle{\null##}$\hrill\tabskip O pt plus 1000pt minus 1000pt
O\hfill$ ##$\tabskip Opt\cr#t}})}
\def\twoline#1#2#3{\vbox{\hbox to size{$\quad\dispstyle{s1}$\hti1l}
\vskip#2\hbox to size{\hfill13$\dispstyle{#3)}\quad$}}} :
\def\chop to#ipt#2{\hbox{\lower#1pt\null\vbox{\hbox{\loweri0Opt\hbox{\raiseiO0pt
\hbox{$\dispstyle{#2}$}})\vskip-100pt}}} ¥ pretends that #2 is #ipt deep

™ Font Definitions and Related Macros
\chcode’100+12 % allow O on this page to be parsed correctly

% tont definitioms for 8, 9, and 10 point fonts and friends

\font O«cmathx

\font a+cmri0 \font b+cmr9 \font crcmr8 \font decmr7 \font e+cmr8 \font f+carSs
\font g+cmi10 \font h+cmi9® \font i~cmi8 \font j+cmi7 \font k+cmi8 \font lecmi$
\font GecmtilO \font Hecmti® \font Iecmtis

\font mecmsciO

\font necmsi0 \font o+ems9 \font p+cms8

\font gq+cmbi0 \font recmb9 \font secmb8

\font t+cmtt \font T¢cmtt9 \font Uecmtt8

\font u+rcmsylO \font vecmsy? \font wecmsy8 \font x+~cmsy7 \font ye+cmsyé \font z¢cmsy5

% font definitions for random desired fonts
\font ;+emtitl
\font <+cmssdb \font =+cmssi2 \font >e¢cmss8 \font P¢«cmsss8

% tont request macros

\let \usefont=\:

\def \curfont $i{\usefont #1\def\fontcode{#1}}
\et \:=\curzont

TUGboat, Volume 2, No. 1

10 Arthur Keller

% tont name macros

\det \loadfont#1#2#3{\font #1+#2 \gde? #$3{\:#1}83}
\def \big{\loadfont D{cmr12}{\big)}

\def \ms25{\loadfont A{ms25}{\ms25}}

\de? \nons{\loadfont B{nons}{\nons}}

\def \peniii{\loadfont P{peniii}{\peniiil}}

\def \stan70{\loadfont S{stan70}{\stan70}}

\de? \biggtnt{\loadfont C{cmr10 at 20pt}{\biggfat}}
\def \bigggfnt{\loadfont E{cmri0 at 30pt}{\bigggint}}
\det \cmrten{\:a} .

\def \cmrnine{\:b}

\det \cmreight{\:c}

\def \cmrseven{\:d}

\det \cmrsix{\:e}

\def \emrfive{\:f}

\det \cmiseven{\:j}

\de? \emisix{\:k}

\det \cmifive{\:1}

\det \cmscten{\:m}

\def \cmtitl{\:;}

\dez \cmssb{\:<}

\det \cmssi12{\:=}

\def \cmsseight{\:>}

\def \cmssseight{\:?}

% tont family definitions
\def \tenpoint{\baselineskip 12pt
\dispskip 12pt plus 3pt minus 9pt
\dispaskip Opt plus 3pt
\digpbskip 7pt plus 3pt minus 4pt
\def \strut{\lower 3.5pt
\vbox to 12pt{}}% 1i.e., \lower 1pt+.2%~n\vbox to 2pt+iem{}
\def \rm{\:a}
\def \sl{\:n}
\def \b2{\:q}
\detz \it{\:G}
\det \mi{\:g}
\det \tt{\:t}
\def \sy{\:u}
\det \sc¢{\:m}
\def \biglp{\mathopen {\vcenter {\hbox {\:0\char °}}}}
\def \bigrp{\mathclose{\vcenter {\hbox {\:0\char *1}}}}
\def \9{\hskip 5pt}
\mathrm adf
\mathit gjl
\mathsy uxz
\rm \usertenpoint}
\def \usertenpoint{}
\def \usetenpoint{\gdef\fontsize{\tenpoint}\tenpoint}

66

TUGboat, Volume 2, No. 1

Anatomy of a TEX Macro Package

11

\def \ninepoint{\baselineskip 1ipt

\dispskip 1ipt plus 3pt minus 8pt
\dispaskip Opt plus 3pt

\dispbskip 6pt plus 3pt minus 3pt
\det \strut{\lower 3.25pt\vbox to 11pt{}}¥ see tempoint for explanation
\det \rm{\:b}

\detz \si{\:0}

\det \bf{\:r}

\det \it{\:4}

\def \mi{\:h}

\def \tt{\:T}

\det \sy{\:v}

\def \biglp{\mathopen {\hbox{\:a(}}}
\def \bigrp{\mathclose{\hbox{\:a)}}}
\det \9{\hskip 4.625pt}

\mathrm bef

\mathit hkl

\mathsy vyz

\rm \userninepoint}

\def \userninepoint{}
\det \useninepoint{\gdef\Zontsize{\ninepoint}\ninepoint}

\def \eightpoint{\baselineskip 9.5pt

\dispskip Spt plus Spt minus 2pt
\dispaskip Opt plus 3pt

\dispbskip 5pt plus 3pt minus 2pt
\det \strut{\lower 2.75pt\vbox to 9.5pt{}}¥ see tempoint for explanation
\det \rm{\:c}

\der \s1{\:p}

\det \bf{\:s}

\dez \it{\:I}

\def \mi{\:i}

\def \tt{\:U}

\det \sy{\:w} _

\dez \biglp{\mathopean {\hbox {\:a(}}}
\def \bigrp{\mathclose{\hbox {\:a)}}}
\det \9{\hskip 4.25pt}

\mathrm cef

\mathit ikl

\nathsy wyz

\rn \usereightpoint}

\de? \usgereightpoint{}
\det \useeightpoint{\gdef\fontsize{\eightpoint}\eightpoint}

\nathex 0

% definitions of large parentheses

\det \bigglp{\mathopen{\vcenter{\hbox{\:0\char’22}}}}
\def \biggrp{\mathclose{\vcenter{\hbox{\:0\char’23}}}}
\def \biggglp{\mathopen{\vcenter{\hbox{\:0\char:40}}}}
\def? \biggegrp{\mathclose{\vcenter{\hbox{\:0\char*41}}}}

TUGboat, Volume 2, No. 1

67

12 Arthur Keller

% definitions of glue

\det \qquad{\quad\quad}

\dez \xskip{\hskip 7pt plus 3pt minus 4pt}

\def \yskip{\penalty-50\vskip 3pt plus 3pt minus 2pt}
\det \yyskip{\goodbreak\vskip Gpt plus 6pt minus 4pt)

Definitions of Odd Characters
\chcode*272+°3072 ¥ this makes formulas like "$x:=x+18$" and "$2\?:X\to Y$" work

% ttchar puts the char into a \tt fixed width box

\def\ttchar#i{\savei\hbox{\ }\hbox to iwd1{\hskipOpt plusi000pt minus1000pt
#1\hskipOpt plusi000pt minus1000pt})

% tontclassify selects the right char based on what the current font is
\det\fontclassify#18283{\itmmode{#1}

\else{\iz t\fontcode{#2}
\else{\if T\fontcode{22)}
\else{\if U\fontcode{#2}
\else{{#3}}})})

%81 is math, 82 is tt, #3 is others

% char macro defimitions

\def\down{\fontclassity{\mathrel{\char’443}}{\ttchar{\sy\char’43}}{\sy\char*43}}

68 ' TUGDboat, Volume 2, No. 1

Anatomy of a TEX Macro Package

13

\def\a{\fontclagsity{\char'213}{\ttchar{\mi\char’13}}{\mi\char’13}}
\chcode®2¢13
\det\S{\tontclassify(\char’214}{\ttchar{\mi\char’14}}{\mi\char’14}}
\chcode’3+13 :
\def\a{\fontclassity{\mathbin{\char'536}}{\ttchar{\if t\fontcode{\:z\char’136}
\olge{\if T\fontcode{\:z\char’136}\else{\:z\char 188}}}}{\sy\char’138}}
\chcode’4+¢13
\dez\~{\fontclassity{\char'472}{\ttchar{\sy\char'72}}{\sy\char’72}}
\chcode’5+13 .
\det\e{\tontclassity{\char’217}{\ttchar{\mi\char’17}}{\mi\char’17}}
\chcode’6+13
\def\7{\fontclassity{\char 231} {\ttchar{\mi\char'31}}{\mi\char’31}}
\chcode*7+13
\def\X{\fontclassify{\char'225}{\ttchar{\mi\char’25}}{\mi\char*25}}
\chcode*10+13
\def\w{\fontclassity{\char 461}{\char’25}{\sy\char’61}}
\chcode’16+13
\def\3{\fontclassity{\char’245}{\ttchar{\mi\char’45}}{\mi\char’45}}
\chcoda®17+13
\def\C{\fontclassify{\mathrel{\char 432}}{\ttchar{\sy\char’32}}{\sy\char*32}}
\chcode "20+13
\def\D{\fontclassizy{\mathrel{\char’'433}}{\ttchar{\sy\char'33}}{\sy\char’33}}
\chcode 21«13
\detVﬁ{\rontclassiiy{\mathbin{\char'534}}{\ttchar{\sy\char'134}}{\sy\char’134}}_
\chcode’22+13
\def\U{\fontclassity{\mathbin{\char’533}}{\ttchar{\sy\char 133} }{\sy\char’133)}
\chcode*23¢13
\de?\V{\fontclassity{\char’470}{\ttchar{\sy\char’70}}{\sy\char’70}}
\chcode’24+13
\def\3{\fontclassity{\char’471}{\ttchar{\sy\char’7T1}}{\sy\char*71}}
\chcode’25+13
\def\&{\fontclassify{\mathbin{\char’412}}{\char>26}{\sy\char’12}}

\def\—{\fontclassity{\mathrel{\char’444}}{\ttchar{\sy\char'44}}{\sy\char’44}}
\chcode*27+13
\de2_{\fontclassify{\char’465}{\char’32}{\sy\char’'65}}
\chcode’30+13
\def\rarrow{\fontclagsify{\mathrel{\char'441}}{\ttchar{\sy\char '41}}{\sy\char '41}}

\det\~{\fontclagsity{\mathrel{\char’430}}{\ttchar{\sy\char 30}}{\sy\char’30}}
\chcode’32+13

\def'z<(\fontclassity{\mathrel{\char’434}}{\ttchar{\sy\char ’34}} {\sy\char'34})
\chcode’33+13

\def\le{\fontclassity{\mathrel{\char’424}}{\hbox{\spose{\char 32}<}}{\sy\char’24}}

\def\ge{\tontclassiry{\mathrelf\char’425}}{\hbox{\spose{\char‘32})}}(\sy\char'25}}

\def\={\fontclassity{\mathrel{\char’421}}{\ttchar{\sy\char’21}}{\sy\char’21}}
\chcode*36+13

\def\v{\Iontclassify{\mathbin{\char’537}}{\ttchar{\:z\char’137}}{\sy\char’137}}
\cheode’37+13

\def\#{\fontclassi?y{\char’561}{\char'43}{\sy\char'161})

\det\${\tontclassity{\char’577}{\char’ 44} {\sy\char "177}}

TUGboat, Volume 2, No.'1

14 Arthur Keller

\def\%{{\char’45}}

\dez\0{\fontclassity{\char 574} {\char 100} {\sy\char*174)}}
\chcode’100¢13
\def\\{\fontclassity{\mathbin{\char 404})}{\char’ 134} (\sy\char*404)}

\det\up{\tontclassity{\mathrel{\char’442}}{\char’136}{\sy\char°42})
\def\1trrow{\fontclass12y{\lathral{\char'440}}(\chsr‘131}{\sy\chat’40)}
\det\lbrace{\fontclucsity{\naeiépon{<char'546310}}{\ch&r’178}{\ay\chnr'148}}
\def\orbar{\tontclassity{\char’5526143{\char*174}{\sy\char 1523}
\det\rdrace{\fontclassify{\mathclose{\char'547611}}{\char 176} {\sy\char’147}}
\det \uparrow{\up)

\det \sharp{\#}

\det \seal{{\stan70 S8)})

\let \space=\ % for defining \ to be \hbox{\space} in \tt

\def\sp{{\tt\char'40)}

[] Redefinitions of One Character Macros
\let \space=\ % for defining \ to be \hbox{\space} in \tt

\let \Kthinspace=\,

\let \Mopspace=\>

\let \Mthickspace=\;

\let \Mcondthinspace=\>
\let \Mnegthinspace=\?
\let \ignorespace=\!

\let \Mnegthickspace=\?
\let \Mnegopspace=\<

\let \Mnegcondthinspace=\¢

% new long names work anywhere

\det \thinspace{\itmmode{\Mthinspace}\else{3\Mthinspaces$))

\def \opspace{\ifmmode{\Mopspace}\else{\Mopspace}}

\de? \thickspace{\ifmmode{\Mthickspace}\else{\Mthickspace}}

\det \condthinspace{\ifmmode{\Mcondthinspace}\else{\Mcondthinspace})

\let \negthinspace=\Mnegthinspace

\det \negthickspace{\ifmmode{\Nnegthickspace}\else{\Mnegthickspace})

\de? \negopspace{\ifmmode{\Nnegopspace}\elss{\Unegopspace))

\def \negcondthinspace{\ifmmode{\Mnegcondthinspace}\else{\Unegcondthinspaces})

70 TUGbost, Volume 2, No. 1

Anatomy of a TEX Macro Package

15

% redefine old names to match new nanes
\let \,=\thinspace

\let \>=\opspace

\let \;=\thickspace

\let \2=\condthinspace

\let \?=\negthickspace

\let \<=\negopspace

\let \¢=\negcondthinspace

D Make Some Math Things Work Anywhere

% save old definitions

\let \Ksection=\gection
\let \Mdag=\dag

\let \Nddag=\ddag

\let \¥P=\P

\let \Mcopyright=\copyright
\let \Msterling=\sterling
\let \Mbullet=\bullet

\let \Mcire=\cire

% let these work in any mode using old math mode definitioms
\def \section{\ifmmode{\Msection}\else{\Msection}}

\def \dag{\ifmmode{\Mdag}\else{\Mdag}}

\det \ddag{\itmmode{\Mddag)\else{$\Nddagd})

\def \P{\ifmmode{\MP}\else{\NP}}

\def \copyright{\ifmmode{\Mcopyright}\else{\Mcopyright}}
\de? \sterling{\ifmmode{\Usterling)}\else{\Msterlingl)

\def \bullet{\ifmmode{\Mbullet}\else{$\Mbullet}}

\def \cire{\itmnmode{\Mcirc}\else{$\Ncirc}}

% Note that \$ is defined with the odd characters and 0 now does the right
% thing in any mode as does \0

. Page Numbering

% uses two flags:

% \indefermode iz T when in defermode

% \deferredpage is T when there i a piece of a page being deferred

\det\advpagecount{\if T\indefermode{\advpagecountone \setcountO\highestpagenumber)

\else{\if T\deferredpage{\setcountO\savedpagecount
\gdef\deferredpage{F})
\else{\advpagecountone \setcountO\highestpagenumber}
}
}
\det\deferredpage{F}
\def\indefermode{F}

\def\incpagecount{\gdet\advpagecountone{\advcountq{\highestpaganumber}}}
\def\decpagecount{\gdet\advpagecountone{\setcount9\highestpagenumber
\advcountoby-1
\setq{\highestpagenumber}9}}

TUGboat, Volume 2, No. 1

16 : Arthur Keller

\det\setpagecount#i{\setcountd #1
\ifpos9{\incpagecount\advcount9 by -2}
\else{\decpagecount\advcount9 by 2}
\setq{\highestpagenumber}9

o “output, Style, Format Routines
\def\normal{\resetsize \fontsize \parstyle}

\def\resetsize{\normalhsize \normalvsize}
\def\everyoutput{} % this is something that is im every output routine

% start of format descriptions
\def\usebookformat{\input mbook >

\def\usebasictormat{\usebasicstyle \usebasicoutput }

% ACM oversize format for Versatec (camera ready copy)
\def\useacmformat{\input macacm }

% To use, code \useacmformat at the start of the paper.
% Then define \title and \authors

% then define the title portion, followed by \endoftitle
% when you are all done \endotpaper\end
\def\useplainoutput{\input oplain }
\def\usebasicoutput{\input obasic }
\det\useWoodsoutput{\input owoods }
\def\useblockstyle{\input sblock }
\def\usebasicstyle{\input sbasic }

% look at \useplainoutput and \useblockstyle for the minimum needed
% in output and style routines

% Format routines are simply output and style together. Note that
% other related macros and definitions may be included also.

® - Footnotes

% normal footnote
\def\footnote#1#2{#1\botinsert{\eightpoint\hbox par size{B1#2}}}

% numbered footnote
\det\nfootnotes1{\advcountq{\footnotenumber}\!

