JEIS

wre - re
W 'y

P ANS
:203;::3:0:{// 4
ey, 000 w1
NN Y/ (4]
.

; []

004
........
.....

~~~~~

Ao
.........

o \\1\\ N \1\ \\- \ N -
\\\\\\\\~\\ \u\\x\\\.\\\\x \_“‘ N \i‘ W

g ra
T

RO

2,08

,,,,,,,,,
2

VOLUME, 1. NUMBER I,
, PCE RHODE ISLAND US’?




TUG Steering Committee

Donald Knuth, Grand Wizard of TgX-arcana
Richard Palais, Chairman of the Steering Committee
Robert Morris, Secretary and Wizard of Macros
Samuel Whidden, Treasurer -
Robert Welland, TUGboat Editor

Luis Trabb-Pardo, Vice Grand Wizard

Ignacio Zabala, Wizard of TgEX-in-Pascal

David Fuchs, Wizard of I/O and SAIL

Barbara Beeton, Wizard of Format Modules
Nicholas Allen, Wizard of TOPS-10

Arnold Pizer, Wizard of TOPS-10

Patrick Milligan, Wizard of TOPS-20

Michael Spivak, Wizard of AMS-TEX

Richard Zippel, Wizard of ITS

Hermann Zapf, Wizard of Fonts

Charles Howerton, Liaison with the
National Bureau of Standards

Richard Friday, Liaison with Digital Equipment Corporation
Michael Bennett, Foreign Distribution of TEX




The subject of mathematical printing has never been
methodically treated, and many details are left to the
compositor which should be attended to by the mathe-
matician. Until some mathematician shall turn printer,
or some printer mathematician, it is hardly to be hoped
that this subject will be properly treated.

Augustus de Morgan
Penny Cyclopedia (1842),
on ‘Symbols’

TUGBOAT

THE TEX USERS GROUP NEWSLETTER
EDITOR ROBERT WELLAND

VOLUME 1, NUMBER 1 OCTOBER 1980
PROVIDENCE RHODE ISLAND US.A.




2

‘Well ... the original version of TEX was written
in SAIL, so doesn’t that mean the TUG Newsletter
should be called TUGboat!? Hnmm!?

EDITOR’S COMMENTS
Robert Welland

The TEX Users Group (TUG) met at Stanford
University in February of 1980 (see Robert Morris’
minutes of this meeting, p. 12) and among other
things decided that the group would publish a
newsletter to assist the distribution of TEXpertise.
Sam Whidden of the AMS volunteered the services
of the Providence group to help make this decision
a reality.

TEX, AMS-TEX and METAFONT are software
tools which will make the processing of scientific
documents less painful, less expensive and more
rapid. Authors working at editing terminals will ind
correcting easier and they will be spared much of the
pain of proofreading (see Richard Palais’ “Message
From The Chairman” on p. 3). Ellen Swanson’s ar-
ticle “Publishing & TEX” on p. 7 gives us a glimpse
of the steps involved in getting a paper from the
author’s desk into print and indicates the benefits
and savings the AMS expects when TEX software
tools become widely used.

TUG, the TgX Users Group, like other software
users groups, was formed so that its members could
share with one another the skills they have devel-
oped using TgX.

TUGDboat, an energy-efficient conveyance powered
by SAIL and a newly-found Pascal driver, is the
name of the TUG newsletter and will be used to
ship a cargo of information between its members.
Among other things, it will provide the informa-
tion necessary to support the implementation of TgX
and AMS-TEX software. This support burden has
been shouldered by Don Knuth and his colleagues
at the Stanford University Computing Center. To
the greatest extent possible, we must now carry this
load so that these very kind people can return to
their principal task of developing Computer Science.

This first issue of TUGboat contains several in-
troductory articles, which we hope will inform
and inspire our non-TUG friends in the AMS to
board TUGboat s0 that they too can begin to ex-
perience the JOY of TEX. This issue also con-
tains several technical articles (David Fuchs’ ar-
ticle on DVI flles, p. 17, and Terry Winograd and
Bill Paxton’s Index Creation Package, Appendix A)
which non- TEXperts will find difficult to understand.

TUGboat, Volume i, No. 1

This brings us to a problem which the newsletter
must confront. For some time to come, the math-
ematics community will contain people not conver-
sant with TEX, whom we at TUG will want to join
our ranks; it will contain TEXperts at various levels
of development and systems experts charged with
the job of bringing up TEX on a host of machines
having many different operating systems and driving
a large array of output devices.

This audience is too broad; so in the future we
will assume that our readers have at least the ac-
quaintance with TEX which will come from read-
ing this issue of TUGboat and from reading Don
Knuth’s excellent book TEX and METAFONT: New
Directions in Typesetting. With this background, a
reader will be able to understand nearly everything
in TUGboat with the exception of the parts directed
to the systems programmers. The average TEX user
will be able to get by quite well without understand-
ing these specialized parts.

TUG has been in existence for a short period of
time and so its needs are only partially delineated
and for this reason this is also the case for TUGboat.

Ovr ship has compartments in its hold for:

(a) General Delivery.

This compartment will carry expository articles,

~ minutes of TUG meetings and other material not

devoted to specific technical issues.

(b) Interface Software.

This compartment will carry descriptions of inter-
face software. It will tell who is developing what,
list what interface software exists, where it can be
obtained and give reports from various test sites.

(¢) Warnings and Limitations.

Barbara Beeton of the AMS suggested this com-
partment and makes its first entry. We were
tempted to call it Murphy’s room because it will
carry descriptions of collections of steps which, if
carried out in order, will produce undesirable results.

(d) Macros.

This compartment will carry descriptions of mac-
ros; it will also carry descriptions of various helpful
programs related to using TEX.

(e) Bugs.

The name of this compartment is short and self
explanatory. We hope, unrealistically, that the con-
tributions to it will be few and far between. There
have been almost no bugs reported recently in the
SAIL version of TEX. However, we will undoubtedly
experience difficulties with the new software. When
bugs are found, please send the information to the
newsletter so that it can be published immediately.

(f) Questions and Answers.

This compartment will contain questions which




TUGboat, Volume 1, No. 1

are of general interest and hopefully eventually their
answers.

(g) Letters.

The content of this compartment is obvious.

(h) Miscellaneous.

All odd-shaped packages which do not fit into any
of the above compartments will be placed in this one.

How well TUGboat sails will depend on the sup-
port it receives from its crew. At this stage it is an
experimental ship. The Steering Committee of TUG
and the editor encourage you to make contributions,
comments and criticisms. We believe that, with this
collective hand on the TUGboat wheel, everyone will
have a pleasant trouble-free trip into the friendly
land of TgXarcana.

Robert Welland
Northwestern University
Evanston IL 60201

$ * % % % % = % £ %

General Delivery

* % % % % * % * % %

MESSAGE FROM THE CHAIRMAN
Richard 8. Palais

An Apology ...

The organizational meeting of TUG took place
last February and at that time the first mailing
of the newsletter was at least informally promised
within a couple of months. And here it is October.
Perhaps the major cause for delay was the failure of
the Chairman of TUG to get his share of the writ-
ing of the newsletter done in a timely fashion. Kt
would be easy enough to blame this on preoccupa-
tion with "other matters”, but that only pushes back
the question to why the newsletter was not given
higher priority—and the answer quite honestly was
a feeling that the initial newsletter should not pre-
date by too long the actual release of the Pascal
version of TEX. The latter happily now really does
seem imminent (for more on TEX-in-Pascal see the
report on page 18). Finally then it is perhaps as
good a place here as any to say a little about why
the public release of Pascal TEX has been delayed.

The most important cause seems to have been
a technical one, the lack of a complete, standard-
ized definition of Pascal. The resultant need to take
careful account of possible compiler inconsistencies
showed up (and aborted) the initial attempt at
Pascalisation. The second version of TgX-in-Pascal

3

bhas made a careful segregation of the universal,
machine-independent features from those parts that
must be implemented separately for each different
machine architecture family and operating system,
and this approach now seems to have been quite
successful. This illustrates a point worth noting. If
the same problem had arisen while TEX was being
developed under contractual time constraints by a
commercial software house, in all probability a quick
technical fix would have been attempted. In fact
of course, TEX was developed at one of the world’s
foremost centers of artificial intelligence research
by an outstanding master of the art of computer
programming and his students. The goal was not
only the best possible typesetting system but also
a design and implementation that would exemplify
and indeed be a paradigm of the state of the art in
the development and documentation of & complex
software system meant to run in many diverse ar-
chitectures and environments. The original SAIL
implementation of TEX has proved to be an un-
usually bug-free and stable system that has now
been running very successfully for well over a year on
five operating systems (TOPS-10, TOPS-20, SU-AI,
ITS, Xerox PARC) driving as many different out-
put devices (XGP, Versatec and Varian electrostatic
printers, Alphatype CRS typesetter, Xerox Dover
printer). The Pascal version has now passed most of
its basic tests and there is every reason to expect of
it the same high quality performance demonstrated
by its predecessor.

... and an Appreciation

I am sure many early TEX users have had the ex-
perience of watching with surprised delight as their
first pages came off the printer and thinking, “Did I
really set that myself!” And on reflecting, we knew
that while we did, and while we had reason to be
proud of our new skill, in a very deep sense Don
Knuth had been and would continue to be there
at our side through his algorithms, his carefully

" designed user interface, and delightfully written TgX

manual. I am sure that kind of silent, smiling ap-
preciation is all the thanks Don is looking for, but
I would be remiss in my role as TUG chairman if
I did not express in a more public way the tremen-
dous debt of gratitude we all owe to him for the
tireless and selfless effort he has put into the task of
making TEX a freely available system. Despite his
consummate programming skill, creating software is
not what Don considers a high priority use of his
time. Research and writing papers in mathematics
and computer science is much more challenging for
him, but he even rations the time spent on this in



4

order to have time left for what he considers his
primary life work, the completion of his monumen-
tal Art of Computer Programming. Don originally
created TEX and METAFONT to insure that the
later volumes of ACP would conform to the same
high standards of typography that he demanded of
volumes one to three. He had not foreseen the en-
thusiasm that greeted the early, primitive versions
of his typesetting programs, but happily for all of
us Don was willing to take up the challenge this
presented, and now the fruits of his efforts as well as
the efforts of his many students are becoming avail-
able for us all to enjoy. ,

An Introduction to TEX and METAFONT

This is the first issue of TUGboat, the newslet-
ter of TUG (the TgX Users Group). Presumably
most readers will be TUG members and familiar
with TgX, so for the most part the newsletter will
assume a reasonably high level of knowledge of TgX
basics. However, this issue of the newsletter will
also be sent out to those with little or no knowledge
of TEX who write to TUG asking for basic infor-
mation. For the benefit of these readers we shall
give below an elementary description of TEX and
METAFONT together with pointers to the major
source of detailed information about them.