$t{\footnotenumber}$\!

\botingert{\eightpoint\hbox par size{$?{\footnotenumber}$s1}}}
\def\footnotenumber{0}

T2 TUGDboat, Volume 2, No. 1

Anatomy of a TiX Macro Package 17

\botsep{\vskipi5pt \hrule widthSpc\vskip 3pt}

% footnote mark characters
\def\upstar{\lower 3pt \hbox{$t{\hbox{*}}$}}
\det\dagger{\lower 2pt \hbox{$t\Kdag$}}
\det\ddagger{\lower 2pt \hbox{$t\Mddag$})

* . Paragraphs

\def\hangbox to #1 #2{\par\hangindent #1\noindent
\hbox to #1{#2}\!}

\deZ\levelone#1{\hangbox to 20pt {#1\h2ill)}}
\def\leveltwo#i{\hangbox to 40pt {\hbox to 20pt{\hfill}#1\h£ill}}
\def\levelthree#1{\hangbox to 80pt {\hbox to 40pt{\hfill}#1\h£ill})}

\def\number#i{\levelone{#1}}
\def\nnumber#i{\hangbox to S0pt {#1\hfill}}

\def\indpar#i{\par
\save9ihbox to size{}
\save9\hbox{\box9\hskip-40pt} % width minus 40pt
\hsize 1wd9
\vskipipt
\leveltwo{}{\strut#1\strut}\par\normalhsize
\vskipipt}

\def \hdr#1{\par\goodbreak\yyskip\ctriine{\b? #1}\posthdrskip}

\def? \posthdrskip{\par\badbreak\vsikip Spt\badbreak}
\def \sectiomskip{\par\excellentbreak\vskip 24pt plus 12pt minus 8pt}

o List Definitions
\det \list#1{\xdef{\listcounter{#1)}}

\def \item{\advcountq{\listcounter}
\levelone{\listcounter.}}

\dez \itemindent{\levelone{}}

\det \bitem{\levelone{\hfill\bullet}} % this centers the bullet. see \levelone

\def \sublist#1{\xdef{\sublistcounter{#t)}}

\def \subitem{\advcountq{\sublistcounter} % leaves count in \count9
\setcount9 -\sublistcounter % we want roman numerals
\leveltwo{\count9.}}

\dsef \gubitemindent{\leveltwo{}}

\def \subsublist#1{\xdef{\subsublistcounter{#t}}} % should be a letter

TUGDboat, Volume 2, No. 1 73

18 Arthur Keller

\def \subsubitem{\advcountq{\subsublistcounter}
\levelthree{\char\subsublistcounter.}}

\det \subsubitemindent{\levelthree{}}

. Underlining and Boxes
\def\undertext #1{$\underline{\hbox{s1})$> % underline in horizontal mode
\det\overtext #1{$\overline{\hbox{81}}$} % overline in horizontal mode

\def \leaderline{\leaders\hrule\hfill}

\def\boxit#i{\vbox{\hrule\hbox{\vrule\hskip3pt
\vbox{\vskip3pt#1\vskip3pt}\hskip3pt\vrule}\hrule}}

\def\sizeboxit to#1by#2 #3{\vbox{\hrule\hbox to #1{* rule\hss
\vbox vo #2{\vss#3\vss}\hss\vrule}\hrule}}

\def\boxitnoglue#i{\vbox{\hrule\bbox{\vrule
\vbox{#1}\vrule}\hrule}}

% Boxit and Boxitnoglue are like boxit and boxitnoglue except that horizomtal

% and vertical modes are reversed.

\def\Doxitti{\kbox{\vrule\vbox{\hrule\vskip3pt
\bbox{\hskip3pt#1\hskip3pt}\vskip3pt\hrule}\vrule})

\def\Boxitnoglue#i{\hbox{\vrule\vbox{\hrule
\hbox{#1}\hrule}\vrule}}

% Lboxit puts L’s around box instead of rules
\def\Lboxit to #1 by #2 #3{\def\hsplitrule{\hbox to #1{\vbox{\hrule width .25in}
\hfill
\vbox{\hrule width .25in}}}
\det\vsplitrule{\vbox to #2{\hbox{\vrule height .25in}\vfill
\hbvox{\vrule height .25in}}}
\vbox{\lineskip Opt
\baselineskip Opt

\hsplitrule

\vbox to #2{\hbox to #1f{\vsplitrule
\hfill _
\vbox to #2{\v2ill#3\v£ill}
\htill
\vsplitrule)}

\hsplitrule

3

\def\type #1>#2{\par\indpar{\displayfont #i\under{#2}}} ¥ type a line (as in dialogue)
% the second argument is underlined, good for prompts

\det\ttype #1>#2{\par\noindent{\displayfont#1i\under{#2}}\par}
% type a line (as in dialogue)

T4 TUGDboat, Volume 2, No. 1

Anatomy of a TEX Macro Package

19

. Penalties
\def\badbreak{\penalty1000}

\def\goodbreak{\penalty-100}

\def\excellentbreak{\penalty-1000}

® “nofill “endnofill

% To use, code:

% \nofill

% statements

% \endnofill

%

% The code is listed verbatim without any page broeaks.

% To allow a page break, put \allowbreak om a line. If there
% 1s no break, a blank line is generated.

%
% Note that \fontsize must be defined to be your normal size of type, such

% as \tenpoint
%
% Font is mot changed

% Use of tabs in verbatim mode will give an error message.

% Define \<cr> to be \CR when enabled
\chcode*15+12\def\
{\CR}\chcode’15+5 %

\def\nofili{\parskip Opt

\chcode’11¢13 % define tab to give an error

\chcode*15+«13 % define <return> to generate \cr

\chcoda’40+¢13 % detine space to generate \<space> (a real space)
\gdez\ {\hbox{\space}} % make space exactly one unshrinkable space

\gdef\CR{\par\badbreak\noindent\hbox{\!\,}}}

\def\endnofill{\par\baddbreak % force glue to this page

\vskip-11pt

\chcode”11¢10 % define tab to be a space
\chcode*15+5 % define <return> be a end of line
\chcode’ 40«10 % define space to be a space

\let\ =\space % make *\ " as normal

\normal}

\def\goodgelae{\chcode’34+13 %<

\lat \<=\le :

\chcode*35+13 %2

\let \>=\ge
>

TUGDboat, Volume 2, No. 1

75

20 Arthur Keller

\def\normalgele{\chcode’34+12 ¥ ¢
\let \<=\negcondthirspace

\chcode*35¢12 %2

\let \>=\condthinspace

>

™ Verbatim Mode “startcode and “endcode

% To use, code:
% \startcode
% statements

% \endcode

% .

% The code is listed verbatim without any page breaks.

% To allow a page break, put \allowbreak on a line. If there
% is no break, a blank line is generated.

%

% \startcode supplies 4 pt of glue

% \endcode supplies 5 pt of glue

% The code is printed in \displayfont mode

% To avoid glue, code \startcodenmoglue or \endcodenoglue

% Note that \fontsize must be defined to be your normal size of type, such
% as \tenpoint ‘

. % Use of tabs in verbatim mode will give an error message.

% Dofine \<tab> to be \tab when enabled
\chcode *11+12\det\ {\tab)\chcodo'11+10
% will cause an error message unless \tab is defined

\def\startcodenoglue{\par
\displaytont

\nofill

\goodgele

3}

\det\endcodenoglue{\endnofill
\normalgele

\fontsize
}

\def\startcode{\par\excellentbreak\vskip 5pt plus 1pt minus 1pt\startcodenoglue}
\def\endcode{\endcodenoglue\excellentbreak\vskip 8pt plus 1pt minus 1ipt}

\defistartoutput{\par\excellentbreak\vskip Spt plus ipt minus 1pt{\tenpoint
$\down\qquad\down\qquad\down\qquad\down\qquad\down\qquad\down\qquad\down$\par)
\vskip 6pt plus ipt minus 1pt}

\def\allowbreaknoglue{\par\badbreak\vskip-1ipt\excellentbreak)

\def\allowbreak{\allowbreaknoglue\vskip 1ipt.plus 1ipt}

76 TUGboat, Volume 2, No. 1

Anatomy of a TeX Macro Package 21

» Verbatim Mode Using fift “halignftft

% To use, code the following:

% \verdbatim{

% tollow with code

%)} terminates verbatim mode.

% Note that \verbatim stuff will not be broken across page boundaries.

% To allow a break, use \noalign{\excellentbreak}%

% or \breakhere%

% Note the absence of spaces in the above.

% Note that the % is necessary to avoid an extra line generated.

% Note that \fontsize must be defined to be your normal size of type, such
% as \tenpoint

% These macros rely upon the definitions of \<cr> and \<tab> on the previous page.
% Use of tabs in verbatim mode will give an error message.) :

\def\verbatim{\nofill
\gdez\CR{\cr\noalign{\badbreak}}
\goodgele

\verbatimgenerate}

\def\verbatimgenerate#i{{\displayfont$$\halign to size{##\brill\cr#i}$s}
\endnofill
\normalgele

}
\def\breakhere{\noalign{\excallentbreak\vskip 11 pt}}

\def\threecol{\notill
\gdet\CR{\cr\noalign{\badbreak}}
\goodgele

\threecolgenerate}

\def\threecolgenerate#1{{\displaytont\halign{##\h2i119##\heilles#\h2ild\cri1}}%
\endnofill
\normalgelse

}

. Notes '

% \sendnotes creates a 1ist of entries which will be output when
% \putnotes is used. This should be at the end of the manuscript.
% use \initnotes to initialize notes

\def \initnotes{\input mnotes }

TUGDboat, Volume 2, No. 1

29 Arthur Keller

° Index Macros

\def \tnitindex{\input mindex }
% see TUGboat (Vol. 1, No. 1) for an index package.

° Defer Mode
\def\defer{\input defer }

° ‘Table of Contents
\det\begintotc{\input mtofe }

. Interesting Hacks

\def\ifnull#1\then#2\else#3{\det\jnk{s12}\11781{22)\olse{#3}}
% to use \ifnull #i\then{<true clause>}\else{<false clause>}

\def\bracex{\leaders\hrule height 1.5pt \h£ill}

\def\dnbrace{$\char’772¢\bracex$\char’ 775
\char’774\bracex\char 7738}

\det\upbrace{$\char *7748\bracex$\char 773
\char’772\bracex\char 7758}

\def \TEX{\hbox{\rm T\hskip-.1667em\lower.424ex\hbox{E}\hekip-.125em X}}

\det\blackslug{\hbox{\hskip 1pt \vrule width 4pt height 6pt depth 1.5pt
\hskip 1pt}}

\def\boxtop#1i{\save9#t\lower 1ht9\box9}

\def\topspace{{\hruls heightOpt}\vskip}
% e.g. "\topspace 1in" putz an inch of space at the top of a page

\det\setqg#i#2{\itpos#2{\gdot21(}}
\else{\gdet#1{-} \setcount#2 -\count#2}
\xdefr#1{#1\count#2}
\setcount#281} % notice how we restore \count#2

\def\advcountq#i{\setcount9s1
\advcount9byl
\zetq{81}9}

\def\magnifysi{\chpari2=#1) % operand is magnification times 1000

\det\done{\par\vti1l\end}

78 TUGDboat, Volume 2, No. 1

Anatomy of a TEX Macro Package

23

% To put a big capital letter begining a paragraph; #1 = indent for (2 or 3)
% lines, #2 = letter, #3 = paragraph
\def\capitalpar#i#283{\save9\hbox par size{\ragged 1000000
\ir281{{1 \linebreak 2}} % find out how much
\else{{1 \linebreak 2 \linebreak 3}}} % to move up
\vbox{\hbox{\bigggtnt #2}
\vskip -1ht9
\save9\hbox{\bigggtnt #2}
\hbox par size{\hangindent 1.3wd9 for #1{}#3}}

\def\ie{{\sl i.0.}}
\det\eg{{\sl ¢.g.}}

. Default Options
\def\displayfont{\ninepoint\tt}

\setpagecount{1}

Documentation of Use of Counters and Boxes

°
% Counters and use

%o the page aumber to appear on current page. Valid only in \output,\send,\mark
%1 unused

%2 unused

%3 unused

%4 unused

%5 unused

%8 unused

%7 unused

%8 unused

%9 work value, use this for temporary calculations in a macro

oxes
unusad
used by defer output and macacm
used by defer output and macacm
unused
unused
unuged
unused
unused
unused
for temp macro use: \boxtop

AWINTINMWIWIWAWIW IR MW
O DN WNDEEO

TUGboat, Yolume 2, No. 1

79

24

Arthur Keller

F
0
b
2
3
4
5
8
7
8
9

ST 3T T 2T 2T T BN AT AT T W

iles tor send

index
notes
tofe
unuged
unused
unused
unused
unused
unused
unused

The following section consists of external files that
are only loaded when needed. As described in the
text, this saves on the.amount of space needed by
these macros in “TEX“ itself.

MBOOK . TEX

% Book Format
\def \bookoutput{\vbox to Ytruein

{\baselineskip Opt\lineskipOpt % beginning of output routine, resets skips

\advpagecount % use the correct page number in \send
\everyoutput
\it T\tpage % the mext is used when tpage is "T" (title pages)

{\gdet\tpage{F} % reset tpage
\vskip .7truein % blank space ian place of headlines
\page} % insert the page contents, no page #
\else{\if T\index{\indexoutput}
\elgse{\i? T\pagenumberarea{\pagenumberregion\vfill}\else{}
\page % insert the page conteats
\i? B\pagenumberares{\vfill\pagenumberregion}\else{}}
) % end \bookOutput routine

\def \pagenumberarea{T} % T tor Top of page, B tor Bottom, else for none

\def \bookstyle{\maxdepth 2pt

\parindent 20pt

\parskip Opt plus 1 pt

\lineskip tpt plus Opt

\topskip 24pt plus 6pt minus 10pt
\botskip 15pt plus 3pt minus 9pt
\topbaseline Opt

3

80 TUGDboat, Volume 2, No. 1

Anatomy of a TEX Macro Package

25

% page number definitionms

\def\boxpagenumberregion{\moveleft .125truein\vbox to .7truein{\hrule
% horizontal rule at top of page
\hbox to &.75truein{\trule
% 20pt*(1+sqrt(5))/2=32.,61pt
\ifeven0{\bbox to 32.361pt{\cmrten\hfill\countO\htill\trule}
\hfill\cmss22\topmark\hfill}
\else{\hfill\cmssi2\botmark\hfill
\hbox to 32.361pt{\cmrten\trule\hfill\countO\hfill}}
\trule)}
\hrule}} % borizontal rule under the headline

\def\trule{\vrule height 13.5pt depth 6.5pt} % used at top of page
\def\titlemark#182{\mark{\iteven0{#1}\alse{#2}}}
\def\pagenumberregion{\boxpagenunberregion}

% "global variables®
\def\tpage{F}
\def\index{F}

\def\titlepage{\gdet\tpage{T}} % \titlepage sets tpage to T

% enable book format

\def\usebooktormat{\gdet\standardoutput{\output{\bookoutput}}
\standardeutput
\gdef\parstyle{\bookstyle}
\gdef\normalhsize{\hsize 6.5truein}
\gdef\normalvsize{\vsize 8.3truein}
\normal

}
\usebookformat

% chapter section

\def\chapternumber{0}

\def\chapterbegin#i{\par
\gdef\footnotenumber {0}
\advcountq{\chapternumber)
\gdef\sectionnumber{0}
\xdef\wholesectionnumber{Chapter \chapternumber}
\titlemark{\wholesectionnumber}{\sectionname}
\vfill\eject
\gdet\sectionname{#1}
\titlemark{\wholesectionnumber}{#1i)
{\noindent \cmsz12 \wholesectionnumber\ \ #1}
\if T\writetofc{\send2{\chaptertofc{#1}\count0.}}\else{}
\posthdrskip}

TUGDboat, Volume 2, No. 1

81

26 Arthur Keller

\det\dosectionbegin#i{\par
\titlemark{\wholesectionnumber}{\sectionname}
\sectionskip
\gdef\sectionname{#1)
\titlemark{\wholesectionnumber}{#1)
{\tenpoint \bf \noindent \bullet\ \wholesectionnumber\ \ #1}
\posthdrskip}

\def\sectionbegin#1{\advcountq{\sectionnumber}
\gdef\subsectionnumber{0}
\xdet\wholesectionnumber{Section \chapternumber.\sectionnumber}
\if T\writetofc{\send2{\sectiontofc{#1}\count0.}}\else{}
\dosectionbegin{#1}}

\def\subsectionbegin#i{\advcountq{\subsectionnumber}
\gdet' iimsectionnumber{0}
\xdet\wholesectionnumber{Section
\chapternumber.\sectionnumber .\svbsectionnumber}
\if T\writetofc{\send2{\subsectiontozc{#1}\count0.}}\else{}
\dosectionbegin{#1}}

\def\dimsectionbegin#i{\advcountq{\dimsectionaunbaer}
\xdef\wholesectionnumber{Section
\chapternumber.\sectionnumber.\subsectionnumber.\dimsectionnumber}
\if T\writetofc{\send2{\dimsectiontofc{#1}\count0.}}\else{}
\dosectionbegin{#1}}

\det\specialbegin#i{\titlemark{#1}{\sectionnome}
\vtill\eject
\settitle{#1}
{\noindent \cmssi2 #1}
\posthdrskip)}

\def\settitle#i{\par\titlemark{#1}{#1}
\gdef\wholesectionnumber{#t}
\gdet\sectionname{81}}

\def \wholesectionnumber{}
\defr \sectionaame{)}

% automatic table of contents generation

\def\inittofc#1{\open2 #1
\gdef\writetotc{T}} % write tofc info

\def\writetotc{F}

82 | TUGboat, Volume 2, No. 1

Anatomy of a TEX Macro Package.

27

MACACM. TEX

% ACM two column format for Versatec

\def\acmoutput{\eve.youtput
\if T\tpage
{\if T\column
{\gdet\normalhsize{\hsize 4.25truein}
\gdet\normalvsize{\vsize 8.9truein}
\normalhsize\normalvsize
\savel\page\gdef\column{L}
}
\else{\if L\column
{\save2\page\gdet\column{R}}
\else{\vbox to 11.9truein{\boxi\vskip -1000pt plus 1000000pt
\bbox to 9 truein{\box2\hfill\pagel}}
\advcount 0
\gdet\column{L}
\gdet\tpage{F}
\gdef\normalveize{\vsize 11.5truein}
\normalvsize
)
\elsa{\if L\column

{\save2\page\gdet\colunn{R}}

\else {\vbox to 11.9 truein{\hbox to 9truein{\ninepoint\ifeven0d
{\rm\lastnames\hfill\sl\title}
\else{\sl\title\hfill\rm\lastnames}}

\vtill
\hbox to 9 truein{\box2\hfill\pagel}}
\advcountd)
\gdef\column{L}
33}

\def \acmstyle{\maxdepth 2pt
\parindent 20pt
\parskip Opt plus 1 pt
\lineskip 1pt plus Opt
\topskip 24pt plus 6pt minus 10pt
\botskip 15pt plus 3pt minus 9pt
\topbaseline Opt
}

\det\endot title{\par\veill\eject}

\det\endotfpaper{\par\v£ill\if L\column{\eject\hbox{}\vfill}\else{}}
% To use, code \useacmformat at the start of the paper.

% Then define \title and \authors

% then define the title portion, followed by \endoftitle

% when you are all done \endofpaper\end

% enable acm format

\det\standardoutput{\output{\acmoutput}}

TUGboat, Volume 2, No. 1 83

28 Arthur Keller

\det\useacmformat{\standardoutput

\gdet\parstyle{\bookstyle}

\gdef\normalhsize{\hsize 9truein}

\gdet\smallhsize{\hsize 9truein} % toc small to indent right

\gdef\normalvsize{\vsize 3truein}
% these sizes reuefined in \endoftitle
% and \acmoutpub

\normal

\gdet\tpage{T}

\gdef\coluan{T}

}

. \ugeacmformat

OPLAIN.TEX

% Plain Output routine

\def\plainoutput{\advpagecount % use the correct page number in \send
\page
\everyoutput}

\de2\standardoutput{\output{\plainoutput}}

\def\useplainoutput{\standardoutput
\gdef\normalhsize{\hsize 6.5truein}
\gdef\normalvsize{\vsize 9truein}
\normal

>

\useplainoutput

OBASIC.TEX

% Basic output routine

\def\basicoutput{\advpagecount % use the correct page number in \send
\vbox to 9truein{\page
\viill
\ctrline{\cmrten \countO}}
\everyoutput}

\def\standardoutput{\output{\basicoutput}}

\det\usebasicoutput{\standardoutput
\gdef\normalhsize{\hsize 6.5truesin}
\gdet\normalvsize{\vsize 8.75truein}
\normal
>

84

TUGDboat, Volume 2, No. 1

Anatomy of a TEX Macro Package

29

\usebasicoutput

OwooDSs . TEX

% ¥oods output
% (To look like previous versions of the annual report.)

\def\Woodsoutput{\advpagecount
\vbox to 9truein{\ctriine{\ninepoint\sl -\countO-}
\vrill
\page}
\evaryoutput}

\def\standardoutput{\ocutput{\Woodsoutput}}

\def\use¥oodsoutput{\standardoutput)
\gdef\normalhsize{\heize 8.5truein}
\gdef\normalvsize{\vsize 8.75truein}
\normal

}

\useWoodsoutput

SBLOCK. TEX

% Block Style

\daf\blockstyle{\maxdepth 2pt
\parindent Opt

\parskip 6 pt plus 6 pt minus 2 pt % Skip a line between paragraphs.

\lineskip 1pt plus Opt

\topskip 24pt plus 6pt minus 10pt
\botskip 15pt plus 3pt minus 9pt
\topbaseline Opt

}

\def\useblockstyle{\gdef\parstyle{\blockstyle}
\normal

}

\useblockstyle

TUGDboat, Volume 2, No. 1

30 Arthur Keller

SBASIC.TEX

% Basic Style

\def\basicstyle{\mazdepth 2pt
\parindent 20pt
\parskip Opt plus 1 pt
\lineskip 1pt plus Opt
\topskip 24pt plus 6pt minus 10pt
\botskip 15pt plus 3pt minus 9pt
\topbaseline Opt

}
\def\usebasicstyle{\gdet\parstyle{\basicstyle}
\normal
}
\usebasicstyle
MNOTES. TEX
% notes

\openi=fixnot.tex
\def \sendnotes#1{\sendi{Page \count0. #1\par})

\de? \putnotes{\specialbegin{Fixup Notations)

\openi=dummyl.tmp % Close the fixnmot file
\input fixnot.tex % Now put text here.
b

DEFER. TEX

% defermode based on that written by Brent Hailpern and Jim Boyce

% box 1 is slop on curremt page
% box 2 is extra slop on current page that will go on following page

\det\deter{\save2\vbox{} % no extra slop yet
\output{\savel\page\output{\save2\page}} ¥ cause stutf to be saved
\ejoct % flush out current page
\standardoutput

\ifdimen 1ht2>0pt{\unboxi\savel\box2}\else{} % comment below
% put out full page and copy partial page
\iz F\deterredpage{\gdef\deferredpage{T}
\advpagecountone
\savethepagecount
Helse(}

86 | TUGboat, Volume 2, No. 1

Anatomy of a TEX Macro Package

31

\gdef\indefermode{T}
3
\def\enddetoer{\ejact

\unboxi

\gdef\indefermode{F}
>

\def\savethepagecount{\setq{\savedpagecount}9}

\defer % do it this time too!

MTOFC.TEX

% table of contents

\def\begintozc{\gdeI\chapternumber{0}
\setpagecount{-1} % initial page number for cover page
\specialbegin{Table of Contents)}}

\def\chaptertofc#i#2. {\par
\advcountq{\chapternumber}
\gdez\sectionnumber {0}
\hbox to size{\hbox to 30pt{\bf\chaptermumber\hfill}{#t}
\leaders\hrule\hfill\hbox to 20pt{\hfill1#2}}}

\def\sectiontofc#1#2. {\par
\advcountg{\sectionnumber}
\gdef\subsectionnumber{0}
\hbox to size{\hbox to 45pt{\bf\chapternumber.\sectionnumber\hri11}{#1}
\leaders\hrule\hfill\hbox to 20pt{\h£ill#2}}}

\def\subsectiontofc#1#2.{\par
\advcountq{\subsectionnumber}
\gdef\dimsectionnumber{0}
\hbox to size{\hbox to 80pt{\bt
\chapternumber.\sectionnumber.\subsectionnumber\htil1}{#1}
\leaders\hrule\hfill\hbox %o 20pt{\hfill#2})}}>

\def\dimsectiontotc#i#2.{\par
\advcountq{\dimsectionnumber}
\hbox to size{\hbox to 75pt{\bt
\chapternumber.\sectionnumber.\subsectionnumber.\dimsectionnumber
\bh£111}{#1}
\leaders\hrule\h2ill\kbox to 20pt{\hfill#2}}}

\def\endtofc{\par\vfill\eject % put out this page before screwing up page #
\gdef\chapternumber{0}
\setpagecount{0}

}

\begintofc % do it now too!

TUGbDoat, Volume 2, No. 1

NOFILL Program

NOFILL Program

Lynne A. Price
Patrick Milligan

BNR INC.,
subsidiary of Bell-Northern Research, Ltd.

Below is the source for a SAIL program called NOFILL. This program reads an ASCI text file and
outputs a file that can be processed by TEX in order to typeset a listing of the original file. Line spacing
is preserved and characters which have special meaning to TgX (e.g., backslash and braces) do not cause
problems. This program is very useful to documenters of TEX macros who wish to prepare lengthy examples
of corresponding input and output. Preparation of documents that include sample programs in various
programming languages is also simplified with this program. For example, the listing shown here was itself
generated by NOFILL. Following the program listing is some test data that can be used to verify this code
and the corresponding output.

Source of NOFILL:

begin "nofill®
comment Ibis program generates a TeX input file that typesets ASCII
text files (e.g., TeX macro source). The output file has the form
{\ty\saves\hbox{A}
\dez \# {{\ty\char-043}} % Defines for special characters

\dof \up {{\ty\char'136}}
\hbox{first line}
\bbox{second line}

\bbox{last line}

\bvox{}

}
The call to \ty on the first line 1s assumed to select an appropriate font,
usually & fixed-width typwriter fomt. The width of any character (the
letter "A", for imstance) can then be used to space special characters
from other fonts. Box 9 is used to save thisz width.
The text of each lime 18 copled directly from the input file to the output

88

TUGhbDoat, Volume 2, No. 1

NOFILL Program

file with special characters changed to macro calls (for example, & space

in the input is output as "\ * and a backslash is output as "*". ¥Fhen

long input limes occur, or when an input line contains several special
characters that expand to macros vith long names, one \hbox call may

be output over several lines in the output file. The macros used to output
special characters are controlled by the SAIL macro “chartable” defined
below. Users at dlfferent sites or with different applications may wisk to
modify this table.

define crlf = “"155"12*;
define cr = ""15" ; define 1f = "**12* ;
define normal = "0, foundcr = "1, foundtab = “2“, gpecial = "3°

comment Jutput lines are broken after maxlen characters (or after the
first control sequence that extends past maxlen characters). This cutoff
makes output files easier to read on terminals with narrow screems and
also prevents the generation of TeX input lines longer than the maximum
150 characters;

define maxlen = "60% ;

require "<><>" delimiters ; ‘

comment The following table defines the processing performed on each imput
character. The SAIL macro "action® has three parameters: the name of the
ABCII character, the name of an action to be performed when the character
is encountered (used to control the case statement in the main program loop),
and, for special characters, a string to be output when the character is
encountered. The order of actions in this table is significant--whemn
changes are made, the order must be preserved.

define chartable=<
action(<NUL>,<special>,<"\up 6">),

action(<~A
action(<“B
action(<~C
action(<"D
action(<“E
action(<"F
action(<~G
action(<"H
action(<~I
action(<~J
action(< K
action(<-L
action(<~X
action(<"N
action(<~0
action(<~P
action(<~q
action(<"R
action(<~8
action(<"T
action(<~U

(80H) >, <special>,<"\up A">),
(8TX)>,<special>,<"\up B">),
(ETX)>,<special>,<"\up C">),
(EOT) >, <special>,<"\up D*>),
(ENQ) >, <special>,<"\up E*>),
(ACK) >, <special>,<"\up F*>),
(BEL)>, <special>,<"\up G">),
(BS)>,<speclal>,<"\up H">),
(HT)>,<foundtab>,<*\up I*>),
(LF)>,<special>,<"\up J">),
(VI)>,<special>,<"\up K*>),
(FF)>,<special>,<"\up L*>),
(CR)>,<foundcr>,<"\up N">),
(80)>,<special>,<"\up N">),
(8I)>,<special>,<"\up 0%>),
(DLE)>,<special>,<"\up P*>),
(DC1)>,<special>,<"\up Q*>),
(DC2)>,<special>,<"\up R*>),
(DC3)>,<special>,<"\up 8">),
(DC4)>,<special>,<"\up I*>),
(NAK) >, <special>,<"\up U*>)},

TUGboat, Volume 2, No. 1

NOFILL Program

action(<“V (SYN)>,<special>,<"\up V=>),
action(<"¥ (EIB)>,<special>,<"\up ¥*>),
action(<~X (CAN)>,<special>,<"\up X">),
action(<*Y (EN)>,<special>,<"\up Y*>),
action(<~Z (BUB)>,<special>,<"\up Z">),
action(<ESC>,<special>,<*\up [">),
action(<Fg>,<special>,<"\up \\">),
action(<G8>,<special>,<"\up]1*>),
action(<RS>,<special>,<"\up \~*>),
action(<Us>, <special>,<"\up _">),
action(<space>,<special>, <"\ ">),
action(<!>,<normal>,<"*>),
action(<">, <normal>,<"*>),
action(<#>,<special>,<"\#%>),
action(<$>,<special>,<"\§*>),
action(<%>,<special>,<"\%">),
action(<&>,<normal>,<"s>),
action(<">,<special>,<"\"*>},
action(<(>,<normal>,<"*>),
action(<)>,<normal>,<"">),
action(<#>,<pormal>,<"">),
action(<+>,<normal>,<"">),
action(<,>, <normal>,<"">),
action(<->,<normal>,<"*>),
action(<.>,<normal>,<"%>),
action(</>,<normal>,<"*>),
[10] action(<digits>,<normal>,<"">},
action(<:>,<normal>,<"">),
action(<;>,<normal>,<*">),
action(<less than>,<normal>,<*%>),
action(<=>,<normal>,<"*>),
action(<greater than>,<normald>,<*">),
action(<?>,<normal>,<"*>),
action(<Q@>,<normal>,<"*">),
[26] action(<upper case letters>,<normal>,<"*>),
action(<[>,<normal>,<"">},
action(<\>,<special>,<"*>),
action(<]>,<normal>,<"%>),
action(<~>,<special>,<*\"">),
action(<_>,<special>,<*_">),
action(< ">, <special>,<"\"*>),
[26] action(<lower case letters>,<normal>,<"*>),
action(<{>,<speciald>, <"\{*>),
action(<|>,<special>,<"\|*>) ,
action(<}>,<special>,<"\}">),
action(<~>,<special>,<*\"">),
action(,<Bpecial>,<"\up ?">)
>;

define action(a,b,c) = ;

preloadtXwith chartable;

integer array states{0:12T] ;

redefine action(a,b,c) = <¢> ;

preloadtXwith chartable;

89

TUGbDoat, Volume 2, No. 1

NOFILL Program

string array strings[0:127] ;
external integer !SKIP! ;

string infile, outfile, nextchar;
integer cham, dbreak, deof, table, state, outent, incat, 1, gpacestotadb ;

boolean skipnext ;

procedure cntprint(string s); comment Output 2 string and count its length;
begin
outent := outent + length(s) ;
print(s) ;
end ;

18KIP! := TRUE ;
print(“NOFILL®,crlf) ;
while !SKIP! do begin .
print ("Input file neme? “);
infile := intty;
lookup(chan,infile,deotf) ;
chan := openfile(infile, "ROE¥) ;
1f !BKIP! then begin
infile := infile&".TEX";
lookup{chan, infile,deot) ;
chan := openfile(infile, "ROE") ;
if !8KIP! then print(infile.” bad. Try again...”,crli);
end ;
ond;
setinput(chan,i,dbreak, deol);
print("Dutput file (Default: NOFILL.TEX) ? *);
it (outfile:=intty) = ** then outfile:="NOFILL.TEX" ;
setprint(outfile,*F") ;

print("{\ty",crif) ;

print(*\def \# <{{\ty\char 043}}", crif)
print("\dez \$ {{\ty\char'044}}", cril)
print("\der \¥ {{\ty\char-045}}*, cril)
print("\def * {{\ty\char-015}}*, crif)
print(*\def \\ {{\ty\char-134)}*, crii)
print(“\def \~ <{{\ty\char 01T}}*, cril)
priat(*\def _ {{\ty\char-032}}*, crlf)
print("\def * <{{\ty\char-016}}", crlf)
print(*\dez \{ {{\ty\char'1T3}}", crll)
print("\def \| {{\ty\char-174}}*, crlf)
print("\def \} {{\ty\char-176}}*, cril)
print("\def \~ {{\ty\char"-024}}", crll)

e e B Be W4 M1 WM me B me @ mo

print(”\def \up {{\ty\char-136}}%, crlf) ;
print(crif, “\hbox{") ;

setbreak(table := getbreak,"",*", *I*) ;
deot := 0 ;

TUGboat, Volume 2, No. 1

NOFILL Program

nextchar := input(chan, table) ;
incnt:= 1 ; comment incnt counts characters on input line ;
outcnt:= length("\hbox{*) ; comment outcnt counts characters on output line ;
while NOT deof do begin
if outcnt > maxlen then begin
print(*\!* & crlf) ;
outent = 0 ;
end ;
skipnext := FALSE ; comment used for "lockahead" in cr-1f pairs ;
case states[nextchar] of -begin
[normal}
begin
cntprint (nextchar) ;
end ;
[speciall
begin
cntprint (strings [nextchar]) ;
end ;
[founder]
begin
nextchar := input(chan, table) :
i1f nextchar = 1f then begin
print("}*, crif, "\hbox{") ;

incat := 0 ;
outcnt := length(*\hbox{*) ;
end

else begin

cntprint(strings[cr]) ;
skipnext := TRUE ;
end ;
end ;
[foundtab]
begin
spacestotab := 8 - ((incnt - 1) MOD 8) ;
for 1 := 1 step 1 until spacestotab do cntprint(*\ *) ;
inent := incnt + spacestotab - 1 ;
end
end ;
if NOT skipmext then nextchar := input(chan, table) ;
ipcot := incat + 1 ;
oend ;
print(“2}}*) ;
end "nofill";

Test data for NOFILL:

ABCII Test:

TATBTCTDTETFIGTH TITKTLTMTNTOTPIQTRTS T TIUVIIIXTYTZT [T\ 1]+~
1289%%" () *+,-. /0123456789 : ;<=>7

OGABCDEFGHI JKLMNOPQRSTUVEXYZ [\]~_

“abcdefghi jklmnopqrstuvexyz{|}~1?