TEX is a “typesetting” program. Like most com-
puter programs it transforms information supplied
to it (an “input file”) into an *output file®. In the
case of TEX the input file consists of the text to be
typeset together with certain local formatting hints
(e.g. \par to indicate a new paragraph) and occa-
sional local font information {e.g. \bf or \1t to in-
dicate that what follows should be either boldface
or italic, respectively). Note however that serious
global questions of formatting and font choice, such
as page width and length, interline spacing, just
where on a page to place titles, author names, page
numbers, chapter headings, footnotes, etc., and in
what fonts these should be set are specified in a
parameter flle usually defined by a book or journal
design expert, so that the average TgX user rarely if
ever has to deal with these finicky details. The input
file is usually prepared at a computer terminal using
an editing program, though not necessarily using the
same computer that will process it with TEX. The
TEX program itself can run on any computer with a
Pascal compiler and sufficient memory. (Actually,
*sufficient” here means pretty big; TEX probably
won’t run very efficiently in much under 300K bytes,
although if you have a virtual memory system and
plenty of time you might get by with 128K. Anyway,
don’t expect to use TEX at home on your TRS-80

TUGboat, Volume 1, No. 1

soon!) Running on a mainframe computer, TEX will
prepare its output file (a so-called DVI or “device-
independent® file) at the rate of about one printed
page worth every few seconds. Before describing the
DV1 file in any detail it is necessary to explain a little
about how TEX conceives of characters and fonts of
characters. To TEX each character is merely a rec-
tangular box with a horizontal “baseline® through
it. The box is completely described by its height
and depth (distance from baseline to top and bot-
tom of the box) and its width. The position of a
character box on a page is specified by giving the
z and y coordinates of its “reference point® relative
to the upper left-hand corner of the page (the ref-
erence point is the intersection of the baseline with
the left-hand edge of the box).

width

height

reference point
depth {

TEX does not “know” the shape of a character
that will eventually go inside the box (in fact the
shape needn’t even fit inside the box). In any given
job, TgX is able to work with 64 different fonts of
128 characters each. Aside from the size of each
character box, TEX has other information available
to it concerning a font: so-called kerning, ligature
and italic correction information. Using this in-
formation, the formatting and font information in
the parameter fille, and some rather sophisticated
algorithms for justification and page makeup, TgX
lines up the character boxes from the input text
into properly justified paragraphed horizontal rows
(“lines of type”) and arranges these into pages. TEX
finishes up by describing each page it has made up as
a sequence of “records”, one record for each charac-
ter on each page. The record for each character con-
sists of its font number (0-63), its place in the font
(0-127), and its z and y coordinates on the page.
The DVI file is just the collection of these records
coded according to a specified protocol.

But where, you ask, is the printed page? The
answer is that once the DVI file is in hand, producing
the actual hard copy is a relatively simple matter,
although one that depends very sensitively on the
nature of the particular output device that will be
used. For each output device that is to be interfaced
to TEX a software “driver” must be written that
will transform the device-independent DVI file into




TUGboat, Volume 1, No. 1

a device-specific format, and then actually give in-
structions that get the ink onto the page. Normally
this driver program is not run on the mainframe
hosting TEX but rather on a small microcomputer
either off-line (perhaps physically inside the output
device) or else as a peripheral to the host mainframe
and attached to it over a serial line. Such drivers
have already been successfully written for a variety
of devices including electrostatic printers (Versatec,
Varian), CRT typesetter (Alphatype), laser printer
{Xerox, Canon), and even experimentally for matrix
and daisy-wheel printers. Experience seems to indi-
cate that developing such a TEX interface for a new
output device takes on the order of one man-month.

But isn’t a new output device going to require that
all the fonts TEX will use on that device be recreated
according to the protocols which that device un-
derstands? And isn't that very expensive? This
is where METAFONT comes in. METAFONT is
both a language for the creation and specification of
type faces and a program for creating the computer
files necessary to describe a font of type to TgX and
to a TEX-output device interface. Of course, for
any new output device a (relatively simple) program
must be written to interface METAFONT to that
device. But once this is done the large and grow-
ing library of fonts in METAFONT format become
immediately available to the new device.

The basic source of complete documentation on
TEX and METAFONT is TgX and METAFONT:
New Directions in Typesetting by Donald E. Knuth,
published jointly by the American Mathematical
Society and Digital Press. Send orders to:

Digital Press

Dept. AMS, Educational Services

Digital Equipment Corporation

12 A Esquire Road

North Billerica, MA 01862
The price is $12.00 in the U.S.A. on prepaid orders,
with individual members of the AMS entitled to a
50% discount. The book is in three parts. Part iz a
reprint of Knuth’s 1978 Gibbs Lecture to the AMS.
In it he gives some of the history of mathematics
in the service of typesetting, and then goes on to
describe some of his design philosophy and some of
the mathematical problems he met in the develop-
ment of TEX and METAFONT. Parts II and III are
respectively the TgEX and METAFONT manuals.

Of course there is a great deal more in the way of
documentation to TgX: program documentation and
installation guides, font catalogues, “header” files
to format specific types of documents appropriately,
macro packages to create indexes or to ease the labor
of setting complex mathematics. But these will be

pointed to elsewhere in this and future editions of
the TUG newsletter. That indeed is one of the main
purposes of TUGboat.

Well, so much for the broad outline of the TgX-
METAFONT system. But to round out the picture
and give a more complete perspective I feel that
there are further comments that should be added.

(1) TEX was designed not just as a typesetting
system, but as one with a particularly good built-
in facility for setting mathematical text (“penalty
copy” in the words of the old hand compositors).
What makes mathematics so hard to set is not the
large number of special symbols, but all the super-
scripts and subscripts, all the equations that must
be aligned, and all the many and varied complex
two-dimensional diagrams. Even the problem of
designing a good mnemonic language for specifying
the various intricacies of mathematical text is non-
trivial. The solutions that are evolving out of TEX
and systems built on TEX could by their wide ac-
ceptance develop into a de facto standard for the
“linearization of mathematics”.

(2) TEX has built into it a very powerful “macro
facility”. What this means at a very simple level is
that a user can give a name to a complex and fre-
quently occurring chunk of text to avoid having to
constantly retype it. At a more sophisticated level
it means that individuals or groups of individuals
can easily customize TEX to best suit their special
needs without changing the basic computer code.
The importance of this latter point makes it worth
stressing. TEX itself has proved to be an exception-
ally robust and bug-free program. The intention is
to keep it very stable, making only the most essen-
tial changes to the program, and these only very
infrequently. But experience has shown that any
multi-user, general program must either be easily
modified or die. Since TgX is in the public domain,
there is no way to prevent it being modified to suit
the varied tasks of its users. If these modifications
are made at source code level the result will soon
be a chaos of mutually incompatible programs that
would make maintenance an impossible nightmare.
Moreover, a great advantage would be lost. It would
not be possible to prepare and test a TEX input file
at one site and then send it by tape or computer
net to be output at another site. (To help forestall
this disease the AMS, with Knuth’s permission, has
applied for trademark protection for the TEX logo
and will prevent its use to describe any unauthorized
modification of TgX.) Fortunately the TEX macro
facility permits users to treat TgX as though it were
written in a so-called “threaded” programming lan-
guage, and to modify it to their hearts’ content




without introducing any incompatibilities between
their underlying implementation of TEX and im-
plementations at other sites. All these users have
to do if they want to interchange documents writ-
ten in TEX input format is to be sure that together
with their input files they send along their macro
deflnition files. A number of quite sophisticated
macro packages have already been written, and one
is described in detail elsewhere in this newsletter.
The American Mathematical Society is preparing
a customized version of TEX called AMS-TEX to
simplify the production of the Society’s journals and
also to permit research mathematicians, if they wish,
to actually set their own papers as preprints exactly
as they will appear in final published form. Michael
Spivak, one of the main designers of AMS-TEX, and
the author of its manual, The Joy of TgX, reports
on it later in the newsletter.

(3) All of this doesn’t answer one of the main
questions a potential TEX user will be interested
in. How difficult is it to learn to use TEX and
then to actually use it to create, say, a techni-
cal paper? All my evidence is anecdotal, coming
from my own personal experience or that of my
friends, and it all says that the learning experience is
remarkably easy, pleasant and fast. Moreover, most
authors get very excited about their new skill and
find they quickly develop a much more highly criti-
cal eye for typographical niceties. One anecdote is
too good not to relate. G. G. Emch, a physicist at
Rochester, approached Arnie Pizer of the Rochester
mathematics department to help him TgEX a paper
he needed in a hurry. Pizer was the driving force
behind getting TgX running on the TOPS-10 sys-
tem at the University of Rochester and is very TEX-
knowledgeable. His physicist friend, on the other
hand, had never even used a computer terminal
himself before. Arnie spent one day teaching him
how to use the terminal, the operating system, the
editor, the basics of TEX and the experimental ver-
sion of AMS-TEX. Two days later, believe it or not,
Dr. Emch had typeset a highly creditable four-page
paper by himself and flew off with it to a conference
in Europe.

TEX as more than a Production Typesetier

TEX is such a pleasantly useful daily tool for
production typesetting that it is easy to lose sight
of some of the more long-range possibilities it opens
up. I would like to comment here on those I consider
most important.