91

92

TUGboat, Volume 2, No. 1

Tab test:
123456T8901234567T880123456T890123456T7890123456T890

. (tabs)
2 b c d) L 4 €

as bd cc dd ee 11 gg

aaa bbd cce ddad eeo k444 EEE

aaaa bbbb ceee dddd LT T 5444 g8EE

aaaaa bbbbd ccccc ddddd eecee fIfff ggEER
aaaaaa bbbbbb ccccec dddddd eeeeee IIIfIf gEZEEEE

aaaaaaa bbbbbbb cccecccc ddddddd eeceeee LILIfIf gggggEE '
. . (spaces and tabs)

(spaces)
(multiple tabs)

Test data output from NOFILL:

Aty

\dez \# <{{\ty\char-043}}
\dez \$ <{{\ty\char-044}}
\def \¥ <{{\ty\char-045}}
\def * <{{\ty\char*015}}
\def \\ {{\ty\char-134}}
\def \~ {{\ty\char-01T}}
\def _ <{{\ty\char-032}}
\def \- <{{\ty\char-016}}
\det \{ <{{\ty\char-1T73}}
\dez \| <{{\ty\char-1T4}}
\def \} <{{\ty\char-176}}
\def \~ <{{\ty\char-024}}
\def \up {{\ty\char-136}}

\hbox{ASCII\ Test:}

\hbvox{>

\hbox{\up A\up B\up C\up D\up E\up F\up G\up H\ \ \ \ \ \ \ \ \!
\up J\up K\up L\up M\up N\up O\up P\up Q\up R\up B\up T\up U\up V\!
\up W\up X\up Y\up Z\up [\up \\\up J\up \"\up _}

\hbox{\ !"\#\$\X&\" (O *+,-./0123456789: ;<=>7}
\hbox{@ABCDEFGHIJKLMNOPQRSTUVEXYZ [\\]\"_}

\hbox{\ “abcdefghi jklmnopgrstuvwxyz\{\ |\X\"\up ?}

\hbox{}

\hbox{}

NOFILL Program

TUGbost, Volume 2, No. 1

NOFILL Program

\bbox{Tab\ test:}
\hbox{>

\hbox{123456T6850123456T6880123456T800123456T890123456T7890)

AV N R N O N T A R T A S S N A NN Y
ANVLLUVLUVVLV VYV V VAV VLV VAV AV A (tade))

VL AN L R R R N R R AR R A NN NN NY:
A N A A T TN »

\hbox{aa\ \ V V A A\ bb\ AV A VAV Vveed VNV VA Vad\ VNV VA

e\ \ \ VA A\ 22N\ VNN N g}

\bbox{aaa\ \ \ \ \ bbb\ \ \ \ \ ccc\ \ \ \ \ ada\ \ \ \ \ seoo\!
VAL NN 22N N\ N\ ggg)

\hbox{aaaa\ \ \ \ bbbb\ \ \ \ cccc\ \ \ \ ddda\ \ \ \ eeee\ \ \ \ \!

2222\ \ \ \ ggegg}
\hbox{aaaaa\ \ \ bbbbb\ \ \ ccccc\ \ \ ddadad\ \ \ esese\ \ \ \!
12222\ \ \ ggggg)
\hbox{aaaaaa\ \ bbbbbb\ \ cccccc\ \ dddddd\ \ eeeeee\ \ ILIIr\!

I\ \ ggegsgg)

\hbox{aaaaaaa\ DbbbbLD\ cccccece\ ddddddd\ eeeecee\ 2rfLR2f\ g\!
ggeess}

At R N N O N R A A T T T T T N T S O N O O S A AN TN A Y
ANVLYAVLVVLV VNV VAV VLYY VAV VA A A\ (spaces\ and\ ta\?

bs)>

(Y L A R R N S A N A R A R A AR N NN NN
A N O A A A T A T SN 3

\hbox{} ad V AV VAV VAV Vv b v v v e VANV VAV NV VAV
AN O O O N O A AT A A SR AN 3

(VL A N A R N R R A R AN RN RY AN RN WY
VAV ev VAV IV N g

(VL A R A O O R A A T R A N A N O T A T AN AN U A WA
AT A S N A A AN NY +,

(¥ L A R S N A T R N N A T T N S N A N NN AN WMWY
A R N A N O S T A AN A A AN 3

AV A O O T N A O R A A A T S O A S N A S AT TAY

A O O R R S O R T T AT A ST A A4

(V1 A R R R N N A N R AR R RN S WY

LN AN N O R N S A O O O O S N N A O N A AT 24

A O R O N O O N T R A A A N T N O N N N S S N S NS

MV VMYV VY VAV VN VAV N VL (Bpaces))

AV S R N O O N R R N N R S NN NNY
ANVYVLVVAVVVLVAVVAV VLV VN VY AV) (meltiplel tabs)!

)}

\hbox{}

94 . TUGboat, Volume 2, No. 1

Pascal NOFILL » " Page 1

(* Generate TEX input file to typeset ASCII text (i.e. TEX macro source) ¥%)
(* ¥ritten using Hedrick s TOPS8-20 Native Mode Pascal compiler *)

Program NoFill(Input,Output);

Const
MaxlLen = 60, (+ Maximum length of output line %)
LF = 012B; (* ASCII Line Feed *)

Type

CharClass = (Printing, Quoted, Control, HIab, Returm);

Var
NextChar: Char;
CharType: Array [0..17TB] of CharClass;

InCount: Integer;
QutCount: Integer;
I: Integer; (% Scratch counter *)
Procedure Initialize; (* Initialize CharType array... *)

Begin (*Initialize*)

(* Btart of ABCII Control Characters: *)

For I := 000B to 010B Do (» NUL to BS *)
CharType{I] := Control;
CharType[011B] := HTab; (% TAB *)
CharType [(012B] := Comtrol; (¥ LF %)
CharType[013B] := Comtrol; (* VT *)
CharType [014B] := Control; (* FF %)
CharType[015B]1 := Return; (* CR ¥)
For I := 016B to 037B Do (* 80 to U8 *)

ChazrTypelll := Control;

(* End of ASCII Control Characters *)

CharType [040B] := Quoted; (» Space *)
CharType [041B] := Printing; (=1 %)
CharType [042B] := Printing; (" %)
CharType [043B] := Quoted; (* # %)
CharType [044B] := Quoted; (> $ *
CharType [045B] := Quoted; (¥ ®
CharType [046B] := Printing; (* & ¥)
CharType [04TB] := Quoted; (* ~ %)
For I := 050B to 132B Do (* (to Z *)

CharTypel[1] := Printing;

TUGDboat, Volume 2, No. 1 _ Q5

Page 2 Pascal NOFILL

CharType[133B] := Printing; G [®
CharType[134B] := Quoted; (*\ %)
CharType[135B] := Printing; (*] %)

. CharType[136B] := Quoted; (= %)
CharType[137B] := Quoted; (= _ #)
CharType[140B] := Quoted; (* ° %)
For I := 141B to 1T2B Do (* a 1o Z *)

CharType[I] := Printing;

CharIype[173B] := Quoted; (e { »)
CharType{174B] := Quoted; (x|
CharType [175B] := Quoted; (*) *
CharType[176B] := Quoted; (= %)
CharType[1TTB] := Control; (* DEL *)
End; (*Initialize*)
Procedure OutChar (InChar: Char);
Var '
Spaces: Integer; (* Spaces needed to expand a TAB *)
NextChar: Char; (* Used for lookahead in CR-LF pairs *)
Begin (*Output*)
InCount := InCount + 1;
Case CharType[0rd(InChar)] of
Printing: Begin
¥rite(InChar);
QutCount := QutCount + 1;
End;
Quoted: Begin

¥rite("\",InChar);
OutCount := OutCount + 2;
End;

Control: Begin

Write(“*\up *);

OutCount := OutCount + 4;

InCount := InCount - 1;

I Ord(InChar) > 100B Then Begin (* DEL is Special *)
OutChar (Chr (Ord(InChar) - 100B));

End Else Begin
OutChar (Chr (Ord(InChar) + 100B));

End;

96

Pascal NOFILL

HTab: Begin

Spaces := 8 - ((InCount - 1) MOD 8);
For I := 1 to Spaces Do Write("\ °);
OutCount := QutCount + 2%8paces;
InCount := Incount + Spaces - 1;

End;

Return: Begin

Read (NextChar) ;

I? Ord(NextChar) = LF Then Begin

Writeln("}");

Write (" \nbox{");

OutCount := 6;
InCount := O;
End Else Begin

Urite("\up X°);
OutCount := OutCount + 5;
OutChar (NextChar) ;

End;

End;

End; (*Case®)

End; (*OutChars)

Begin (*NoFill*)
Initialize;
¥ritela (" {\ty"):

¥riteln("\Qef \#
¥riteLn(*\def \$
¥riteLn("\def \¥
¥riteLn(\def \°°
¥riteLn("\def \\
Eriteln("\dez \~
TriveLn(“\def _
WriteLn(*\def \~
¥riteln(*\def \{
TriteLn(*\def \|
¥riveln(\def \}
¥riteLn(*\der \~

(+ Set up CharType srray *)

{{\ty\char" *043}}");
{{\ty\char" "044}}*);
{{\ty\char "045}}");
{{\ty\char" "015}}");
{{\ty\char' *134}}*);
{{\ty\char" *017}}*);
{{\ty\char" "032}}");
{{\ty\char "016}}");
{{\ty\char'“1738}}*);
{{\ty\char"' “174}}*);
{{\ty\char" "176}}");
{{\ty\char®"024}});

¥riteLn(\def \up {{\ty\char'"~136}}");

Trite(*\hbox{");
DutCount .= 6;
InCount := O;

(* Length of \hbox{ *)

Thile Not(Eof(Irput)) Do

Begin

TUGDboat, Volume 2, No. 1

Page 3

(* Length of \hbox{ %)

TUGboat, Volume 2, No. 1

Page 4
IZ OutCount > MaxLen Then Begin
WriteLn{\!");
OutCount := O;
" End;
Read(NextChar);
Qut:Char (NextChar) ;
End;
¥riteLn(*}}°);

End.

Pascal NOFILL

97

98 . TUGbDoat, Volume 2, No. 1

List Macros

LIST MACROS

Lynne A. Price

BNR INC,,
subsidiary of Bell-Northern Research, Ltd.

In many document systems, there is a need for lists of indented paragraphs marked;by' pumbers, bullets,
letters, or other symbols. This article describes the design of a TEX macro package that provides such a
facility with examples of the use of the macros and a hstmg of their source.

- An asuthor indicates in a TEX mput file that a list is to begin WIth acall to a sta.rb-of-hst macro..
The start-of-list macros indicate the type of list. .

(1) Lists begun with the followmg macros are marked with numbers or letters enclosed in
parentheses:

(a) \numberlist — Arabic numerals
(b) \romanlist — lower-case Roman numerals
(c) \ROMANLIST — upper-case Roman numerals
(d) \alphalist — lower-case letters
(e) \ALPHALIST — upper-case letters

(2) Lists begun with the following macros are marked with numbers or letters followed by a

period:
a. \dotnumberlist — Arabic numerals
b. \dotromanlist — lower-case Roman nrumerals
¢. \DOTROMANLIST — upper-case Roman numerals
d. \dotalphalist — lower-case letters
e. \DOTALPHALIST — upper-case letters

(3) Lists begun with the following macros are marked with numbers or letters that have no
surrounding punctuation:

\nopuncnumberlist — Arabic numerals
\nopuncromanlist — lower-case Roman numerals
\NUPUNCROMANLIST — upper-case Roman numerals
\nopuncalphalist — lower-case letters
\NOPUNCALPHALIST — upper-case letters

o AN TP

(4) Lists begun with the following macros are marked with numbers or letters followed by a

TUGboat, Volume 2, No. 1 99

- List Macros

right parenthesis:

a) \closenumberlist — Arabic numersls
b) \closeromanlist — lower-case Roman numerals
c) \CLOSEROMANLIST — upper-case Roman numerals
d) \closealphalist — lower-case letters
e) \CLOSEALPHALIST — upper-case letters

(5) The macro \bulletlist starts a list of items marked by bullets.
(6) The macro \dashlist starts a list of items marked by em-dashes:

(7) The macro \marklist {<mark>} starts a list in which each item is marked by the string
specified as <mark>.

e A call to the macro \1istitem should precede each item (including the first one) on a list except
when the list items occur within tables. This macro inserts the list mark specified by the start-of-list
macro, causes the following text to appear in indented blocked paragraphs, and increments numeric
and alphabetic marks. . : »

e The user may specify a mark for a particular item by using the macro \markitem {<mark>} instead
of \1istitem. Lists in which every mark is specifled in this fagshion may be begun with \startlist
instead of one of the start-of-list macros enumerated above. Warning: Spaces and carriage returns
following macro names are insignificant; in fact, when a macro such as \1istitem has no parameters,
unless the following text begins with a special character, a space or carriage return is required to
delimit the macro name. However, the TEX spacing conventions cause a space or carriage return after
the right brace that ends the mark specified with \markitem to result in additional space between
the mark and the beginning of the list item. As a result of these conventions the input

\listitem
Note the position of the first word herse.

is equivalent to
\listitem Note the position of the first word here.
‘while
\listitemNote the position of the first word here.
would result in an error, because the macro \1istitemNote has not been deﬂned; However, while

\markitem{A---}
Note the position of the first word here.

is equivalent to
\markitem{A---} Note the position of the first word here.

the two latter probably do not produce what the user intended and are mot equivalent to the correct
form

\markitem{A---}Note the position of the first word here.
e Lists may occur within other lists—up to four levels of nesting are permitted.

¢ The macro \1istmark can be used within tables to insert the current list mark. Like \1istitem,
1istmark incrementz numeric and alphabetic marks. It does not, however, affect the curremt

100 TUGboat, Volume 2, No. 1

List Macros

paragraph structure.
e The end of a list is indicated by the macro \endlist.

e The TEX control sequence \par used to indicate the end of paragraphs should not be included before
the beginning of a list or before calling \11stitem. However, individual items may contain several
paragraphs separated by calls to \par.

e Warning: A blank line or a line containing only a comment is treated by TgX identically to the
control sequence \par. Normally, several adjacent calls to \par are equivalent to a single call, so
that one or more blank lines or comment lines can appear between paragraphs. Within lists, however,
\par is redefined so that successive paragraphs will have the appropriate indentation. Multiple calls
to \par within lists can create unexpected results. Therefore, blank lines and comment lines should
be avoided within lists.

These features are illustrated in the following example taken from Acts II and III of Hamlet:

TUGboat, Volume 2, No. 1 101
' List Macros

What a pilece of work is a man! How noble in reason!

How infinite in faculty, in form and moving! How express and

admirable in action! How like an angel in apprehension!

How like a god! The beauty of the world! The paragon of animals!

And yet, to me, what is this quintessence of
dust?\ldots\nunberlist\listitem To be,

or not to be: that is the question. Whether:

\alphalist\listitem

*Tis nobler in the mind to suffer the slings and arrows of

outrageous fortune; or

\listitem To take arms against & sea of troubles,

and by opposing, end them.\endlist

\listitem

To die; to sleep; no more;

\alphalist\listitem

And by a sleep to say we end the heart-ache and the thousand natural shocks
that flesh is heir to.

\listitem

“Tis a consumation devoutly to be wish“d.\endlist\listitem

To die; to sleep;——-to sleep?

Perchance to dream! Ay, there's the rub. i
For in that sleep of death what dreams may come, when we have shuffl“d off
this mortal coil, must give us pause. There"s the respect

that makes calamity of so long life.\endlist

\ldots Thus conscience does make cowards of us all; and thus the native hue
of resolution is sicklied o er with the pale cast ol thought, snd enterprises
of great falth and moment with this regard their currents turn awry, and lose
the name of action.

Figure 1. Nested Lists—Sample Input

102 TUGboat, Volume 2, No. 1

List Macros

What a piece of work is a man! How noble in reason! How infinite in faculty, in form
and moving! How express and admirable in action! How like an angel in apprehension! -
How like 2 god! The beauty of the world! The paragon of animals! And yet, to me,
what is this quintessence of dust?...

(1) To be, or not to be: that is the question. Whether:

(a) ’Tis nobler in the mind to suffer the slings and arrows of outrageous
" fortune; or '

(b) To take arms against a sea of troubles, and by opposing, end them.
(2) To die; to sleep; no more;

(s} And by a sleep to say we end the heart-ache and the thousand matural
shocks that flesh is heir to. '

(b) ’Tis a consumation devoutly to be wish’d.

(8) To die; to sleep;—to sleep? Perchance to dream! Ay, there’s the rub. For in
that sleep of death what dreams may come, when we have shuffi’d off this mortal
coil, must give us pause. There’s the respect that makes calamity of so long life.

... Thus conscience does make cowards of us all; and thus the native hue of resolution
is sicklied o’er with the pale cast of thought, and enterprises of great faith and moment
with tl;is regard their currents turn awry, and lose the name of action.

Figure 2. Nested Lists—Sample Output

The example below shows the use of the list macros in conjunction.with TEX’s alignment feature (the
latter is used to produce tables). Alignment is described in Chapter 22 of the TEX manual.

TUGboat, Volume 2, No. 1

\numberlist
Actrline{Menu)
\ctrline{June 25, 1980}
\vskip 4ex

103

List Macros

\ctrIine{\vbox{\halign{\hfill#\quad |#\hf1ll\cr

\listmark|Tomato Bisque Soup\cr
\listmark|8pinach 8alad\cr
\1listmark|Tuscan Poi Roast\cr
\1listmark|Zucchini Souffl\-e\cr
\listmwark|Rice Pilaf\cr
\listmark|Braided Onicn Bread\cr
\listmark|Cream Pulf Bwans\cr
‘3
\endlist

. Figure 3.

Lists Within Tables--Sample Input

(1)
(2)
(3)
(4)
(5)
(6)
M

Menu
June 25, 1980

Tomato Bisque Soup
Spinach Salad
Tuscan Pot Roast
Zucchini Soufilé
Rice Pilaf

Braided Onion Bread
Cream Puff Swans

Figure 4. Lists Within Tables—Sample Output

The remainder of this article describes details about the list macros that many readers may wish to

skip.

o The indentation for all levels of nested lists is determined by the font in effect when the outermost
list is started. Each level of list is indented by an amount of space equivalent to 4 ems in the initial
font. This default may be changed by setting \varunit <dimen> where <dimen> is the amount of
indentation desired. (See Figures 5 and 6 below.)

¢ The list macros use the single “variable unit” provided by TEX. Therefore, the user must not redefine
\varunit except to change the indentation of list items as described above.

* Since TEX’s \par control sequence is used to end a paragraph rather than to start a new one, \par

104 TUGDbDoat, Volume 2, No. 1

List Macros

shouid not precede the text of list items. Nevertheless, to ensure proper indentation within lists,
a macro call is necessary at the beginning of each paragraph. The required spacing information is
provided at the beginning of list items by the macros \1istitem and \markitem {<mark>} and by
\par before succeeding paragraphs. A special case occurs, however, after the \endlist that follows
a list that appears within another list when the following text is part of the same list item in the
outer list as the one that contained the inner list. In this situation, the \end1ist that ends the inner
list should be immediately followed by \continue. However, the \endlist that ends the outermost
list can be immediately followed by the text of the following paragraph. These situations (and the
\varunit construct discussed above) are illustrated in the following example:

\d.s:r\tradema.rk{\raisei.4ax\hbox{\spose(\raise 1ex\hbox{\curfont @\char"142}}\!
\hbox{\curfont fR}}}

TSR Games manufactures rule books, character records, polyhedral dice, and
other accessories for playing the fantasy r\A ole-playing game,

{\it Dungeons and Dragons}\trademark. '

Each player creates a character whose tralts are determined by rolling dice.
The resulting characters belong to one of several classes including:

\startlist
\save9\hbox{\it Magic Users:\quad\qquad} ¥ Set list indentation to the width of
\varunit 1wd9 % the string "Magic Users: *

\markitem{\it Fighters:}Any human character can be a fighter as are most
halflings, dwarves and elves. Fighters

\marklist{+}\listitem

Can use any weapon.\listitem Can wear armor, including magic armor.
\listitem Can do no magic.\listitem Become harder

to kill as they become more experienced.\emdlist

\markitem{\it Thieves:}Human characters can be thieves. Thieves have
special abilities:\bulletlist\listitem

They can survive attacks from behind.

\listitem They can climb sheer surfaces.

\listitem They can pick locks and pockets.

\endlist ¥ the following is part of list item containing entire preceding list
\continue

8pecial rules exist for halflings, dwarves, and elves who are thieves.
\markitem{\it Magic Users:}Any human can also be a magic user.

Magic users cannot wear armor or use most magical weapons.

They can, however, use all other magic items and they can cast spells.
\endlist

The game is played as a series of adventures. Players may play the same
character for several adventures, and the character gains in experience
as it survives each adventure.

Figure 5. Use of \continue~~Sample Input

TUGboat, Volume 2, No. 1 - 105

List Macros

TSR Games manufactures rule books, character records, polyhedral dice, and other

accessories for playing the fantasy réle-playing game, Dungeons and Dragonpr Each
player creates a character whose traits are determined by rolling dice. The resulting
characters belong to one of several classes including:

Fighters: Any human character can be a fighter as are most halflings, dwarves
and elves. Fighters

* Can use any weapon.
* Can wear armor, including magic armor.
* Can do no magic. |

b Become harder to kill as they become more ex- °
perienced. ‘

.Ths’evea:. " Human .cliaracters can be thieves. Thieves have special abilities:
| . They can survive attacks from behind.
. They can climb sheer surfaces.
. They can pick locks and pockets.
Special rules exist for halflings, dwarves, and elves who are thieves.

Magic Users: Any human can also be a magic user. Magic users cannot wear armor
or use most magical weapons. They car, however, use all other magic
items and they can cast spells.

The game is played as a series of adventures. Players may play the same character for
several adventures, and the character gains in experience as it survives each adventure.

Figure 6. Use of \continue—Sample Output

e Block paragraph structure is used inside lists. At the end of a list, paragraph indentation is reset
according to the value specified in the macro \saveparindent. Users of standard macro packages
need not concern themselves with the latter. Users, however, who design their own formats shounld
know that the default value is 2 ems in the current font. To select another value, use

\def\saveparindent{<dimen>}

The slide macros, for example, which assume block paragraph structure throughout, include the
command

\def\sBaveparindent{0 pt}
{(here 0 is the number zero not the letter D).

108 TUGboat, Volume 2, No. 1

List Macros

o Since each list item is assumed to start a new paragraph, the same amount of vertical space that
TEX inserts between paragraphs is inserted between list items. When the list items are very short,
this amount of white space is excessive. The space between paragraphs is controlled with the TgX
command \parskip <dimen>, where, following Knuth’s notation, <dimea> may be any dimension
or size. For example, \parskip Opt completely suppresses extra spacing between list iterns. Figure
Tillustrates how this command was used at the beginning of this article. Note the use of TpX’s
grouping feature (braces) to indicate that the change in \parsikip should have effect only within the
inner lists.

\numberlist\listiten

Lists begun with the following macros are marked with numbers or letters
enclosed in parentheses:

\alphalist

\listitem{\ty \\numberlist} --- Arabic numerals

{\parskip Opt :

\listitem{\ty \\romanlist} --- lower-case Roman numerals

\listitem{\ty \\ROMANLIST} --- upper-case Roman numerals

\listitem{\ty \\alphalist} --- lower-caBe letters

\listitem{\ty \\ALPHALIST} --- upper-case letters

\endlist}

\listitem

Lists begun with the following macros are marked with numbers or letters
followed by a period:

\dotalphalist

\listitem{\ty \\dotnumberlist} --— Arabic numerals
{\parskip Opt

\listitem{\ty \\dotromanlist} --- lower-case Roman numerals

\listitem{\ty \\DOTROMANLIST} --- upper-case Roman numerals
\listitem{\ty \\dotalphaligt} --- lower-case letters
\1listiten{\ty \\DOTALPHALIST} --- upper-case letters
\endlist) '
\endlist

Figure 7. Changing the Spacing Between List Items-~Samp’

TUGboat, Volume 2, No. 1 107
List Macros

(1) Lists begun with the following macros are marked with numbers or letters
enclosed in parentheses:

(a) \numberlist — Arabic numerals
(b) \romanlist — lower-case Roman numerals
(c) \ROMANLIST — upper-case Roman numerals
(d) \aelphalist — lower-case letters
(e) \ALPHALIST — upper-case letters

{2) Lists begun with the following macros are marked with numbers or letters
followed by a period:

a. \dotnumberlist — Arabic numerals
b. \dotromanlist — lower-case Roman numerals
¢. \DOTROMANLIST — upper-case Roman numerals

Figure 8. Changing the Spacing Between List Items—Sample Output

The TEX source of a set of list macros to implement this design is shown below:

% List Macros

% \neg and \ifzero Irom Appendix X

\def\neg#i{\sBetcount#1-\count#1}

\def\ifzero#i#2\else#3{\1Ipos#i{#3}\else{\neg#1
\ifpos#i{\neg#l #3}\else{\neg#i #2}}}

% Arguments to \ifeq can be constants of counters

\deI\ifeq#1#2#3\else#4{\setcount9 #1 \advcounts by -#2
\ifzero9{#3}\else{#4}}

% Count 9 for scratch, count 8 for list level, count 7 for current item number
% Box 9 for scratch, File 9 for error messages

% \Alph prints the value of the specified counter according to
% the alphabetic sequence A, B, C, ... I.e., if the value of the
% counter is 1, \Alph prints A, etc. \alph does the same except
% it generates lower case instead of upper case letters.
\dez\Alph#1{\setcountd \count#1 \advcount by ~100 \char\count9}
\def\alph#1{\setcountyd \count#1i \advcount® by " 140 \char\couni9)

% Make \endpar a synonym for TeX's standard \par control seguence.
% Yithin a 1ist, \par ls redefined to produce an indented paragrapkh.
\let \endpar=\par

% TeX counter 8 is used to count list indentation level. \ifcounteight
% oxecutes its ith argument if the current value of counter 8 is 1.
% Note that only four levels of list are permitted.
\def \ifcounteight#1#2#3#4{
\1feqi{\count8)}{#1}

10

108 TUGboat, Volume 2, No. 1

List Macros

\else{\ifeq2{\count8}{#2}
\else{\ifeq3{\count8}{#3}
\else{\1ifeq4{\count8}{#4)>\else{}}}}}

% \startpar starts a paragaph inside a 1list
\dei \startpar{\hangindent \count8vu$ $}

% Start a mew paragraph in a current list item aiter the end of a nested

% list
\de? \continue{\startpar\hbox to \count8vu{}}

% After a list, paragraph indentation is reset according to \saveparindent
% By default, this value is 2em
\def\saveparindent{2em}

\setcount8 ©
\parskip 2ex

% At start of an indented list, save item number of outer 1list

\def \savecount{
\ifcounteight{\xdef\savea{\countT}}{\xdef\saveb{\countT}){\xdes
\savec{\countT}}{\xdet\saved{\countT}}}

% At end of an indented list, restore item number from previcus level
\def \restorecount{
\ifcounteight{\setcount? \saveal{\setcount7 \saveb}{\setcountT
\savec}{\getcount? \savedl}}

% Initially, no current list actve

\def\1listitemerror {\send9{LIST ITEM ENCOUNTERED BUT NO CURRENT LIST}}
\def\listmarkerror{\send9{LIST MARK ENCOUNTERED BUT NO CURRENT LIST})
\def \listitem{\listitemerror}

\def \listmark{\listmarkerror}

% Provide for converting item numbers to upper or lower case romsn

\dez\roman#1{\setcount® -\count#1\count9}

\dei\Roman#1{\setcount 9
~\count#1\xdef\uppercaseroman{\uppercase{\count9} \uppercaseroman}

\dez \markitem#i{\setmark{#1}\listitem)
\det \setmark#i{
\ifcounteight{\gdez \marka{#1}}{\gder \markb{#1}}{\gdez
\markc{#1}}{\gdef \markd{#1}}}

% 8tart of 1ist macros
\def \numberlist{
\startlist
\setmark{(\count?)}}
\def \alphalist{
\startlist
\zsetmark{(\alph7}}}
\def \Alphalist{
\startlist

11

TUGboat, Volume 2, No. 1 109
List Macros

\setmark{ (\Alpk7)}}
\deZf \romanlist{
\startliist
\setunark{(\romanT7)}}
\def \Romanlist{
\startlist
\setmark{ (\RomanT) }}
\def \dotnumberlist{
\startlist
\setnark{\countT.}}
\def \dotalphalist{
\startlist
\setmark{\alphT.}}>
\def \DOTAlphalist{
\startlist
\setmark{\AlphT.}}
\def \dotromanlist{
\startlist
\seotmark{\roman7.}}
\dez \DOTRomanlist{
\startlist
\setmark{\Roman?7.}}
\def \nopuncnumberlist{
\startlist
\setmark{\count7}}
\def \nopuncalphalist{
\startlist
\setmark{\alphT}}
\def \NOPU!ICAlpha.list{
\startlist
\setmark{\Alph7}}
\def \nopuncromanlist{
\startlist
\getmark{\roman?}}
\def \NOPUNCRomanlist{
\startlist
\setmark{\RomanT}}
\deZ \closenumberlist{
\startlist
\setmark{\count?)}}
\def \closealphalist{
\startlist
\setmark{\alph7)J}}
\def \CloseAlphalist{
\startlist
\setmark{\AlphT)}}
\def \closeromanlist{
\startlist
\setmark{\roman7)}}
\def \CLOSERomanlist{
\startlist
\setmark{\RomanT)}}
\def \bulletlist{

12

110 TUGbozat; Volume 2, No. 1

List Macros

\startlist
\setmark{\bullet}}
\def \dashlist{
\startlist
\setmark{\rm ---}}
\def \marklist#1{
\startlist
\setmark{#1}}

% Start a list
\def \startlist{
\advcount8\setcount 9 \count8 \advcount® by -4 ¥ Compute level number
\1£pos9{
\xdef\1isterror{ATTENPT TO START \countBTH LEVEL OF NESTED LISI8 ——
ONLY 4 LEVELS ALLOWED} '
\send9{\1listerror}}
\else{ % Compute indent if first level
\iteqi{\count8)}{\saveo\hbox{M}\varunit 4wd9}\else{}
\savecount
\setcount? O
\parindent Opt
\gdef \listitem{\endpar
\advcountT
\startpar\kbox to \count8wu{
\hfill\ifcounteight{\marka}{\narkb}{\markc}{\markd}\unskip\hbox to
25wu{}}}
\gdef \listmark{\advcountT\itcounteight{\marka}{\markb}{\markc}{\markd}}
\gdef \par{\endpar\startpar\hbox to \count8wvu{})
b

>

% End a list
\def \endlist{

\endpar

\restorecount

\advcount8 by -1 .

\ifeq{\count8}0{ ¥ If ending outermost 1ist, reset paragraph structure and
\gdef \listitem{\listitemerror} ¥% set error messages to be issued if an
\gdef \listmark{\listmarkerror} % attempt to specify a list item is made
\parindent \saveparindent
\gdez \par{\endpar}

}
\else{\setcount9\count9\negd\ifpoe9{\send9{Extra ENDLISI}}\else{}}
3

13

TUGboat, Volume 2, No. 1 111

Table of Contents Macros

TABLE OF CONTENTS MACROS

Lynne A. Price

BNR INC.,
subsidiary of Bell-Northern Research, Ltd.