Anyone who looks at the process for produc-
ing scientific journals {and most other books and
magazines for that matter) must be struck by

TUGboat, Volume 1, No. 1

the tremendous wastefulness of human time and
effort it entails. After the author in coliaboration
with technical typist, referees and editor has at
great effort and expense created a supposedly error-
free typescript, the paper is sent out for composi-
tion. What happens next seems almost ludicrous.
At more great effort and expense {and with all
good will) the compositor introduces dozens or even
hundreds of errors in the proof version of the paper.
At additional effort and expense these errors are
laboriously removed until the paper is at last (from
an information content point of view) finally back
in the form in which it was sent to be composed.
This activity of adding errors and then removing
them is actually responsible for half the cost of
producing the journal. That is, if authors could
present the journal with acceptable camera-ready
copy, the cost of journals could literally be cut in
half! (Some journals for this reason have taken
to using the typescript as camera copy—but for
many of us that would never be acceptable.) Now
TEX actually gives us the possibility of realizing this
economy and at the same time putting the respon-
sibility for beautiful composition where it belongs:
with the author. Almost all of the copy-editor’s
function can be automated into so-called “header”®
files which contain all of the journal-specific design,
font and format information. This is not to say
that copy-editing does not call for the exercising of
taste and judgment. It does, but this part of the job
can easily be transferred to the author too. The ul-
timate goal of the American Mathematical Society’s
AMS-TEX system is to make it possible for willing
authors to avoid the outdated foolishness described
above and typeset their papers themselves (perhaps
with the aid of a technical typist) at the preprint
stage.

If we go ahead a little further in time we can
foresee a development which I call the all-electronic,
save-the-forest library. It is rapidly becoming the
case that many (perhaps most!) articles in a par-
ticular library copy of a scientific journal are never
read. Those that are read are apt to be photocopied
out of the library copy to be read at leisure at home.
The costs of printing, binding and mailing the jour-
nal make up the other half of the journal’s cost men-
tioned above. Why not save that cost too by simply
having the journal in magnetic storage at some (or
several) central locations. It will soon be cheap and
convenient to peruse such a magnetic journal on a
computer terminal in the comfort of one’s home or
office. And of course if a hard copy is desired, it
can be produced when and where needed in mo-
ments. Now a little thought will show that (because



TUGboat, Volume 1, No. 1

of differences between terminals and the exorbitant
memory it would require) it will not be feasible to
store the journal as a high-resolution raster image.
The natural form of storage will be a source flle for
TEX or some similar typesetting program, or perhaps
as the DVI output file of such a program.

Finally, there is a use to which TgX or some
system growing out of TgX could be put which is
in the nature of a spinoff. There is rapidly com-
ing into existence a large number of on-line bib-
liographic data bases. These data bases must of
necessity be stored in a linear character-by-character
manner. For ordinary text this poses little problem.
But when there are mathematical formulas involved
there are enormous problems caused by the lack of
any standard linearized method to describe what is
often really two-dimensional text. Of course, if TEX
gains sufficient acceptance it could become a de facto
standard for linearizsed mathematics. Indeed, it is
possible that ultimately the complete AMS-TEX ver-
sion of the Mathematical Reviews input flles will be
available on-line in commercial data base retrieval

systems.
.7 The Role of TUG

A look at the TUG roster will show that a surpris-
ingly large number of people have written in ex-
pressing an interest in TgX and asking to belong to
TUG. What is the appropriate role for us to play?
It was clear from the discussion at the organiza-
tional meeting that there was anything but unaa-
imous agreement on this point. It would seem ap-
propriate to me that we should wait about a year
after the Pascal version of TEX is actually “in the
fleld® and then have a second face-to-face meeting
to discuss our experiences, problems, and needs.
In the meantime, TUG will function as a clearing-
house for information concerning TEX. Initially the
main problems will involve getting Pascal TgX in-
stalled on various architectures and operating sys-
tems. Here it will be particularly important to avoid
many different groups reinventing the wheel. Once
the basic installation problems are settled, there
will be a certain amount of elementary question-
answering needed from TUG until expertise builds
up in the fleld. Eventually this function of TUG
should evolve into one of providing names of experts
for TgX consulting and trouble-shooting, and TUG
will no doubt gradually assume other functions such
a3 a clearing-house for the exchange of documented
TEX macro packages. Ultimately TUG will become
exactly what we its members make it. And that is
what we can look forward to discussing at our next

meeting. Until then,

Happy TgX-ing
Richard S. Palais

* % & % * % % % s 32

PUBLISHING & TgX
Ellen E. Swanson

A published book or journal originates as an idea
in the mind of the author, is put into manuscript
form, and sent to an editor for review.. Upon ac-
ceptance for publication it is copy edited, set into
type, proofread, corrected, paged, and finally as-
sembled and sent for printing and binding. Many
hours and dollars are spent on each page and chap-
ter of every published book or journal. I the
material is scientific, or mathematical, the copy edit-
ing and composition iz generally more expensive
than for ordinary text. New technology utilised
over the past few years has reduced the expensive
composition costs. Tight budgets have resulted in
some economies being implemented in the editorial
aspects, for instance by eliminating a proofreading
check. The purpose of this article is to acquaint
the author with the main steps of the publication
process and then to indicate how TgX may help
eliminate some of the publication costs.

Current systems using computer-assisted com-
position have reduced the cost of composition
dramatically, but not for editorial functions such
as copy editing or proofreading. Curiously enough
the cost of composing a page of mathematics at
the American Mathematical Society is about the
same in 1980 as it was in 1969; new technology has
negated the inflation factor. On the other hand, the
hours spent in copy editing, proofreading and other
editorial tasks have not been reduced significantly,
with the result that these costs per page have more
than doubled.

The use of TEX could provide savings for the pub-
lisher ir both composition and editorial functions.
To understand more fully how this saving can be ac-
complished there follows a list of the steps involved
in publishing and an indication of the time and/or
dollars that are spent. Then it will be pointed out
where TEX can produce savings. For the sake of
simplicity in this paper it will be assumed that an
article is being written for publication in & journal,
and that the journal is a scientific one containing
some mathematics. Essentially the same process is
used for publication of a book. Obviously, if the
publication does not contain mathematics, some of



the steps will be simpler and any references to math-
ematics can be ignored.

Tae Manuscrier. The first step in the publica-
tion process is that the author conceives an idea,
and puts it on paper by handwriting or typing. The
original manuscript is doubtless revised once, twice
or even more times before the author is happy with
the result. Then it must be sent to an editor, who
may in turn send it to another one or two persons
(often called referees) for their recommendation. Let
us assume it is accepted for publication.

Acceprance 10 Printep Cory. The editor
usually sends a manuscript to the editorial office
of the journal for processing. This office is usually
involved in all of the steps from the time the
manuscript arrives to when pages are sent to the
printer ready for negatives to be made for offset
printing.

Logging in. The manuscript has to be acknowl-
edged and other procedures instituted such as set-
ting up files, and obtaining copyright permissions.

Copy editing. A manuscript should be read line
by line to be sure that it is legible, that the gram-
mar and spelling are correct, and that the author
has maintained a consistent style that conforms to
that of the journal in which the article is being
published. For a scientific paper editors also check
that notation is available and clear, and in mathe-
matics papers that the displays are in a form suitable
for keyboarding and printing. Artwork must be in
a form required for printing and reduction factors
determined, if they are needed. Time spent copy
editing is important; it saves money in the long run
because it cuts down on the number of changes and
corrections required on the proof.

Composition. The kind of composition used today
is almost as varied as the number of publishers.
‘Whatever the method, the manuscript must be
keyboarded and then camera copy produced with
the use of some kind of hardware. There is usually a
check for errors and corrections must be keyboarded;
proof must be produced and then sent to the
editorial office and to the author.

Proofreading. This proof must be read carefully,
whether by an editorial assistant or by the author;
8 more accurate publication is produced if it is
proofread by both. If mathematics is involved, bad
breaks at the end of lines, or poorly set up rhsplays,
need to be marked for rearrangement.

Corrections. All corrections have to be coor-
dinated and returned to composition for keyboard-
ing. Corrected proof is then returned to the editorial
office for checking. If the luck is bad, there will be
additional errors and the correction process will have

TUGboat, Volume 1, No. 1

to be repeated.

Page makeup. Fully corrected proof is ready for its
final paging. I it is in galleys, they must be cut into
page lengths. All pages must be checked for proper
length and for bad breaks between pages. Then
any changes in paging must be both executed and
checked. Running heads and page numbers must be
inserted.

Makeup of an issue. Once the pages are ready the
book must be carefully put together. Covers, title
pages, information pages, prefaces, contents, and
indexes must be coordinated; articles or chapters
have to be ordered, and running heads and page
numbers checked.

To the printer. Checks must be made that the
Pages are correcily ordered, that the instructions to
the printer are clear, both on the proof and in the
accompanying letter. Binding instructions must also
be included.

CosTs or PusLicamon. It is rather difficult to put
costs into dollars because of differences in salary and
in the overhead rate for various publishers. Some of
the cost items below are, therefore, given in hours
rather than in dollars. It should be remembered,
however, that, if you know the salary of a keyboar-
der or copy editor is $6.00 an hour, it cannot be
assumed that the cost of a half hour of work is just
$3.00. In addition to salary there are benefits, rent
and other types of overhead. The actual “rate” is
apt to be two or three times the hourly wage. I
remember a young woman, who was working for
me as an editorial assistant, becoming very irate
when she saw the budget of the project on which she
was working—it seemed we were not paying her the
amount of money that was budgeted for the work
she was doing. Here is a list of the various steps with
comments regarding time and costs. These figures
assume a page has a printing area of about 5"X8"
and 6 lines of 10 point type per inch.

1. The manuscript. Only an author can know the
time and effort that is entailed in the writing and an
editor the hours involved in reviewing the paper.

2. Logging in and other clerical functions. 30
minutes to’2 hours per paper.

3. Copy editing. 10 to 15 minutes per page. It
depends greatly on the condition of the manuseript,
whether or not rewrite is necessary, and the type of
material being published.

4. Composition. 30 to 60 minutes per page.
Depends greatly on the content, that is whether it
is strictly words or if there is scientific notation in-
volved. Computer or other hardware charges are
involved in addition to personael.