Automatically generated tables of contents are a convenient side effect of many computerised document
preparation systems. Of course, the style of a table of contents is highly dependent on the style of chapter
and section headings and whether lists of figures and tables are included. This article describes one set of
TEX macros used to number chapters and sections and to produce tables of contents, lists of figures, and
lists of tables. While many users will prefer other formats than the one used here, macro writers may wish
to adapt this package to other conventions. The technique used involves writing one or more auxiliary files
with TgX’s \send feature as a document is formatted. These auxiliary flles contain the information needed
to produce a table of contents and lists of figures and tables.

The structure of a document prepared with this package is specified with the following macros:

e \chapter {<chapter title>} starts a new numbered chapter with the indicated heading placed at
the top of the next page and entered into the table of contents. This macro automatically capitalizes
all letters in its argument. In the rare situations where lowercase letters are needed, the construct

\lowercase {<lowercase letters>}

can be used to preserve capitalization.

e \section {<section title>} startsa new section with the indicated heading placed on the current
page and entered into the table of contents. The heading is preceded by the chapter number and
the section number separated by a period (e.g., the first section in the second chapter is labelled
“2.1 Section Title”). No automatic capitalization of section titles is performed—the user should
capitalize the first letter of each word. Section numbers are stored in macro \sectioncount.

e \subsection {<subsection title>} starts a new subsection with the indicated heading placed
on the current page and entered into the table of contents. Subsections are labelled with the
chapter number, section number, and subsection number, all separated by periods. No automatic
capitalization of subsection titles is performed. Subsection numbers are stored in \subsectioncount.

¢ Some documents require more than three levels of headings. The macro \subsub {<sub-subsection
heading>} allows for additional levels. The specified heading is placed on the curremt page and
entered into the table of contents. However, sub-subsections are not automatically numbered. If the
user wants a number to appear with the title in the text or in the table of contents, he must include

it explicitly in the argument to \subsub.

119 TUGbost, Volume 2, No. 1

Table of Contents Macros

o The macros \figure {<figure title>} and \table {<table title>} generate numbered figures
and tables with the title centered in the current page. An appropriate entry is made in the list of
figures or list of tables. Figures and tables are numbered relative to each chapter. Each is labelled
with the chapter number and the figure or table number separated by a hyphen (e.g., the first table
in the second chapter is labelled 2-1). The number of the next figure to be generated is stored macro
\figurecount and that of the next table in macro \tablecount.

e \enddoc to end the document

When processing a document in this format, TEX optionally writes one or more files of TEX input that
can be processed later to generate a table of contents, list of figures, or list of tables. These auxiliary files
are generated when the original input contains a call to the macro \enablecontents. This call must appear
before the first macro that would generate a table of contents entry, ¢.e., before the first chapter.

The default name for the table-of-contents file is CONTENTS. When the user wishes to use another file,
he can specify its name with the control sequence \contentsfile {<filename>}. Analogously, the control
sequences \Zigurestile {<filename>} and \tablesfile {<filename>} govern the names of the flles used
for the lists of figures and tables. Defaults for the latter are FIGURES and TABLES. If any of the default names
are changed, the appropriate macro calls must appear in the input before the call to \enablecontents. As
with the names of all TEX input files, these generated files have names with the extension *.TEX”. This
extension is automatically supplied, whether or not the default name is used.

In order for pages to be properly numbered, the user must reserve an appropriate number of pages
for the table of contents and lists of figures and tables and must, in addition, indicate where this space
should be reserved. The macro \contentshere reserves space for the table of contents and for any lists of
figures and of tables. The number of pages required for the table of contents is specified with the control se-
quence \numbercontentspages {<number>}. There are analogous control sequences \numberfigurespages
{<number>} and \numbertablespages {<number>}. The default numbers of pages are 1 for the table of
contents and O for both the list of figures and the list of tables. Since the auxiliary files for the lists of
figures and tables are created only when the corresponding number of pages is nonzero, any changes to these
defaults must be made before the call to \enablecontents. When each auxiliary file is processed, an error
message is issued if the actual number of pages generated does not match the estimate.

The macros always produce a table of contents first and any list of figures before a list of tables.
Two or more of the lists can be printed on one page. With the macro calls \numberfigurespages{-1} or
\numbertablespages{-1}, the user indicates respectively that the list of figures or list of tables is not to
start on a new page.

In gemeral, the user must run the TEX processor separately to format the auxiliary file corresponding to
each of these lists that appear in a particular paper.- An exception occurs when two or more lists fit on a
single page. In this case, the user must invoke TEX only for the first list on a page, lists that follow on the
same page are processed automatically.

These constructs are illustrated in Figure 1, which shows a portion of the TEX input used to produce
one document. The input for the two-page table of contents is stored in file MACROCON. TEX, that for the list
of figures in MACROFIG. TEX, and that for the list of tables in MACRDTAB.TEX. The lists of ﬂgures and tables
are printed on the same page. The TOPS-20 command

OTEX MACROCON
formats the table of contents while the command
OTEX MACROFIG

was used to format both the list of figures and the list of tables. If the latter two lists did not appear on the
same page, they would have been processed separately.

TUGboat, Volume 2, No. 1 113

Table of Contents Macros

\contentstile{macrocon} ¥ Contents go in MACROCON.TEX
\tiguresfile{macrotig} ¥ List of Figures in MACROFIG.TEX
\tablesfile{macrotab} % List of Tables in MACROTAB.TEX
\nunbercontentspages{2} % 2 pages for Table of Contents
\numberfigurespages{l} &% 1 page for List of FiguTes
\numbertablespages{-1} % List of Tables on same page as List of Figures
\enablecontents % Produce a table of comtents

% Continue with rest of document

Figure 1. Pfepa.ring the Table of Contents

In rare cases, the table-of-contents file may require editing. This situation is most likely to occur when
long titles are used or when macro calls occur within table-of-contents entries. Sometimes, e.g., when a
nonstandard font is required in a table of contents entry, the user may find it convenient to explicitly \send
information to the table of contents or list of figures or list of tables flles. These macros use character output
file 1 for the table of contents, file 2 for the list of figures, and file 3 for the list of tables.

The user who is unable to recover from a TEX error received while processing a table-of-contents flle
should consult a TEX wizard.

The following macros provide chapter and section structure and cause the auxiliary files to be created.
The auxiliary files also access these macros and assume them to be stored in a file called TUGCHAP. TEX.

¥ Chapter, figure, table, and table of contents macros
\input basic

% \neg and \ifzero from Appendix X

\def\neg#i{\setcount#1-\count#i}

\def\ifzero#1#2\else#3{\12pos#1{#3}\else{\neg#1
\ifpos#1{\neg#1 #3}\else{\neg#1 #2}}}

% Arguments to \ifeq can be constants of counters

\def\1teq#1#2#3\else#4{\setcount® #1 \advcount® by -#2
\1fzero9{#3}\else{#4}}

% Macro to advance pseudo-counters (i.e., macros defined to be integers
% in order to bypass TeX's limited number of counters
\def\advcounter#i#2{\setcount9 #1\advcount9 by #2\xdei#1{\counts}}

\dez\firstpage{T}
\def\chaptercount{0}
\def\figurecount{1}
\def\tablecount{1)
\def\break{\v£il\vIilneg)

¥ End of Document

114 TUGDboat, Volume 2, No. 1
Table of Contents Macros

\def\enddoc{
\par\vfill
% Check If Figures and Tables Lists on Same Page as TOC
\1t O\enablecon{} \else{

\1t o\figurespages{ % no LF
\ifz o\tablespages{} % no LF or LT
\else{ % TOC, but LT

\setcount9\tablespages _
\itpos9{}\else{\writecon0{tAinput \tables}} ¥ LT on same page as IOC
}
>
\else{ % LF
\setcounto\tigurespases
\1fpos9{}
\else{
\if oO\ligurespages{}
\else{\writecono{tAinput \figures}} ¥ LF on same page as TOC
}
\setcount9\tablespages
\11pos9{}
\else{
\if O\tablespages{}
\else{\writeconi{tAinput \tables})} ¥ LT on same page as LF
}
>
}
% Close T0C files
\closeconO\contentspages{Table of Contents}
\closeconi\figurespages{List of Figures}
\closacon2\tablespages{List of Tables)}
\vfill\eject\end
}

% Chapters and sections

% \chapnum prints right-justified chapter number
\def\chapnum#i#2{\xdef\curchap{#2}\saved\hbox{#1}\saves8\hbox{#2}\hskip
1wd9\hskip-1wd8 #2}
\getcount 0 1 ¥ Page number
\def\chapter#i{
\if T\firstpage{}\else{\viill\eject} X Eject unless this is the Iirst chapter
\gdef\firstpage{F}
\gdez\sectioncount{0}
\gdez\figurecount{1i}
\gdef\tablecount{1}
\vbox to 16ex{}
\hbox{\bZ\advcounter\chaptercounti\chapnun{1.}{\chaptercount. Y\quad
\uppercase{#1}}
\writeconO{\vskip 2ex}
\writeconO{tAitemincontB\bItAchapnum{l. }{\curchup}\qpad\uppercaso}
\rriteconO{{#1}tEtB\countOtE}
\vskip 2ex}

TUGboat, Volume 2, No. 1 115

Table of Contents Macros

\det\section#1{

\par\vekip 4ex\break

\gdez\subsectioncount{0}

\advcounter\sectioncounti\hbox{\chapnum{1.1}{\chaptercount.\sectioncount
Y\quad\1t#1}

\writeconO{tAitemincontB\saved\hbox{\bI1. \qua.d}\hskip iwd9
tAchapnum{1.1}{\curchap}\quadtB\it}

\writeconO{#1tETtEtB\countOtE}

\penalty 1000 ,

\vskip lex

>

\deZ\subsaection#i{
\par
\vskip 4ex
\break
\advcounter\subsectioncounti
\hbox{\chapnum{1i.1.1}{\chaptercount. \soctioncount \subsectioncount)\quad
\it#1}
\writeconO{tAitenmincontB\saved\hbox{\bf1. \quad\rm1.1\quad}\hskip
iwd9tAchapnum{i.1.1}{\curchap}\quadtB\it}
\wr:lt.econo{#i‘rETEtB\countO‘rE}
\penalty 1000
\vskip 1ex
¥

\de1\subsub#1i{
\par
\vskip 4ex
\break
\hbox{\1t#1}
\writecono{tAitemincontB\save9\hbox{\bI1.\quad\rmi.1\quadi.1.1\quad}\hekip

1wd9tB\1it)

\writecon0{#1TETEtB\countOtE}
\penalty1000
\vekip lex
}

% Table of Contents

% Note: to avoid immediate evaluation of some macros, and to be able to

% write lines with unbalanced grouping characters to the table of contents
% files, CTRL-A is used as an escape character (\) and CIRL~B and CTIRL-E are
% used as grouping characters (left and right braces, respectively).

\def\vritecon#1#2{\if T\enablecon {\send#1{22}} \else {}}

% macros for defining file names and estimated page counts
\der\contentsfile#1{\gdef\contents{#1}}
\def\figurestile#i{\gder\zigures{#1}}
\def\tablesfile#1{\gdef\tables{#1}}
\def\numbercontentspages#i{\gdef\contentspages{#1}}
\def\numbertigurespages#i{\gdez\rigurespages{#1}}
\def\numbertablespages#1{\gdef\tablespages{#1}}

116 TUGboat, Volume 2, No. 1

‘Table of Contents Macros

% set defaults
\contentsr1le{CONTENTS}
\figuresiile{FIGURES)
\tablesfile{TABLES}
\numbercontentspages{i}
\numberigurespages{0}
\numbertablespages{0}

% Numcon writes on comntents files information needed to determine. the
% page number on vwhich the contents or list of figures or tables should
% start. It also makes table of contents entries for the contents,
% and lists of figures or tables. The first parameter is O, 1, or 2
% to indicate which list is involved; the second 1s the number of
% pages that 1ist is supposed to take; the third is the title of the list.
\deZ\numcon#1#2#3{
\1z o#2{}
\elsge{
\writeconO{tAstartpage
{\counto0}{\contentepages)}{\tigurespages}{\tablespages}{#1}}.
\setcounts #2
\1zpos9{
\writecon#i{tAstartpage
. {\count0}{\contentspages}{\2igurespages}{\tablespages}{#1}}
\writecon#i{TAsetcount0 tAcount8)} '
\writecon#i{tAxdeItAsavestart{TAstart})
\advcountO by #2
}
\elge{>
\writeconO{\vskip 2ex}
\writeconO{tAitemincon{{\bf #3}}{tAstart}}
>
>

\def\contentshere{
\1f T\tirstpage{}\else{\viill\eject) %X Eject unless this 1s the first page

\nunmconO{\contentspages}{CONTENTS}
\numeoni{\figurespages}{LIST OF FIGURES}
\numcon2{\tablespages}{L18T OF TABLES)}
\def\firstpage{T}

>

% Initialize a particular table of contents file (called from \emablecontents)
% Parameter 1 indicates which 1list, parameter 2 is title of 1list,
% parameter 3 is estimated number of pages, parameter 4 is file name on
% which 1ist is to be written
\def\1initcon#1#2#3#4{
\if o#3{}

\else{
\if T\enablecon {\cpen#i=#4.TEX } \else {}

\setcountd #3
\ifpos9{
\writecon#i{\input tugchap}

TUGboat, Volume 2, No. 1 117
Table of Contents Macros

\writecon#1{\chcode"001_0}
\vritecon#i{\chcode 002_1)
\vritecon#i{\chcode"005_2}
\vritecon#i{tAinput tugtoc)
\vritecon#1{tAdef tAtarget{23}}
}

\else{}

\writecon#1{tAbeadingtB#21E}

}

}

\def\enablecon{F} % flag indicates whether table of contents files are enabled
\def\enablecontents{

\gdef\enablecon{T}

\initconO{CONTENTS}\contentspages\contents

\initconi{List of Figures}\figurespages\figures

\initcon2{List of Tables}\tablespages\tables

>

% Close a table of contemts file, write code to check whether estimated
% nunber of pages wWas correct
\dei\closecon#1#2#3{
\if o#2{(}
\else {
\Betcount9 #2
\1rposa{
\writecon#1{\viill\eject}
\writecon#1{tAsetcount9 tAsavestart}
\writecon#i{tAedvcount 9 by tAtarget)
\vritecon#i{tAadvcount 9 by -tAcount0}
\writecon#i{tAadvcount 9 by -1}
\writecon#i{tAifzero 9 {} tAelse{tAsend9{#3 Page Estimate Incorrect}}}
\writecon#i{\end}
}
\else{}
)

}
% Figures and Tables

\def\figtab#1#2#3%#4{

\vskip 3ex

\xdef\tabnum{\chaptercount~#3}

\vbox{\ctrline{#4 \taboum\quad #2}
\1f T\enablecon {

\writecon#1{tAitenincontBtAchapnum{i~1}{\tabnoum}\quad#2tEtB\countOtE}}

\else {}
}

\advcounter{#3}1

\vskip Sex

}

118 TUGDboat, Volume 2, No. 1
Table of Contents Macros

\def\tigure#i{\figtab1{#1}\figurecount{Figure}}
\def\table#i{\Iigtab2{#1}\tablecount{Table}}

The following macros, assumed to be stored in a file called TUGTOC.TEX are required by the anxiliary
files.

% Table of contents macros
\det\lead{\leaders\hbox to 8pt{\hfill.\hfill}\hf11l}
\def\heading#1{\vbox to iBex{}\ctrline{\bf #1)\vskip 2ex}

% Advance counter 8 by value in counter 9 (used in calculating starting
% page number : ‘ _
\der\adveight#1{\setcount® #1 \ifpos9{\advcount8 by -\count9}\else{)}}

\dez\startpage#1#2#3#4#5{ ¥ Compute page # where current list starts

\setcount8 #1 ¥ # of first page after TOC, LF, LT

\adveight{#4) ¥ ~ # of pages for LI

\1f 2#5{\setcount 7 #4 % doing LT, check if not on new page
\negT\1IposT{\advcount8 by -1}\else{}}

\else{\adveight{#3}} ¥ - # pages for LF unless doing LT

\iz o#5{\adveight{#2}} \else{)} ¥ - # pages Ior TOC if doing TOC

\1z 1#5{\setcount 7 #3 ¥ doing LF, check if not on new page
\negT\1ifpos7{\advcounts8 by ~i1}\else{}} \else{}

\xdef\start{\count8}

\advcount 8 by -1

}

\def\itemincon#1#2{\hbox to size{{#1)}\lead\hbox to 1wdO{\setcount® #2
\advcount® by -1\hfill\counto}}}

\saveO\hbox{1000} % 8et box O to a very large page number to determine
% meximum width

TUGDboat, Yolume 2, No. 1 119

Utility Macros

UTILITY MACROS

Patrick Milligan
Lynne A. Price

BNR INC,,
subsidiary of Bell-Northern Research, Ltd.