5. Proofreading. 6 to 20 minutes per page.




TUGboat, Volume 1, No. 1

8. Keyboarding corrections. 3 to 10 minutes per
page.

7. Checking corrections. 3 to 6 minutes per page.

8. Page makeup. 3 to 12 minutes per page.
Depends a great deal on whether it is straight text or
whether displays, figures or tables make page breaks
dificult.

9. Makeup of an issue. 1 to 3 minutes per page.

In all, these minutes add up to anywhere from
1} to nearly 3 hours per page. In general, one can
assume that editorial functions (Steps 2, 3, 5, 7,
9) take about an hour a page, while keyboarding,
page makeup and other composition related func-
tions (Steps 4, 8, 8) tend to take about one hour
and a half of personnel time.

At the American Mathematical Society we do all
our own editorial work and we do our own composi-
tion by a computer-assisted system, but use an out-
side phototypesetter. The editorial functions take
approximately one hour. Composition costs at the
present time are $18.00 to $24.00 per page, including
both department and Society overhead; composition
takes about 14 hours of personnel time plus com-
puter and outside service charges of about $4.00.

Rore or TEX. TEX can be useful to both the
author and the publisher. If an author learns the
TEX codes, or has a secretary who knows them, a
manuscript can be keyboarded by use of TEX and
revigsions can be made while sitting at a terminal—
only the lines being revised need to be rekeyboarded.

For the publisher there are two main ways in
which TEX can cut costs.

(a) If a paper were submitted in the traditional
manner some saving would result from using TEX
for composition. The manuscript would be copy
edited, keyboarded and all the other steps outlined
above executed. However, page makeup would be
streamlined because TEX not only can automatically
divide a manuscript into pages, but has a built-in
mechanism for lengthening or shortening pages to
correct lengths. I page breaks between lines are
not acceptable, they can be changed by a keyboard-
ing direction rather than by hand stripping. These
shortcuts could easily save a dollar or more per page.

(b) If an author were to produce the manuscript
on the TEX system and submit a magnetic tape
to a publisher who has facilities for converting the
tape to typeset copy, the savings would be much
more dramatic. Personnel for copy editing, com-
position, proofreading, and keyboarding of correc-
tions (Steps 3, 4, 5, 6) would be almost entirely
eliminated. If copy editing changes were needed to
conform to house style, these could be made directly
on the computer terminal and would thus be mini-

mal. Proof would be submitted to authors in pages
set automatically by TgX. However, if the author
makes changes or corrections, the cost would in-
crease because it would result in extra keyboarding
and checking; in addition the whole paper would
need to be set in type again, or patches set and
stripped onto the original pages by hand.

A saving of 80% of both composition and editorial
costs could easily result if a paper were submitted
on a8 TEX magnetic tape. If the TEX tape needs copy
editing and/or corrections, the saving would likely
still be 50% to 75% because copy editing, keyboard-
ing and proofreading would be cut drastically.

It is unrealistic to assume that all articles in a pub-
lication will be submitted in TEX. Not all authors
have the temperament or desire to learn the TEX
codes and not all university departments will have
a TEX expert. However, there would still be a con-
siderable saving in the cost of publication if only
part of the papers for a book or journal were sub-
mitted by authors on magnetic tape produced by

the TEX system.

BIBLIOGRAPHY

1. A manual of style, 12th rev. ed., University of
Chicago Press, Chicago and London, 1989, 546
Pp.

2. Marshall Lee, Bookmaking: The illustrated
guide to design/production editing, 2nd ed., R.
R. Bowker, New York, 1979, 485 pp.

3. M. E. Skellin, R. M. Gay et al., Words into type,
3rd ed., Appleton-Century-Crofts, New York,
1974, 585 pp. :

4. Ellen Swanson, Mathematics into type, rev. ed.,
American Mathematical Society, Providence,
R. 1, 1979, 90 pp. ’

5. Donald E. Knuth, TgX and METAFONT:
New directions in typesetting, American
Mathematical Society and Digital Press,
Bedford, Massachusetts, 1979, 306 pp.

Ellen E. Swanson August 13, 1980

American Mathematical Society




AMS-TEX: ®A Very Friendly Product®

Micraer D. Sprvak

This is a very brief introduction to AMS-TEX, the specialized version
of TEX that is being created by the AMS. It is rather different from most

. of the other articles in this first newsletter. To read it, you don’t have

to know anything about TEX, nor do your need to know anything about
computers, except how to make a computer file, typing on the keyboard
of a terminal. Indeed, the whole point of AMS-TEX is that it will allow
you to produce mathematics as beautiful as that in any journal without
requiring any knowledge about computers or typesetting.

Suppose, to begin with, that you just want to produce ordinary text.
To do this, you basically just have to be able to type. In fact, many of the
typist’s ordinary petty concerns are irrelevant, since TEX will take care
of many details for you. For example, it doesn’t matter how long you
make each line (TEX will automatically arrange the lines into “justified”
text, with all lines the same length), or how many spaces you leave after
commas and periods (TEX will use printers’ conventions for the spacing
after punctuation); you can even leave extra spaces between words (TEX
ignores the extra spaces).

You also don’t have to worry about how big an indentation to leave
at the beginning of a paragraph. In fact, any indentation you leave
is irrelevant, since TEX ignores extra spaces; instead, you can tell TEX
that a paragraph has ended by leaving a blank line (which you get by
pressing the “carriage-return” key twice in a row); TgX then starts a
new paragraph with the next text.

Another way you can tell TEX that a paragraph has ended is to
type \par. The special symbol \, which appears on computer terminal

- keyboards, though not on ordinary typewriters, is used at the beginning

of TEX’s “control sequences”. These, like \par, are special instructions
to TEX, rather than material to be typeset. For example, \1t tells TgX to
set text in stalics and \bf tells it to set text boldface. Control sequences
are also used to name symbols that don’t appear on the keyboard. For
example, \pi stands for the symbol «.

This sounds pretty easy, but you may be worrying about other things.
How do you know when you get to the end of a page? How do you center
the title? How do you put the author’s name under it? Etc. Well, the
computer file for this article begins

\input preprn
\title \amstex: "“A Very Friendly Product’ "\endtitle
\author Michael D. Spivak \endauthor

10



The first line requested TgX to print the article in a standard
“preprint” style, in which the typeface, the width and length of a page,
etc., are all determined. After this, there wasn’t much to worry about—
TEX figured out where to start new pages, etc. (If you don’t like the
typeface or page size, there’s an easy way to change that, too. Moreover,
you can just as easily request the format of some journal.) The next two
lines of input should be nearly self-explanatory. They told TEX what
the title and author’s name were—TEX then set these things correctly
by itself (the special control sequence \amstex was made to produce
the output “AMS-TEX"). The only slightly surprising feature might be
the quotation marks, which were built up from the single quote marks
“*» and “°”; this procedure was built into TEX because most computer
terminals don’t have left and right double quotes. There are a dozen
or so special rules of this sort that you need to learn, but once you
have learned them you can produce almost any sort of text, including
footnotes and special symbols and diacritical marks (&, 6, etc.).

Now how about mathematical text? Well, if you want to get an
equation like y = z + 1 within text, you simply type $ signs on either
side of it. Then the y and z get set in italics, the spacing around the =

-and - signs are just right, etc. (Any spaces that you type in the input

for the equation are completely irrelevant, so you can type equations as
squashed together or as spread out as you like.) On the other hand, if
you want the equation

y==z-41

displayed, you just put $$ on either side of it. Of course, sometimes you
need more complicated things, like

y=2z+1
=942

For this you simply type

$$\align y &=x+1\\
2=v+2.\endalign $$

The & signs tell TEX which symbols get lined up, and the \\
separates the lines. In practice, you’d probably type something like
...y&=x+1\\&=v+2. .. all on one line; breaking the input into two lines
makes it look nicer, but is irrelevant to the way TEX sets it.

All this may sound too good to be true, and it probably is—the present
(incomplete) version of the AMS-TEX manual runs over 100 pages! The
only way to really find out is to get a copy of the AMS-TEX manual
and read it—the first publishable version (somewhat incomplete, but
workable) shall be out soon. Since AMS-TEX is still in the process of being
designed, and is meant to make life easier for you (the mathematician
and/or technical typist), suggestions for improvements will be welcome.

11



T

12

MINUTES OF THE FIRST TUG MEETING
Robert Morris

Below follows what I heard at the first TEX Users
Group meeting in Palo Alto, February 22, 1980. If
I've abused the speakers I hope they will write to
the newsletter to correct me. Occasionally I have
inserted notes cross-referencing other speakers or
sources. These are in italics with my initials, ...ram,
appended.

A rather broad spectrum of TgX expertise was as-
sumed on the part of the listeners, even within the
remarks of a given speaker. ] have made no par-
ticular attempt to sort this out. Thus TgXperts will
be bored by parts of some paragraphs and novices
mystified by others. Sorry.

coffee(sie)

People introduced themselves. About 50 were
in attendance. Miscellaneous remarks were made,
all of which were amplified later except the loca-
tion of the TEX and METAFONT files for those
desiring to get them from SU-AI via the Arpanet.
To do this, get the files FILES.INF[TEX,DEK]
FILES.INF|MF,DEK] and FILES.INF[FNT,DEK]
for TEX, METAFONT, and the SU TgX font files
respectively. Each of these tells which files you must
further import. In order to avoid pain induced by
the SAIL character set, be sure to FTP them in
ASCIH mode. Failure to do this will cause grief at
least about the right brace character, which is rather
critical to TEX. Anyone without Arpanet access can
get the SAIL sources described above by inquiring
of

Dr. Luis Trabb Pardo

Dept. of Computer Science

Stanford University

Stanford CA 94305
Sources obtained in this way will not have the SAIL
character set problem because they are generated
on TOPS-20 at SCORE. At the moment, only SAIL
sources are released. See below about Pascal.
SPEAKER: DonaLp Knuts,

StanrorD UNIVERSITY.

Don Knuth’s opening remarks.

Don opened with some observations about the
things he’s learned from the TEX project. He did
not anticipate the full power of TEX until he had
used it extensively himself. For example, until he
made macros to pretty-print Pascal programs, he
had not thought much about text which was ragged
on both left and right. And, early on he thought an
interactive TgX would be useful, but finds now that
TEX users internalize what TgX will do to such an
extent that they usually know what TEX is going to

TUGboat, Volume 1, No. 1

do about their input and so have no pressing need
to see it displayed on a screen immediately after the
input is finished. Knuth’s conversations with other
typographical software users confirm this, e.g., with
people setting classified ads in a newspaper.

TEX is rather stable now: No reported bugs from
October to December, one in January, and one
rumored yesterday. (The SAIL version has been in
use at Stanford since August 1978 and at other sites
since September 1978. ...ram)

Radical changes in TEX are to be discouraged,
because they might destroy the stability of the sys-
tem and the interchangeability of TEX input flles.
An attempt will be made to keep a single common
denominator TEX in circulation. Don feels reliability
is far more important than allowing everyone to add
*“missing features” to TEX. When the Pascal version
is released there may be some last minute changes of
this radical nature, but they should be in all released
versions of TEX.

One flaw in this regard was the use of floating
point arithmetic in TEX. The first Pascal release
will use floating point, as does the SAIL version,
with the attendant risk of machine dependencies
due to rounding (e.g. in extreme cases, a paragraph
might have 11 lines in one implementation and 10
in another if two line breakings had very similar
“badness” value). The second Pascal release will use
only fixed point arithmetic.

METAFONT.

METAFONT has a few dozen users. Don took 34
months to create about 60 fonts necessary to set his
books. The eminent type designer Hermann Zapf
visited, learned METAFONT, taught Don some
type design, and helped beautify those fonts. The
fonts are available for use with TEX. A Stanford
C.S. Report “The Computer Modern Family of
Fonts” is forthcoming. (Don explained in a3 TUG
Steering Committee meeting the next day, that
one of the accomplishments of Zapf’s visit was to
write METAFONT programs incorporating some of
Zapf’s craft, especially techniques involving changes
of pen pressure during letter construction. ...ram)
Output devices.

The Alphatype CRS is fully functional under TEX.
It sets about 3 inches/sec per baseline, requiring
about 3-4 minutes per page of moderately complex
math. Don rewrote the Alphatype internal software
for TEX suitability when using METAFONT fonts.

In general, output on most devices is straightfor-
ward in principle. (See report of David Fuchs’ talk
below. ...ram) This includes known phototypeset-
ters and even vector devices, although more software
would be involved.



TUGboat, Volume 1, No. 1

Audience requests.
What follows are Don’s responses to questions
from the audience about specific topics.

General Organisation of TEX.

TEX consists of 5 modules:

(1) TEXSYS, about 10% of the code. Contains
the storage management and error recovery routines.
For complicated TgXing it uses around 30K words
(38-bit), but for simple things as little as 8K has
been used.

(2) TEXSYN, about 30% of the code. Processes
macros, scans input tokens, and otherwise handles
TEX syntax.

(3) TEXSEM, about 50% of the code. Respon-
sible for switching modes (math, display, verti-
cal, horizontal), contains the page and paragraph
builders, math setting routines, rules. This module
has as its main documentation the source code itself.
(But see report below on the Pascal version. ...ram)

(4) TEXOUT, about 10% of the code. The output
modules, responsible for recursively processing a list
of boxes and making a list of output instructions for
the device driver.

(5) TEXEXT, presently 0% of the code. The TEX
extension module is the place the user defined ex-
tensions to TEX are placed. Examples of such will
be supplied with the Pascal version, because an in-
dexing and cross-referencing facility has been imple-
mented that way for the time being. Also, research-
ers at XEROX have implemented color descriptions
as an extension. Hooks are placed in TEXSYS to
trap the TEXEXT. The feature is powerful and dan-
gerous, providing the user with the ability to clobber
any internal TEX data structure. (Readers should
not confuse this feature with the macro feature. The
TEX extension feature is for the addition of things
which TgX can not do, whereas the macro feature
parameterises or otherwise makes easy the things
that require many or arcane TEX commands to do.
Perbaps aside from the indexing feature, most TgX
users will never encounter TgX extensions. ...ram)

Indexing and document management features.

The initial problem with document management
facilities was TEX's inability to make its activities
known to anything but its output file. This was
the dificulty of interfacing it to CMU Scribe, for
example, or other software which needs to know
what’s going on while TgX is working. Although
not all cases are covered, the TEXEXT solution in-
dicated above seems to address many of the result-
ing problems. The index output thus generated may
need some sorting or other trivial post-processing.
(See report below of Richard Zippel’s MIT document

13

preparation macro package for non-TEXEXT solu-
tion to some of these problems. ...ram)

The macro faellity,

The macro facility is designed to allow users who
know nothing about typography to set papers well.
With it, one source can produce many different
output forms. This approach is similar to IBM’s
General Markup Language, and is being pursued by
the American Mathematical Society.

Last minute changes.

A few are contemplated for inclusion in the Pascal
version. The only one posing any incompatibility
with existing TEX input files is the improved syntax
of font definitions, which presently is similar to that
for font changes, being distinguished by context.
The new syntax would require existing input files to
have their font definition statements changed. The
ability to set equation numbers at the left may alyo
be added.

TEX as a rough draft reflnement tool.

TgX provides the same flexibility and ease of
change that any text maintenance use of the com-
puter does.

TEX as a general typesetting tool.

TgX was originally designed by Don to set the
Art of Computer Programming. However, many
of his solutions turned out to be appropriate to
many other forms of typesetting. The line breaking
and paragraph building mechanism is particularly
successful, producing text with astonishingly few
hyphenations. Widow avoidance is less successful: in
mathematics, adding lead to a display is feasible to
defeat widows, but in straight text non-uniform in-
terline spacing is frowned upon. Rivers (continuous
streams of white space dribbling down a page due
to accidents of interword spacing) is not specifically
addressed in TEX but seems to be a rare occurrence.
Most, of Don’s effort in design was focused on math-
ematics spacing.

Chemieal formulas and other scientific typesetting.

In principle, TgX should be good for most of
this work. Don suggests that duplication of effort
be avoided by discouraging exploration of non-
math typesetting until the American Mathematical
Society experience is greater. Some of their solutions
should apply immediately to physics and chemistry
publishing.
SPEAKER: Luis Trass Parpo,

Stanrorp Univensery.

The Pascal Version,
Luis sketched the problems associated with the
Pascal project and what the final product will



14

look like. The big question: when will it be
released. The answer, not before it has been run
successfully not only on the DECSystem 20, but
also been transported to an altogether different ar-
chitecture, the IBM 370. Both tasks are moving
along and within sight of completion, but Luis is
(understandably! ...ram) reluctant to name a date
out of concern for being unable to meet any par-
ticular deadline. (If you press the Stanford team
privately they will admit that they hope release is
months away. ..ram) Both Knuth and Luis are
greatly concerned that a high quality product as
bug free as possible be produced. The requirement
that the parallel 370 development be complete will
help insure that no machine dependent traps will be
sprung on those who attempt to move TgX. The in-
stallation of the 370 version will, moreover, be done
by people who are not TgX wizards, thereby fur-
ther simulating the environment released versions
will run in. Installation on CDC, VAX, and Univac
machines is also in development. Finding suitable
Pascal compilers is & big stumbling block. Pascal
does not seem to be amenable to large portable
software projects because of many unspecified things
even in “standard” Pascal.

The structure of the Paseal Version.

Pascal TEX as released by Stanford will consist
of two pieces: the TEX module and the system de-
pendent module. The former, comprising 90% of
the code, should need almost no local tuning save
for specifying a few parameters, such as word size.
Further, this should be valid for an entire family,
and not site specific. The system dependent module
contains the code which allows TEX to communicate
with the host operating system. It deals, for ex-
ample, with the file system and the input character
set. This is where most of the implementor’s work
will lie. '

The Stanford team has been striving to make
the Pascal TEX a model of transportable software.
To this end, it is to be released in the form of a
*documented description® and a support package.
The documented description is a topdown descrip-
tion of how TEX works. The support package con-
tains two programs for dealing with it. TEXDOC is
a program which produces a typeset description of
the fully commented TgX program. A paper copy
of that will also be supplied. UNDOC is a program
which converts the documented description into a
Pascal program. Usually humans will never read
this, studying instead the TEXDOCed version. The
support package also includes some sample device
driver software, a set of 200 dot/inch fonts and a
sample TEXEXT extension.

TUGboat, Volume I, No. 1

What the implementor must do.

To implement TEX do this:

(1) First find a suitable compiler. (Recipe for
rabbit stew: first catch a8 rabbit! ...ram) This is
not entirely trivial because of the lack of Pasecal
standards. In fact it was the major delaying factor
go far in the project. (I assume a future issue of the
newsletter will have an article detailing just what
makes a compiler suitable. ...ram)

(2) Redefine some of the data allocation policies
and a few of the low level macros.

These tasks are constant for an entire architecture
and need not be repeated by each site.’

(3) Modify certain system dependent calls, typi-
cally the names of TEX calls to the bost operating
system. This may be quite site dependent. Luis
estimated it might take one month of a system pro-
grammer’s time for each operating system, but no
special knowledge of TgX would be needed.

Resources. :

How greedy is TEX? It occupies 75K 36-bit words
on a DEC 20 and requires 2-3 CPU seconds per
page to set mathematics. Something similar ought
to hold on an IBM 370/138. Some investigations into
making it work in smaller environments are taking
place. Luis believes that such efforts should evolve in
the following directions (see the talk of Bob McClure
below ...ram):

(1) Overlay parts of the program and reduce the
sise of some of the data structures, e.g., reduce
the number of fonts which can be handled at once
(currently 64) and the complexity of math which can
be set. Such efforts could result in 50% memory
reduction.

(2) Make a multipass TEX. Natural separa-
tion: (a) macro expansion; (b) line breaking and
box making; (c) page breaking and output. This
might force abandoning some of the interaction be-
tween these tasks, e.g., macro definitions in output
routines, but it would probably leave a highly useful
TEX anyway.