As a part of our experience with the creation and use of TEX macros, several small but uséful macros
have been written to aid in the creation of large macro packages. This article highlights these utility macros,

and their usage.

Font Definition

In order to facilitate the definition and use of fonts not declared in BASIC. TEX, a macro called \fontdef
was written to declare a font and define a macro to invoke it. This macro takes three arguments:

\fontdef {}{}{<Macro Name>}
For example, the standard definition of \rm from BASIC.TEX would look like:
\fontdef {a}{cmr10}{\rm}

In addition, we have adopted the convention that our standard macro packages never use uppercase
letters as Font Codes, so that users always know these letters can be used for any special fonts declared in
a specific document,.

The source for \fontdef follows:

% The macro fontdef is used to declare fonte and define a macro
X that invokes them.
\dei\fontder#1#2#3{\font #1=#2 \del #3{\curfont #1}}

Counter Value Comparison

To extend the macros \neg and \ifzero given in Appendix X of the TgX manual, we have created
a macro called \1feq which tests equality between two values (which can either be constants or counters).
\12eq takes four arguments:

\ifeq {<Value 1>}{<Value 2>}{<Then Clause>}\else{<Else Clause>}

This macro uses counter 9 as a scratch counter. We have found that always having a scratch counter
available is a reasonable way to implement general counter arithmetic. The following example of \ifeq
compares counter 0 equal to 1:

\ifeq {\count0}{1)}{Is one}\else{Isn’t onel}

The source for \ifeq follows:

120 ’ TUGboat, Volume 2, No. 1
Utility Macros

% The macros \neg and \ifzero are copied from Appendix X.
% We have added \ifeq. Unlike other similar macros, \ifeq expects
% its arguments to be values, so if & counter is used it must be
% specified (e.g., \count3 instead of 3) and constants are permitted.
\dei\neg#i{\setcount#i-\count#1}
\dez\ifzero#1#2\else#3{\izpos#1{#3}\else{\neg#1
\ifpos#1{\neg#1 #3}\else{\neg#l #2}}}
\def\ifeq#1#2#3\else#4{\setcounts #1 \advcount9 by -#2
\ifzero9{#3}\else{#4}}

Pseudo Countere

In writing large macro packages which keep track of page, chapter, section, subsection, table, and figure
numbers, it is likely that the ten counters provided by TEX will not be adequate. One alternative is to use
macros to hold counter values. By using \xdef and \setcount, it is possible to convert counters into macros,
and vice versa. To facilitate the advancing of pseudo counters, a macro called \advcounter was written.

This macro takes two arguments:

\advcounter {<Pseudo Counter>}{<Advaace Value>}

Counter 9 is used as a scratch counter in \advcounter. The following example “sets” counter \pageaum
to 1, then “advances” it by 2:

\der \pagenum{i} \advcounter \pagenum {2}

The source for \advcounter follows:

% Macro to advance pseudo—counters (i.e., macros defined to be iategers
% in order to bypass TeX's limited number of counters)
\def\advcounter#i#2{\setcount9 #1\advcount9 by #2\xdei#1{\count9)}

Uppercase Roman Numerals

TEX’s facility for lowercase Roman numerals is useful in a variety of applications. However, it is not
obvious how to obtain uppercase Roman numerals! Assuming that counter 0 holds a negative value the
intuitive attempt

\uppercase{\counto}

doesn’t work since \uppercase see \countO as a single, unexpanded token, not as a token list consisting of
the Roman numeral equivalent. By using \xdef, we can force the expansion of the negative counter to the
Roman numeral string, allowing \uppercase to produce the desired uppercase Roman numeral. Thus, the
(non-obvious) sequence

\xdef \Lun{\uppercase{\countO)*) \num
is what we want!

We have written two macros to return the upper or lower case Roman equivalent of a positive counter.
The macro \roman returns a lowercase Roman numeral, and the macro \Roman returns an uppercase Roman
numeral. Both of these macros use counter 9 as a scratch counter.

The source for these macros follows:

TUGboat, Volume 2, No. 1 , 121
Utility Macros

% Provide for converting positive counters to upper or lower case Roman

\def\roman#1{\setcount® -\count#1\count9)}

\def\Roman#i{\setcount®
-\count#1\xdef\uppercaseroman{\uppercase{\count9}}\uppercagseronan}

N- Ul

GHULNIY Ly &EIT

Sdae ¢l @auu. © UL ¢l raau thl LLta Laic adeen aaaa. udad

LATR LY UQICY CUUL QML dawd @@t Ll weoquoLue Lo &g acow!
LA 4al @6 Q6 ul NUL 99T14ED (g PURINZ GG LA WCIW

WL ICWENG LT AT CLUGE LIGCE it acla Giaa cacud

L G qequL taal Z-8 ae CUCU WSIY ¢QuAtT adw suk ol ¢doie cadsd w

WAL GEL €O NILLAT ICILN. Wil 4G TWENL (TG QUUGK AL Sauata sedaue.a
LORAGUL Ol LAN LU (el Gl ¢l sl eMu quuuna cowel Al acld

CSZ QA (daL fd Cat aau Nl SG. SULLG GEeg AuGT

LN ACURL ol agan dR sl ddam: Lo ag wNoll wue cuse L

L tllg @ ae sl ofl U wd N AR Gl SO COW LdLD @ USE) et

el w Gy aectd daaaue Lusl wiead uN cdl oau tee sLoaeu uow
Woau WS aN acdlr CE. amatu dout wow uvawud ol wow ua

AUGRNL LY Ledony XAL LN LUGRNU LG LUACY Cuue el aeeuy

UdaUY LIURE (WOUAC QWAL SU GG LNMIUWU CNIWL Ol LGIT W@ NGN aas

QTLAQ Al ANGALL WL C¢ Gl NILLLY LGLT * CUNLG CRILL QUARW NU LT L (N

Qe NGO GULGA U LNUIL SNt tank wall s Ll NiT LUaRsL auala ww
WACUT LW QULGA A¢ o LAUAT wagdaLLe. TACILL a¢y ¢ C¢ CL dg euuaa s

NUL CLlg ok @ acuel oo vacr
@l LCoagy cutue e ol afe U LuGty GNEN s ade acdul

daua taeT

WL CoLy acel ¢ sl 1R el QgL ¢Tu W 16El o QNG Ml GAR AN Wl
LNAU e ClCLU iU oL Lueaw QUL edi aCe LRLLL LNGUY UTQuiL 4Q Lo

NCAf NOUL LT LE,
D pah feQcL 9861

1 ON ‘g SumijoA ‘4eoqDN L , &gl

TUGDboat, Volume 2, No. 1 123

\input letter

\fontdef H{hebrew}{\hebrew}

\def\threedots{\downer{$\1ldots$}} .

\def\colon{\downer{:}}

\dez\tex{\downer{\rm\TEX}}

\der\leftparen{\downer{(}} ,
\def\rightparen{\downer{)}} ‘ .

\dezf\bang{\downer{!}}

\def\downer#i{\lower 5pt\hbox{#1}}

\hebrew .

\hbox{\downer{1980} RBMBVN}

\rjustline{\bang BR mVLS RYMA JSYLAL}

\hbox to size{XVWNH mJ HNRMGN HLAH WVR&H LK8 HVQNV HBYHI HMLXH kL
LXAL XRKVM YNA WYSAR\hskip 2em}

\hbox to size{VYHY ALS mJP DVJ LXAM YNA nKLV mYLVX YWBL IVNLBC kL nG
nYA YL VMKS HARNK .YXKVNH}

\rjustline{.mYPCVN mYYSQ}

\bbox to size{DYWJBS HVQM YNA .ABAIL WNNVLWH BZ LJS nYBK YNAV .
.YUBWK ALS BR nMZ HZ\hskip 2em} ‘
\rjustline{.IVBVSI LBQY kBWKM LS RWVY LVDG ZVXA)

\hbox to size{WYRBJB CYPDHL LQ kK LK AL .YLS HDVBJB YNVRTQLAH BSXMH
YDY LJ CPDVM HZH BlKlH\hskip 2em}

\hbox to size{HZH CVPDHS HASMHH BGA kXRD \threedots kVPH RDCB WYLGNAB
WVYWVAH YA CYPDHL mYKYR& YRHS}

\hbox to size{WAV mYRSYH mYVQH WA WYTMWM HRVE&B mYRAWM \colonr CVPD
WVYNVA YNYM LK RV&Y WRSPAM HYLJ CCVBM}

\hbox to size{mYRMVAS ALA SY .CVPD nVNGC V¥VAB WVYEVAH LK WA RaYM BSXMHV
mYZVXNH WVWSQH}

\rjustline{.GRBNTVG nMZM RWVYB HBVSXH CVPD WASMH AYH {\tex}
WARQNH WAZH HARMHHS)

\hbox to size{SDXH WYBH nYB QXRMH .HRYD VNRBJ WJMSS YPK .WRQBS ZAM
Y&XV HNS HZ\hskip 2em}

\hbox to size{WYBH XT8 kA LDVG VWVAB kRJB AYH HSDXH R&XH
.mYRTMVLQ JBRAM WVXP AVH nSYHV}

\bbox to size{HBYCHV \leftparen LBX HZV\rightparen\ mDVQH WYBB VMK
YRP Y&J VA QRY WYNYG VNL nYA .mYNS YP LVDG R¥VY}

\hbox to size{AVH RWVYB LVDGH nVLAH LS HBVGH \colon mYYQNJ nVLA
Y&J HSVLS mYLDG R&XBS AYH)

\rjustline{.mYKRS LDGL LYXWA YLVA kA .RTM YNSK VJZG RTVQV
RTIM \downer{25}K}

124 TUGboat, Volume 2, No. 1

\hbox to size{.JVBS DVJB VNWYBB mYNWXWM HVANV nRVA kL JVDYK .HMLSV
HAYRB AYH nAK HXPSMH\hskip 2em)}

\hbox to size{.mYNVRIQLA mYBSXMB CRVQ HLYXWM YCNN RAVNAYB .XMS VYHY
YADVBV mYXRVA \downer{60}K VNL VYHY}

\hbox to size{.HZ JVEQMB DVBJL kK RXA HVQMV .mYBSXML WVYNKVW WBYWK
mYNS \downer{3-2)} kSMB DVMLL HVQM AYH}

\rjustline{.JVBSB mYMJP SVLS nVNGL mYKLVH mYLVDG mYBBVS mH LAKYMV DVD}

\hbox to size{WVKYA HNSH HYNRVPYLQB .\downer{\rm Zinfandel} YNSV
\downer{\rm Cabernet} DXA nYY YNM YN8 YWYSJ HNSH\hskip 2em}

\hbox to size{HMLS LS VWJD HWYH HM BGA kRD \threedots\ mYNS mYRSJ
ZAM RWVYB HBVTH HWYH mYBNJH)

\rjustline{.QMJH RMSMM VNLBQS BVTH SBDH DJB HHJNLV VL HDVY .YWXLSS

nYYL RSQB}

\vskip 2ex

\ctrline{.mLVKL 8$\prime\prime$DV lVARlHL\hskip 1in}
\vskip Bex

\kbox{nYBVR DVD YMR}

\endletter

TUGboat, Volume 2, No. 1 125

Tecflnology ——————— October 1980

Alternative Development Strategies

Market Requirements for
. Commercial Information
Order Entry System Processing System

F & & §F F % A
@ .
o 3
. : K]
c g ? - g. ;5‘
211 c 1& |2 e
. o Q
Slle ¢ |8 |2 |2
112 |8 (8 [z [¢ ews
B 5 1 & = Computers.
> ("] Q wn
o ® = = o
slle [£ |2
el11E [& |3 VLS
E 115 § E Computerz
shl: |2
b s = ® VLSI y
Y. pd Computer; /
© - 4
3 B 1
2|13 ® LSl
2 S e.g., 292z
g Performance unat-
2 ©®MSI e |tainable starting
s e.g., 74181 ALU S |from this com-
z o | ponent
® 5S1 s
T4zz <
And Gates
® 4004 piproc

=
BNR INC.

TEX

Vig

adw

Y
=
©
aQ
m
-
[
«
(1]

g
F
=
(=4
m
o
[~

)

= |

TUGDboat, Volume 2, No. 1

oY) mIiH!Ilm““”!I'm ”“[

-
3
3
VY
[.
5
=
P>
)
<
3
2
b~
2
<
<

sin 20d6

JZ

TUGboat, Volume 2, No. 1

X % £ % ¥ * % * % % *

Letters

* *x % % % % ¥ % * % *

REPORT FROM AN EARLY AMS-TEX USER
David Eck

1 was very happy recently to bring to a suc-
cessful conclusion my first major project in using
TgX—actually, my first experience of any kind with
TEX. The project was the preparation of my thesis

for publication in the Memoirs of the American.

Mathematical Society, which involved the produc-
tion of about fifty typeset pages, with a rather high
density of complex mathematical symbols.

Having typed one or two mathematical papers
myself and read my share of typewritten mathe-
matics, I was impressed with both the ease with
which input for TgX can be prepared and with the
quality of the output. Of course, this praise is not
without qualification, but I believe that a large frac-
tion of the frustrations I encountered can be traced
to the “frontier” nature of the conditions under
which I was working.

I began with a quick reading of Knuth’s manual.
I then spent a good bit of time, interrupted by fre-
quent references to the manual, transcribing the first
few pages of my thesis into a TEX input file. T was
surprised after a little more than ten pages to find
that I was typing at almost my (admittedly slow)
normal typing speed, even without pre-processing
the manuscript in any way. About a third of the
‘way through, I received a rudimentary version of the
forthcoming AMS-TEX manual, which made things
a bit easier. Since the book had no index at the
time, it was rather difficult to use, but it is clear
that AMS-TEX will insulate the user from many of
the traps and technicalities of TEX. The average
time for typing a page, after I overcame my initial
inexperience, turned out to be about one-half hour,
and the task seemed less unpleasant then ordinary
mathematical typing.

I did not try to run anything in TEX until the
entire thesis was prepared. This proved to be a
major mistake. T'had to spend perhaps an additional
forty-five minutes per page at a computer terminal
correcting and editing my files. More than half of
this could certainly have been avoided if I could have
seen my output every few pages, and learned from
my mistakes. Unfortunately, this was not possible,
since I was at Dartmouth College, and the nearest
TEX program was at MIT. Hopefully, this sort of
thing will not remain a problem for long!

127

My overall impressions of TEX were very
favorable. I wish it were available even for day-to-
day things such as preparing tests. I am especially
fond of the ease with which errors can be corrected
and passages added or deleted in a computer file.
Let us all look forward to the time when TgX be-
comes a lingua franca of mathematical publication.
My experience has convinced me that this would
make life easier for the authors and typists, as well
a8 for the publishers.

Editor’s note: David Eck’s manuscript has been run
successfully through TEX and o prototype AMS-TEX
both ot MIT and ot the AMS, and output onto various
devices at those locations (and elsewhere). Appendiz
A contains several one-page samples (along with the
TEX input) to allow o comparison of the appearance
and quality available from both low and high resolution
devices.

Eck’s paper was written before the specifications
were set up jor the Memoirs. A header (macro)
package is being written, however, and should be avail-
able soon for distribution with AMS-TEX. The sample
input should thus not be taken as the archetype of
Memoirs input.

¥ % * % ¥ % * % % * *

Dear Editor,

I was pleased to receive the first issue of TUGboat,
and am looking forward to the day (any year now,
they tell me) when TEX will be available on our
system at Brown.

However, I was disturbed by one thing in
TUGboat: the large number of puns predicated on
the assumption that TgX rhymes with sex. The title
of Michael Spivak’s book will further popularize this
myth. I would have thought that the high wizards
associated with TUGboat would have had occasion
to actually read Don Knuth’s manual; if they had
looked at page 4, they would know that TgX, Tau
Epsilon Chi, rhymes with bleeechhh. As Knuth says,
you can pronounce it however you want and the
computer won’t mind. To us humans, however,
there is a useful difference: If one is looking for ad-
vice on TgX, one should shun anyone ¢laiming to be
a TgXpert; they probably know a lot less than they
think they do. On the other hand, a TgXnician is a
most, useful friend to have.

Sincerely,
Graeme Hirst
Department of Computer Science
Brown University .
3 February 1981

128 TUGDboat, Volume 2, No. 1

APPENDIX A
Output Samples from a Paper by David Eeck

The pages given here are various renditions of one page from a paper
by David Eck of Dartmouth College, a first-time user of TEX and
AMS-TEX. (He describes his experience on page 127.) One page was
selected from his paper, and run through TEX at three locations: the
American Mathematical Society, Massachusetts Institute of Technology,
and Stanford. The composed file was then output to whatever devices
~‘were available at each location. The samples are given in the following
order. '

— input file listing;

— Florida Data Model BNY dot matrix printer, 128 dots/inch;

—~ Xerox XGP, 200 dots/inch;

— Benson-Varian 9211, 200 dots/inch;

— Canon Laser Beam Printer, 240 dots/inch;

- Xerox Dover, 384 dots/inch;

— Alphatype CRS, 5300 dots/inch.