(3) Memory management. For portability, TgX
makes no assumptions about the ability of the host
to manage memory, rather simply asking to be given
a big block then left alone. An implementation
which used the host’s memory management might
not need such a big chunk.

SPEAKER: Bos McCLURE, PRIVATE CONSULTANT.

TEX in C.

Bob is working on a C version, using many of
the smallifying techniques suggested above by Luis.
The first target is a Z8000 system running ver-
sion 7 UNIX, but the programming is not making




TUGDoat, Volume 1, No. 1

use of UNIX features tempting as some of them
might be. The aim is to have a TEX which will
run in 48Kbytes of memory, thereby fitting on 16-
bit machines. Heavy virtualizing of some of the
tasks is envisioned. Roughly, the vast resources get
stretched out in time and in space (on a disk). Bob
isn’t prepared to guess about speed of the resulting
product which will be proprietary, but for sale at
“a reasonable price®. {I hope a rumor mongering
section of the newsletter will be devoted to others’
efforts at making small TEX, or better still that those
doing so will write brief descriptions for us. ...ram)

SPEAKER: Davip Fucns, Stanrorp UNIVERSTTY.

Output devices.

David spoke on the structure of TEX output and
the technical requirements of device drivers. Since
he is devoting an article in this issue to it, I omit
details. Roughly, implementors need to write a
spooler and a program to convert the TEX output to
a form suitable for the output device. This involves
decisions about how much of the task to leave to the
host, which in turn depends on the communications
bandwidth between host and output device. The
details thus depend on the host-device combination
and may be somewhat site dependent.

SPEAKER: Ricaarp Zrrmr, MIT.

Richard spoke about a loosely organizsed docu-
ment macro package available at MIT. It has many
of the features one wants in document preparation
and has some overlap with AqS-TEX. It is reported
separately below.

SPEAKER: Mixe Srivak, PusLise or Penmisu Press.
AMS-TEX.

Mike is a developer of the AMS version of TpX
and the author of “The Joy of TEX". The purpose
of these two ventures is outlined by Mike elsewhere
in this issue.

SPEAKER: Dick PaLams, Baanoms Untversity.

The final session of the afternoon was chaired by
Dick. It consisted of a discussion of existing, con-
templated, and desired output devices and a discus-
sion of the TEX Users Group.

Output Devices.

Presently running with TEX: Versatec 3211;
Varian 9000; Alphatype CRS.

Under development or consideration: Canon laser
printer.

" Desired: Mergenthaler Linotron 202, 2000 and
VIP; GSI C/A/T; APS-5; Compugraphic 8600 and
UNISETTER; AMI; Sanders infinite matrix printer;
vector devices in general.

15

Dick Friday (Digital Equipment) said he had ex-
perimented with driving a Diablo and found it not
very difficult.

Rumors were mentioned about dramatically fall-
ing prices to be announced this June at the National
Computer Conference. Others were mentioned that
the internal coding of Mergenthaler devices were
now sufficiently understood that they might be use-
ful. (The general problem with phototypesetters is
finding out exactly what information they need so
that TEX can provide it. ...ram)

TUG organixation.

A Steering Committee was elected by acclama-
tion. Its first meeting is reported below. General
discussion to guide it centered on the function of
8 users group. Among the roles proposed were the
following (When it met the next day, the Steering
Committee took a much narrower view than the
spectrum represented here. ..ram): organize TEX
research; organize “Birds of a Feather” sessions;
organize a newsletter; supervise or perform TgX
software support; distribute TEX; formulate a test
suite to validate programs claiming to implement
TeX.

Several people suggested seeking low cost com-
mercial support along the lines of IMSL. Most
agreed that an institutional membership fee on the
order of $100 would be acceptable. (The Steering
Committee subsequently decided that such a fee is
premature. ...ram) It was generally agreed that the
Users Group would initially be concerned with short
term problems so no attempt need be made to find
solutions which would be cast in stone. Dick Palais
told us that the AMS is applying for trademark
protection of the TEX logo and would thus keep ad-
ministrative control over what could be called TEX.

REPORT OF THE
STEERING COMMITTEE MEETING
OF FEBRUARY 23, 1980

The Committee met jointly with the AMS Font
Subcommittee of the Committee on Composition
Technology.

Richard Palais and Robert Morris agreed to be
chair and secretary pro tem.

Robert Welland agreed to edit the newsletter.
The first newsletter will have a report of the meet-
ing and will be distributed free by the AMS upon
inquiry about TEX. Subsequent newsletters will be
by subscription only.



16

There will not be institutional membership until
TUG has to play a larger role than circulation of
information. Individual membership will be $10 an-
nually and will cover newsletter expenses. All mem-
berships and fees will be reconsidered at the next
Steering Committee meeting.

Richard Friday will work up a proposal for a
validation suite for programs whose authors desire
to call them TEX. Presumably, the Users Group
would pass recommendations to the AMS Board of
Trustees about a given request to use the TEX logo.

The role of the Users Group in distribution will
be re-examined after the Pascal release is made.
In about six months the Steering Committee will
decide when to meet again. At this time it is hoped
that Pascal distribution will be under way from
Stanford and alternate development sites.

Respectfully submitted
’ Robert Morris,

UMASS/Boston

¥ % % x % * % % % %

Interface Software

* % % * % % 3 * % %

THE STATUS OF THE
PASCAL IMPLEMENTATION OF TgX

September 9, 1980

Ignacio Zabala
Luis Trabb-Pardo

This document (PTEX.TXT[TEX,IAZ]%SAIL) is
intended as a public, up-to-date report on the
status of the PASCAL implementation of TEX. A
file PTEX .BBD[TEX,IAZ]%SAIL is maintained that
contains all the mail and new events related to
PTEX.

SYSTEM ORGANIZATION:

The TEX-PASCAL system consists mainly of

three modules:

- the TEXPRE module implements the pre-
processor that generates the data structures
employed by TEX.

- the SYSDEP module contains routines that are
very much dependent on the particular host
system. It is used both by TEXPRE and TEX.

- the main TEX module.

COMPATIBILITIES AND INCOMPATIBILITIES:

Neither TEX nor TEXPRE should need modi-
fication at any installation, but, surely, SYSDEP
must be adjusted for each host site. The three
modules are programmed in PASCAL though some

TUGboat, Volume 1, No. 1

installations may find it convenient to reprogram
SYSDEP in assembler language for the sake of ex-
ecution speed.

As the default case in the CASE statement is a
non-standard feature of PASCAL, it has been given
different names by different compilers. Compile time
initialisation is not standard either, but available
under different names in most compilers. These
are the only reasons why TEX and TEXPRE may
have to be modified, and the modifications are
straightforward.

PTEX INSTALLATIONS:

TEX-PASCAL has been running in the PDP-10
(SAIL) machine in our CS Dept., here at Stanford,
since April 1980. Since then, all changes made
by Don Knuth in the SATL program have been in-
corporated inmediately intc the PASCAL program,
which has also undergone modifications as more in-
formation was obtained on the characteristics of
widely used PASCAL compilers. The program has
been in-house tested. It has already processed the
whole TEX manual and several chapters of Knuth's
Art of Computer Programming.

Stanford’s CIT has an IBM machine of the 370
family. Eagle Berns is in charge of the installation
of TEX there. He has obtained a copy of the new
IBM PASCAL VS compiler, and has tried to compile
PTEX with it. As of September 9, both TEXPRE
and SYSDEP (in PASCAL, only slightly modified)
had compiled and run successfully to generate the
table of data structures employed by the main TEX
module. For these trials, Berns used 36 bpw font
information files from SAIL. There was a problem
with two procedures in the main TEX module which
were still too large for the VS compiler. This module
has been modified accordingly and we are waiting
for feedback from Berns. :

Charles Lawson is installing PTEX on the
UNIVAC 1100 of the Jet Propulsion Lab at Caltech
using the University of Wisconsin PASCAL com-
piler. He has made a good programming effort to
get PTEX up. (For instance, he has coded the
“environment” modules required by his compiler.)
This installation seems to be already past the com-
pilation phase.

At the University of Minnesota, Mike Frisch is
installing PTEX on a CDC-Cyber.

George Otto is in charge of the installation at
Wharton. The Moore school has a UNIVAC 90-VS/9
where they use the PASCAL-8000 compiler.

David Kashtan has compiled everything success-
fully on the VAX (VMS) at SRL

Richard Friday has also compiled everything on a
VAX (UNIX) at DEC.



TUGboat, Volume 1, No. 1

TEX-PASCAL has been distributed to more cen-
ters: Stanford Linear Accelerator Center, University
of Aarhus in Denmark, Universities of Milan and
Pisa in Italy, University of Valencia in Spain, etc.
The ones mentioned above have given the most feed-
back.

At this time, it seems that most pioneer instal-
lations are free of compilation problems and are
now trying to obtain adequately interfaced output
devices, together with fonts and font information
files suitable for them.

The only fully operational PTEX system is still
this at Stanford CSD, but we expect to be printing
DVI1lles produced by the CIT installation very soon.

CoMrPILER 15SUES:

TEX-PASCAL was developed using the Hamburg
PASCAL compiler for the PDP-10 by Kisicki and
Nagel. Some compiler maintenance was needed
during the debugging of PTEX. We have found this
to be a rather powerful and permissive compiler.

There have only been three system requirements
on PTEX hosts and these were explicit since the
beginning of the project:

— The system must have enough addressable
memory to store the large arrays employed by
PTEX (about 128K words of 32 bits).

~ The compiler should be able to really pack fields
of a PACKED RECORD and overlap multiple
variants of packed records. Hf this requisite is
not satisfled, PTEX will require at least four
times as much memory.

~— The compiler should be able to handle large
case statements (say over 64 actual cases in a
range [—500..500]) and have a default case (this
is non-standard in PASCAL but available in
most compilers).

Additionally, PTEX requires an EXTERNAL (or
separate) compilation facility. If no such thing is
available, the SYSDEP module has to be inserted
both in TEX and in TEXPRE by hand. Also, if
there is no compile time variable initialization, the
INITPROCEDURE appearing in the program has
to be changed into an ordinary procedure.

We have fought not to add more requirements
and have changed the program to facilitate the in-
stallation with simpler or more restrictive compilers.
Encountered problems have been common to most
pioneer installations:

~ lines of code were too long

- octal constants were not accepted

~ identiflers containing the underscore character

were not accepted

- some identifiers were too long

17

- sometimes two different identifiers were equal in
the first eight characters

- flelds of packed records couid not be passed as
procedure arguments

- loop counters had to be local variables

~ all declared labels had to be used

- use of GOTOs was restricted: not even allowed
from the body of a procedure out to the block
in which the procedure was declared

— there were discrepancies in the treatment of
nested WITH statements

— the compiler lacked the standard MAX and
MIN functions

- procedures had to be kept small (less than 400
statements)

The program has been modified to avoid them.
Currently, the code is all uppercase in lines that are
never longer than 72 characters. All identifiers are
shorter than 16 characters and differ in the first 8
characters. Octal variables appear only in SYSDEP.

DisTRiBUTION:

Currently, TgX-PASCAL can be obtained from
the TEX group at the CS Dept. at Stanford. Anyone
asking for the system will get a tape containing
the files TEX.PAS, TEXPRE.PAS, SYSDEP.PAS,
TEX.STR, TEXPRE.STR, and SYSDEP.STR,
which is about everything that is needed to have
PTEX running. The distribution package also con-
tains a short installation guide, a description of
the DVI format of the output file of TEX, and
extensively documented listings of TEX, TEXPRE
and SYSDEP. (Of course, the ultimate documenta-
tion on TEX is the TEX manual.) All these flles
(not the listings) are available on-line in the direc-
tory (TEX.PASCAL)%SCORE, accessible via the
ARPANET.

Fonts and font information flles may also be
provided on request (in the format employed here
at SAIL). These files are very system-and-output-
device-dependent and of restricted general value for
that redson.

* % % * * % % % 3z 8

THE FORMAT OF TgX'S DVI FILES
David Fuchs

DVI files contain information about where charac-
ters go on pages. The format is such that there are
those who claim that almost any reasonable device
can be driven by a program that takes DV] flles as
input. In particular, DVI flles can be sent to the
Xerox Graphics Printer (XGP), Versatec, Canon or



18

Alphatype at the Stanford CS Dept., depending on
what spooler it is passed to. The format follows.

The basic unit of information in a DVI file comes
in an 8-bit chunk. Here at Stanford, they are packed
four per word, in the lower-order 32 bits of each
word, and the highest-order chunk is considered to
be before the others, etc.

The DVI file contains a number of Pages followed
by a Postamble. Each Page starts with a BOP
command, has lots of other commands, and ends
with an EOP command. Each EOP command is
immediately followed by another BOP command, or
the PST command, which means that there are no
more Pages in the file, and the Postamble follows.
See below for details on all the commands that occur
in Pages, and what goes in the Postamble. ‘

Each Page consists of a number of Commands
that specify what characters should be typeset
where. Who- or what-ever reads these Pages should
have a Stack that can hold, say, 200 coordinates (i.e.
integers) to be on the (very) safe side.

There iz a notion of the “current position on the
page”, which is specified by its horizontal and ver-
tical coordinates. Moving rightwards on a page
is represented by an increase in the H-coordinate,
while moving down is an increase in V, and the
upper-left-hand corner of the page is 0,0 (i.e. it’s
slightly non-cartesian). Coordinates are given in
reu’s (ridiculously small units), where lrsu =
1/218 points. This is so that accumulated errors will
be undetectable even in the worst imaginable case
{a *box many feet long). Whenever a character
or rule is set, it gets put at the current position
on the page. The current position on the page is
changed by explicit move commands (their names
begin with W,X,Y, and Z). It can also change as
a side effect of setting a character or rule (the 0-
127 and VERTRULE commands). The w-, x-, y-,
and z-amounts are not locations, but distances (in
rsu’s). Some commands change their values, and
some cause the current H- or V-coordinate to be
incremented by one of their current values.

A lower-case character with a bracketed number
following a command means that the command has
a parameter that is that many bytes long. Thus, the
BOP command, for instance, is 9 bytes long, the first
byte of which has the decimal value 129, the second
through fitth of which give the page number (high
order byte first), and the sixth through ninth being
another number which is explained below. These
numbers are in two’s complement, so they should be
sign-extended on the left when they are read.

133 POP

TUGDbDoat, Volume 1, No. 1

The commands are:
Command  Description

0 to 127  Set the appropriate character from the
current font such that its reference point
is at the current H,V location, and then
increment the current H-coordinate by
the character’s width.

128 NOP No-op, do nothing, ignore.

129 BOP n<4> p<4>

Beginning of page n, with pointer p to

the BOP command of the previous page.

By “pointer” is meant the relative byte

number within the DVI file, where the

first byte (the BOP of the first page) is
byte number zero. (ex.: If the first page
had only a BOP and EOP, the third
page’s pointer would be 9, because the

BOP command takes bytes 0 to 7, the

EOP is 8, so the second page’s BOP

is in byte 9. Get it?). The first page

has a —1 for a pointer; the second, a

gero. Start the H- and V-coordinates

out at 0, as well as the w-, x-, y-,

and z-amounts. The stack should be

empty, and no characters will be set
before a FONT(NUM) command occars.

Remember that n can be < 0, if the

page was Roman Numbered. Also the

pages need not come in the proper order
in the file, depending on who’s doing the

TgEXing.

The end of all commands for the page

has been reached. The next page, or the

postamble, starts in the next byte.

131 PST ' The postamble starts here. See below
for the full explanation of what goes in
the postamble.

132 PUSH Push the current values of the H- and

V-coordinates, and the current w-, x-, y-

and z-amounts onto the stack, but don’t

alter them (8o an XO after a PUSH will
get to the same spot that it would have
had, had it been given just before the

PUSH).

Pop the -, y-, x-, and w-amounts, and

the V- and H-coordinates off the stack.

134 VERTRULE h<4> w<4>
Same as HORZRULE, but also incre-
ment the current H-coordinate by w
when done (even if h < O or ¥ < 0).

135 HORZRULE h<4> v<4>
Typeset a rule of height h and width w,
with its bottom left corner at the current
H,V position. fh < 0or v < 0, no rule
should be set.

130 EOP




TUGDoat, Volume 1, No. 1

Command Description

136 HORZCHAR c<1>
Set character ¢ just as above, but don’t
change the current value of the H-
coordinate (or V-coordinate, either).

137 FONT t<4>
From now on, set characters from font
number £. Note that this command is
not currently used by TEX—it is only
needed if f is greater than 63. See
FONTNUM commands below.

144 X2 m<2>
Move right m rsu’s by adding m to the
H-coordinate, and put m into the current
x-amount. Note that m is in 28 comple-
ment, so this could actually be a move
to the left.

143 X3 n<3>
As above.

142 X4 n<4>

As above.

Move right the current x-amount (which

can be negative, etc).

140 W2 a<2>
The same as the X commands (i.e. al-
ters H-coordinate), but alter w-amount
rather than x-amount, so that doing a
‘WO command can have different results

145 X0

than doing an X0 command.
139 W3 a<3>
As above.
138 W4 n<4>
As above.
141 W0  Move right the current w-amount.
148 Y2 n<2>
Same idea, but now it’s “down”
rather than “right”, so the V-coordinate
changes, as does the y-amount.
147Y31n<3>
As above.
146 Y4 n<4>
As above.
149 YO Guess.
152 22 a<2>
Another downer. Affects the V-
coordinate and z-amount.
151 23 m<3>
150 Z4 n<4>
153 20 Guess again.

154 to 217 FONTNUM’s

Make 0,1,...,63 the current font.
218 to 255 are currently undefined

and will not be output by TgX.

19

Pages need not be sequential by number, but
any blank or non-existent page might not be repre-
sented, so page —5’s pointer to the “previous page”
might point to page 34, for instance (remember that
TEX uses negative numbers for roman-numbered
pages). The first page in the file has a “previous
page” pointer of —1.

The postamble begins with a PST command, fol-
lowed by four bytes of previous-page pointer to the
last real page, followed by four bytes of the height
of the tallest page (in rsu’s), followed by four bytes
of the width of the widest. Next come some Font
Definitions (maybe none, if you’re an authoritarian),
each of which has a Font ID in the first 4 bytes, fol-
lowed by 4 bytes of Font Number, followed by any
character not in the font name, followed by the Font
Name, one character per byte for as many bytes
as necessary, followed by that same character that
was not in the Font Name (a quote is probably a
good choice for such a character). The end of the
font definitions is marked by an ID of —1 (which
will not be followed by font number, etc). The four
bytes following this phony ID are a pointer to the
PST command {i.e. the begining of the postambie),
which is followed by a zero byte, which is followed
by at least 4 bytes containing the number 22340
(which is *337 octal). The reason for some of the
above weirdness is twofold: We are producing DVI
files with a Pascal program, and to avoid doing any
non-serial I/0, the postamble pointer has to go at
the end of the file. Of course, most programs that
read these files need not be generally transportable,
and can do a random seek to the end of the file, and
then another to get right to the postamble. The
fact that page-pointers point backwards is in the
same spirit, but this also allows the file to be read in
backwards-page-order efficiently. This, in turn, will
allow for further eficiencies in communicating with
your device, depending on how clever it (and yon) is
(are).

Stanford University July 10, 1980.

¥ % % % % % * % % *

UNIVERSITY OF MINNESOTA
CDC SITE REPORT
Thea Hodge

‘We have succeeded in compiling TEX-in-PASCAL
on our Cyber 172 but cannot yet run it. TEXPRE,
which should generate the required table file, has
some problem relative to our system. Michael
Frisch, our manager of user libraries and graphics
software, is working on that. We are awaiting




the font tables promised to us by 1. J. Zabala of
Stanford.