At the AMS a few rudimentary timing estimates were made. For such
a small sample, these times probably represent an upper bound, rather
than a true measure of time required to process this type of material. The
computer involved is a DEC 2060 with 512K words of memory. Output
to the Varian is controlled by a spooler, which removes the processing
from user control once a job has been released to the queue. No times
were obtained for output to any device but the Varian, but an attempt
will be made to obtain and publish such information in a later issue of
TUGboat.

— TEX: CPU time of < 6 sec. included loading the program and read-
ing all font and macro header flles; net time required for processing
the one page of input was probably < 3 sec.

- release to Varian spooler: 1 CPU sec.

~ printing on Varian: < 4 CPU sec.

- Output from another device, a Compugraphic 8600, is shown and
described in the article by Ralph Stromquist, page 51. The macro
packages and other items by Lynne Price and Pat Milligan (pages 87-
126) were output on a Versatec, which is essentially similar to the Varian
9211. The two articles by Lawson, Zabala and Diaz (pages 20-47) were
output on a Dover, as were the macro package descriptions by Max Dfaz
and Arthur Keller. The body of this newsletter was output on the Varian
at the AMS.

$This is eck secl
\chapterbegin{\section 1: The Functors $(\cdot)”n_k$}

\definition Definition 1.1\\ If $n\GE 0? and $k\GE 0$

are integers, we define a functor $\nk {(\cdot)}$ as follows:

If M is a \C manifold, then

$$\nk M = \leftset\j k\varphi O\relv\varphi :\; \R"n\9 M\rightset$$
where $\j k\varphi 0$ is the k-jet

of φ at 0. If $£:\; M\9 N$ is a smooth map, then

$\nk £:\;\nk M\9\nk N$ is defined by

$8\nk £(\j k\varphi 0) = \j k{f\circ\varphi}o\;.$$

\par\yskip '

Note that $\nk M$ is a fiber bundle over M, with projection
$\pi:\:;\nk M\9 M$ given by $\pi(\j k\varphi 0) = \varphi{Ois.
In particular, $M"1 _1$ is just the tangent bundle $\text{T| MS$.
This is clear if we consider a tangent vector at a point p of M
to be an equivalence class of curves in M which agree up to the
first order at p. We will need to know the following basic
properties of the functor $\nk {(\cdot)}$. They are easy to
establish, and we omit the proofs.\par\yyskip

\theorem Theorem 1.2\\ a) If M and N are manifolds, then

$\nk M\times\nk N$ and $ (M\times N\nk)$ are naturally equivalent.
\par b) If M is a manifold, then $(\nk M)"m \lscr$ and
$(M"m_\1lscr\nk)$ are naturally equivalent.\QED\endtheorem\par\yyskip

We note that by naturality here, we mean, in a‘, that given any

maps $£:\;M\9 M\,{}"\prime$ and T :\; NM\9 N\,{}"\prime$, the diagram
$$\diagram//(M\times N) “n k, (M\, 1) " \prime\times N\,{}“\prime)“n_k,
(\nk M\times\nk Ni,{m\,{}*\prime\nk y\times (N\, {}"\prime\nk),
(f\times g\nk y,{},{},\nk f\times\nk g,//88%

commutes, and similarly for b).

\par It may be useful to see what the map $\Psi:\;(\nk M) “m_\lscr

\9 (M"m_\lscr\nk:)$ looks like in coordinates:\par

If y_1,\ldotss,y_s are local coordinates on M, we get local
coordinates $y~\alpha_i$, $\alpha = (\alpha_1l,\ldotss,\alpha n)$
with'$|\alpha¥\LE k$, on $\nk M$ by

$$y"\alpha_i(\j k\varphi 0)=\part\alpha x(y_i\circ \varphi) (0)\, -$%
By extension, we have coordinates $y {\alpha;\beta} i$ on

$(\nk M) “m_\lscr$ and $\overline y“%\beta;\alpha _i% on
$(M"m_\1lscr\nk)$, where $\beta = (\beta_l,\ldotss,\beta_m)$ with

$ |\beta|\LE\lscr$. The map Ψ is given in these coordinates by
$\Psi\left (\left(y"{\alpha;\beta}\right)\right) = \biglp

\overline y"{\beta;\alpha}_i\bigrp$ where $\overline y”{\beta:\alpha} i
=y~{\alpha;\beta}_i$.\par\yyskip

We will use the following notation: ${\bigs M}~ {}n$ will denote the set
of all smooth maps $\R"n\9 M$. Whenever we consider ${\bigs M}{}"n$ as
a topological space, we will always use the \C topology. If $p\in MS$,
then we denote the constant map $\R"n\9 M$ which sends each element

of S\R"n$ to p by S$\A p$.\par\yyskip

Florida Data Model BNY

§1: Tue FuncTors(:)}
DerINITION 1.1: If n > 0 and &k 2 O are integers, we define a functor (-} as
follows: If M Is & C™ manifeld, then
M= {jdvjsjo:R* = M}
where ji{p)o I8 the k-Jet of ¢ a8 0. If f: M — N Is a smooth map, then
/3 M} — Ng is deflned by
Jelgele} = Jel] o 9)o . ,

Note that M} is a fiber bundie over M, with projection 7: My — M given
by 7{7e{©)e) = 9(0). In particular, M} Is just the tangent bundle TM. This is
clear If we consider a tangent vector at s point p of M to be an equivalence class
of curves in M which agree up to the first order at p. We will need to know the
following basic properties of the functor (-)2. They are easy to establish, and we
omit the proofs.

THEOREM 1.2: 8¢} I/ M and N are manifolds, then M2 X N2 and (M X N)§
are naturaily equivaient.

b) If M is a manifold, then (M2)® and (MP)? are naturally equivaient. g

We note that by naturaiity here, we mean, in aj, that given any maps f: M —
M/ and a: N = N/, the diagram

X ¢!t

(M X N)2 U Xelk (M'X N2
jﬂ x gﬂ

(M2X N) ——2 0 (M)2X (N}

commutes, and similarly for b}

It may be useful to see what the map ¥: [AM2)® — (MM]2 looks like In
coordinates: -

It y3,...,9, are local coordinates on M, we get local coordinates yf, a =
{@1,...,0,) with la] < k, on M2 by

vilintple) = ZI=Lig).

Xerox XGP
§1: THE FUNCTORS (-)}

DEFINITION 1.1: If n > 0 and k > O are integers, we define a functor (-)¢
as follows: If M is a C® manifold, then
= {J(p)o|p: R* —+ M}
where ji(0)o is the k-jet of p at 0. If f: M — N is a smooth map, then
Jr: M} — N} is defined by
Ti((®o) = 5x(f 2 0o -

Note that M} is a fiber bundle over M, with projection x : M} — M given
by x(jx(v)o) = ©(0). In particular, M} is just the tangent bundle TM. This is
clear if we consider a tangent vector at a point p of M to be an equivalence class
of curves in M that agree up to the first order at p. We will need to know the
following basic properties of the functor (-)}. They are easy to establish, and we
omit the proofs.

THEOREM 1.2: o) If M and N are manifolds, then M? X NT and (M X N)P
are naturally equsvalent.

b) If M s a manifold, then (M})] and (M)} are naturally equivalent. 1

We note that by naturality here, we mean, in a), that given any maps f :
M — M!'andg: N — N/, the diagram

(M X N)? Uxak (M'X N')

n n
e x vy~ g x e
commutes, and similarly for b).
It may be useful to see what the map ¥ : (M})7 — (M7')} looks like in
coordinates:
If y1,...,ys are local coordinates on M, we get local coordinates y§, a =
(ay, . ,a,,) with |a] < k, on M} by

2 0rele) = ZL22(0).

By extension, we have coordinates y*/ on (M) and §%* on (M)}, where
g = (B1,...,0m) with |f] < & The map V is given in these coordinates by

Y((y*iP)) = (y’ i*) where 7"‘" = y*,

Benson-Varian 9211
§1: TuE FuNcTORS (-)F

- DEFINITION 1.1: i n > 0 and k& > O are integers, we define a functor (-)} as
follows: f M is a C'° manifold, then

: =1l |o:R*"— M}

where ji(p)o is the k-jet of p at 0. If f: M — N is a smooth map, then
f3: M} — N} is defined by

T&((p)o) = 5x(f © ¥)o -

Note that M} is a fiber bundle over M, with projection x: M} — M given
by x(sx(e)o) = ©(0). In particular, M} is just the tangent bundle TM. This is
clear if we consider a tangent vector at a point p of M to be an equivalence class
of curves in M which agree up to the first order at p. We will need to know the
following basic properties of the functor (-)}. They are easy to establish, and we
omit the proofs.

THEOREM 1.2: @) If M and N are manifolds, then M} X N} end (M X N)}

are naturally equsvalent.
b} If M is a manifold, then (M7)7* and (M7*)} are naturally equivalent. |

‘We note that by naturality here, we mean, in a), that given any maps f: M —
M and g: N —» N', the diagram

(M X N)P Uxak, (M'X N')?
I X 9%
(M3 X N}) — (M) X (N');

commutes, and similarly for b).

It may be useful to see what the map ¥: (M})* — (M)} looks like in
coordinates:

If y1,...,ys are local coordinates on M, we get local coordinates y§, a =
(ay,...,a,) with || < k, on M} by

v3Gtel) = 222 (q).

Canon Laser Beam Printer

§1: THE FUNCTORS ()}

DEFINITION 1.1: If n > 0 and & > 0 are integers, we define a functor ()}
as follows: If M is a C'* manifold, then

M} = (ju(plo | o:R" —» M)

where ji(©)o is the k-jet of p at 0. If f: M — N is a smooth map, then
SR M3 — N} is defined by

F2Uk(P)o) = (S 0 ©)o -

Note that M7} is a fiber bundle over M, with projection 7: M7 — M given
by 7(ji(v)e) = ©(0). In particular, M! is just the tangent bundle TM. This is
clear if we consider a tangent vector at a point p of M to be an equivalence class
of curves in M that agree up to the first order at p. We will need to know the
following basic properties of the functor (-);. They are easy to establish, and we
omit the proofs.

THEOREM 1.2: a)If M and N are manifolds, then Mz X N} and(M X N
are naturally equivalent.

b} If M s a manifold, then (M3)7 and (M7); are natumuy equivalent.

We note that by naturality here, we mean, in a), that given any maps f: M —
M! and g: N — N/, the diagram

(Mx N)p - (f x ok

(M'x N\

£ n
(g x Np) —EX B (e x (v
commutes, and similarly for b).
It may be useful to see what the map ¥: (M) — (MP)} looks like in
coordinates:
I y,...,y, are local coordinates on M, we get local coordinates y¥, a =
(ay,...,a,) with |a| < k, on M} by

Rl = L2 2 0).

Xerox Dover

§1: THE FUNCTORS (-)}

DEFINITION 1.1: If n > 0 and & > 0 are integers, we define a functor (-)}
as follows: If M is a C*° manifold, then

M ={phle: R" > M}

where ji(0)o is the k-jet of p at 0. If f : M — N is a smooth map, then
J2: M} — N} is defined by

120k(0)o) = 5u(f o)0 -

Note that M7} is a fiber bundle over M, with projection » : M} — M given
by #(jx(¢)o) = ©(0). In particular, M} is just the tangent bundle TM. This is
clear if we consider a tangent vector at a point p of M to be an equivalence class
of curves in M that agree up to the first order at p. We will need to know the
following basic properties of the functor {-);. They are easy to establish, and we
omit the proofs.

THEOREM 1.2: a)If M and N are manifolds, then M3 X N7 and (M X N)i
are naturally equivalent.
) If M is a manifold, then (M 2)7* and (M7')? are naturally equivalent. B

We note that by naturality here, we mean, in a), that given any maps f :
M- M'and g: N — N/, the diagram

(M X N)p ——({—2(-32-;‘:—» (M'XN')R

e X9k

(M X Np) —22 (M) X (N)

commutes, and similarly for b).

It may be useful to see what the map ¥ : (M) — (M7')p looks like in
coordinates:

If y1,...,¥, are local coordinates on M, we get local coordinates y’, o ==
(ag,...,an) with |a| < &k, on M by

¥ilillo) = 222 2(0).

Alphatype CRS

'

§1: Tue FuncTORS ()7

DEFmITION 1.1: If > 0 and k > O are integers, we define a functor (-)} as
follows: If M is a C*™ manifold, then

My = {j(plo| o:R™ = M}

where ji()o is the k-jet of p at 0. If f: M — N is a smooth map, then
fi: M2 — N} is defined by

TiU(©)o) = Ju(f o o -

Note that M7} is a fiber bundle over M, with projection m: M} — M given
by m(jx(®)o) = ©(0). In particular, M} is just the tangent bundle TM. This is
clear if we consider a tangent vector at a point p of M to be an equivalence class
of curves in M which agree up to the first order at p. We will need to know the
following basic properties of the functor (-)2. They are easy to establish, and we
omit the proofs.

THEOREM 1.2: @) If M and N are manifolds, then M3 X N} and (M X N)}
are naturally equivalent.
b) If M i3 a manifold, then (M2)T* and (M*); are naturally equivalent. §

We note that by naturality here, we mean, in a), that given any maps /: M —
M/’ and g: N - N/, the diagram

(M X N —g-x—g)'ﬁ-» (M'X N

Te X gk

(ME X NY)

commutes, and similarly for b).

It may be useful to see what the map ¥: (M) — (M7 looks like in
coordinates:

If y,...,y, are local coordinates on M, we get local coordinates y¥, o ==
(o, .., an) with |a} < k, on M} by

Y2 Uin()o) = “”‘°‘°(o)

(M) X (N)R

138 TUGboat, Volume 2, No. 1

Contents — Continued

Warnings & Limitations
Barbara Beeton. Disappearing Digits; Undisciplined Uppercase 53
Maeros .
Barbara Beeton. How to Prepare a File for Publication in TUGboat 53
Max Diaz. TEX Macro Package i i i i i it i s et v oo s 55
Arthur M. Keller. Anatomy of a TEX Macro Package e 56
. Lynne A. Price and Patrick Milligan. NOFILL Program with Pascal Source 87
Lynne A. Price. List Macros i i i it ittt oo e 98
Lynne A. Price. Table of Contents Macros111
Patrick Milligan and Lynne A. Price. UtilityMacros 119
Lynne A. Price. Hebrew Letter (withSource). 0... 122
Lynne A. Price. Two Slides i i i i i it it o teeennens 125
Letters , . : _
David Eck. Report from an Early AMS-TEX User ERI 127
Graeme Hirst. e e e e e e e . 127
Miscellaneocus
Appendix A. Outpit Samples from a PaperbyDavidEck. 128
TEX Errata

TUG Membership List

Registration Form for Implementors’ Workshop, May 14-15
Transmittal Form for TUGboat Articles on Magnetic Tape
Membership Application ‘

TUGboat needs your contributions. Letters and articles are welcome

on any subject related to TEX and its uses. Your experiences as

a TEX user may encourage or benefit some other user. Kspecially
welcome are technical details concerning TEX installation on various
architectures, output devices, and their interfaces. A special appeal &
has been made in this issue for letters giving your views on how TEX
is to be supported in the future; see the articles by Bob Morris and
Sam Whidden on pages 7-10.

Arficles may be submitted in the form of TEX input on magnetic tape.
A form enclosed with this issue gives details.

¥

AN
4

ANNOUNC.

WORKSHOP

TEX Implementors’ Workshop
‘Thursday-Friday, May 14-15, 1981
Stanford University, Stanford, California

A Workshop for present and prospective implementors of TEX will be
held at Stanford under the sponsorship of TUG. The first day, Thursday,
May 14, will be devoted to technical presentations. Topics for discussion
include:

Implementations of TEX
Transportation of TEX among systems
Output devices

On the second day, Friday, May 15, informal sessions for architecture
groups will be arranged. There will also be demonstrations of TEX for
new users by Don Knuth and others of the Stanford group.

A fee will be charged for attendance at this Workshop, with proceeds
going to TUG. A form is enclosed, giving details of registration.

Program details will be available within a few weeks. To register, return
the enclosed form to the TEX Users Group, ¢/o American Mathematical
Society, P.O. Box 6248, Providence, R.I. 02940.

Participants should make their own arrangements for accommodations.
A block of rooms has been reserved at the Palo Alto Holiday Inn, 625 El
Camino Real, Palo Alto, Calif. 94305, (415) 328-2800. When requesting
reservations, refer to the TgX Users Group; call before April 29. (An
effort will be made to locate low-cost hotel accommodations as well;
further information may be available later.)

y 4
A

FMENT