Luis and his staff have broken TEX into parts so
that it is easier to compile, although the binary will
still be very large, I believe. The parts are:

1. the system-dependent user library,

2. the rest of the TgX program,

3. tables and font files.

We are working on the input and output from
several different points.

A. We have upgraded a Decwriter II (LA38) with a
SELANAR Graphics Il circuit board which allows us
to have 4 character sets online at a time—standard,
APL, Math-Greek as defined by SELANAR Corp.,
and any set we wish to down-load from a Cyber or
from a Terak. We have encountered a few difficulties
in the Terak-Decwriter interaction and will continue
to work on these.

B. Presently, we can produce text with special
characters as follows: enter and edit the text on a
Terak (176 characters online and displayable on the
screen), send the file asynchronously to a Cyber for
formatting with Purdue’s TXTFORM, send back
the file for re-editing on the Terak, return final ver-
sion to the Cyber where TXTPLOT generates the
codes to produce medium-quality hard copy on the
Varian printer-plotter (200 dots/inch). We are also
working on a program in CDC Fortran 77 to trans-
late a TROFF or TEX output file for the Varian.

C. We are working in the University’s printing
department, driving the Mergenthaler Linotron 202
with a Terak microcomputer. We have with partial
success typeset a page of a textbook. We write a
TROFT file to an 8-inch floppy on a PDP-11/40 and
use this file on a Terak to drive the Linotron.

Throughout this memo I have used “we” as a
collective pronoun for all of us involved in this
project. In fact, this project is made up of many
small projects. The important names are Michael
Frisch, Prof. Steven Bruell, Peter Zechmeister, Mark
Everett, and Jeffrey Woolsey. 1 will be happy to for-
ward any questions you may have to the appropriate
person.

I would like to hear from all CDC users about
what you are doing in text processing. In particular,
I want to hear about and would be glad to distribute
information about your efforts and achievements in
the area of I/O. If you know of other interested
people at CDC sites, I would be glad to add their
names to my TeX-related mailing list.

TUGDboat, Volume 1, No. 1

$ % % *x 2 £ 3 2 x x

Warnings & Limitations

2 %X % 2 2 % £ % % 3

Troubles with Trace, and Other Oddities

One of the options of \trace (manual page 147),
£ = 2, is not available under TOPS-20 (DECSystem
20); if that option is used, input lines are displayed
on your terminal, but a carriage return flushes them
into oblivion instead of delivering them to TEX for
processing.

Another thing to be careful of is that suck com-
mands as \baselineskip, if invoked within an
\hbox par, have no effect whatever on the boxed
text; they must be given prior to the box command
to be effective. This is actually documented (manual
page 128, (glueparam)(glue), and perhaps on other
pages), but it is easy to overlook.

Ligatures *ff*, “f®, *“fi”, etc. interact with
hyphenation in the following manner. Hyphenation
never occurs between characters of a ligature in a
word, even though such a word (*“differential”) might
legitimately be hyphenated, and in fact might re-
quire hyphenation to avoid an overlong line. The
solution for an overlong line is to use a discretionary
hyphen, \-, but there’s a catch: if other changes in
the paragraph cause the forcibly hyphenated word
to move from the end of a line, neither a hyphen
nor a ligature will result (compare: “differential”,
“differential”), and the discretionary hyphen should
be removed for most elegant results.

Barbara Beeton

* % % & * % 2 3 32 =

Macros

* % % 2 % x % % * ¢

There are two reports on macro packages in this
issue. One appears above: see Michael Spivak’s
“AmS-TEX-A Very Friendly Product” under Gemeral
Delivery. (An order form for the "pre-preliminary”
edition of the AyS-TEX manual is included in the
package with this issue.) The second report, “An
Indexing Facility for TEX”, was submitted by Terry
Winograd and Bill Paxton, and is attached as
Appendix A.



TUGboat, Volume 1, No. 1

¢t % % x % 3 * ¥ % %

Questions & Answers

* % % % % * % %x % 3

Late Saturday afternocon at the TUG meeting at
Stanford, someone had the excellent idea that we
should form subcommittees based on the various
typet of mainframes. The meeting broke up into
small collections of people, with the members of
each group being people who work on common com-
puters. Each of these groups chose a chairperson,
but unfortunately no one made a list of these groups
or of the chairpersons. Would these chairpersons
please send their names to the TUGboat editor. Also
please give us a TEX status report from your site.

2 % % * % %X % * * %

Letters

* * % % * % % % % 3%

A letter to Richard Palais from two satisfied users
at the University of Rochester, Gérard Emch and
Arnold Piser, is reproduced on the next page.

# % % * % %X x 3 * %

21

* % % * % % % % % %

Miscellaneous

* % % % % %x x % % %

Two large items are enclosed as separate docu-
ments:

1. TEX Errata. This is the up-to-date list of cor-
rections and changes to all versions of the TEX
msnual and to TEX itself, as compiled by the TEX
group at Stanford.

2. TUG Mailing List. This list includes the names
of all persons who had requested information on TEX
and TUG as of October 24, 1980. Since member-
ship dues are only being solicited with this issue of
TUGDboat, this list cannot be considered the official
membership list. It does, however, show the types
of equipment and potential applications of TEX in
which most persons expressed interest, and can thus
be used to identify other sites whose interests are the
salme as yours.

* ® %X % % % * % % %




22
THE UNIVERSITY OF ROCHESTER
DEPARTMENT OF MATHEMATICS
MATHEMATICAL SCIENCES BUILDING
ROCHESTER, NEW YORK 14627

Phone 716-275-4411 September 25' 1980

Professor Richard Palais
Department of Mathematics
Brandeis University
Waltham, MA 02154

Dear Dick,

This letter is to convey to you in concise form our
impressions on the use of TEX and AMSTEX based on our implemen-
tation of two very different projects.

The first project was the setting of "Hecke Operators for
I.(N)," a 26 page paper by Pizer, which involved fairly complicated
fgrmulae and constructions. Pizer spent three or four weeks on
this, working mostly in the evenings. This included all the
learning and experimentation to be expected when a new system is
used for the first time on a self-taught basis.

The second project was much more modest in scope: a three-
page announcement presented at the AMS Summer Research Institute,
held from July 14 to August 2, 1980 at Kingston, Ontario. Working
under rather intense time pressure, Emch, starting from scratch,
managed to produce this paper in two days including one night spent
on a first reading of Knuth's manual. It should be said that he
benefitted from Pizer's guidance, on the spot availability, and
experience with the system.

It is our conviction that the whole system, together with
Knuth's manual, is an eminently usable tool in the hands of any
mathematician, even one who would sit at a computer terminal for
the first time. The task will be made even easier with the complete
AMSTEX package.

It should be recognized that setting complicated alignments
and displays (such as commutative diagrams for example) can be
quite difficult, at least for novice users such as ourselves.
However, as the goal of AMSTEX is to create "MACROS" that will
allow one to easily set almost any construction that might appear
in a mathematics paper, most of these difficulties should disappear
when AMSTEX becomes fully operational.

In closing we should say that both of us are very pleased
with the results of our first experiences with TEX and AMSTEX



and are quite proud of the typographical appearance of our
respective papers. We now hope that our secretaries too will
be seduced by the "Joy of TEX".

Sincerely,

Gérard G. Emch
J’%ﬁrr‘

Arnold K. P% /

P.S. Please feel free to use this letter for any propaganda
purpose you might see fit.







Appendix A

An Indexing Facility for TEX

Terry Winograd and Bill Paxton
July 17, 1980

We have created a set of TEX macros and INTERLISP programs that generate an alphabetical index in
various standard book formats. The index terms are sprinkled into- the text, using a macro. As a
side effect of compiling the file to produce pages, TEX creates an index file designed to be read by
an INTERLISP program. This program can merge any number of index files and produce an
alphabetized formatted index that can then be compiled by TEX to produce the final index pages.

It is easiest to uncerstand this by looking at examples and seeing how they come out. First we will
go through an extended example, then describe the features, then finally give the code. The sample
index produced is:

Artificial intelligence, 70, 76, 82, 91, 526,
529

Constantinople, 12f. See also Istanbul.
alien rule of, 20ff.
Arab invasion of, 19, 31n.
Crusades and, 22fF., 57
founding of, 14, 16fT.
Golden Age of, 1711
Greek takeover of, 28-29
Ottoman conquest of, 29-31
Persian attack on, 18-19
Venetian sack of, 31

Darwin, Charles, 82
Darwin, Max, 82
Death. See Eggs, Life.

fried, 530. See also Death.
scrambled (yuk), 526
Everything else, 70. See also Life.

Indexing, 70, 527-30
cross, 76, 529
strategies, 526
typography, 527ff.
strategies, 529
Istanbul, 63. See also Constantinople.

Life, 82-91

The output of the INTERLISP program is designed to provide a great deal of flexibility in formatting
the final index. We have developed three different styles; if none of them suit you, there is a good
chance you can produce something that will. In addition to the "entry-per-line” style shown above,
we offer run-in (paragraph) style and a combined style in which subentries all begin a new line,
preceded by an em dash, but sub-subentries are run-in. In general, the entry-per-line style is best if
for a complex index, paragraph style is more economical in terms of space, and the combined style
is a compromise between the other two. Here is the previous example using these alternative styles.



Paragraph style

Ar;izt;cial intelligence, 70, 76, 82, 91, 526,

Constantinople, 12ff.: alien rule of, 20ff.;
Arab invasion of, 19, 31n.; Crusades
and, 22ff,, 57; founding of, 14, 16fF.;
Golden Age of, 17ff.; Greek takeover
of, 28-29; Ottoman conquest of, 29-31;
Persian attack on, 18-19; Venetian sack
of, 31 See also Istanbul.

Narwin. Charlac. 29

Darwin, Max, 82

Death. See Eggs, Life.

Eggs: fried, 530. (See also Death); scrambled
(yuk), 526

Everything else, 70. See also Life.

Indexing, 70., 527-30: cross, 76, 529 (strategies,
526; typography, 527.); strategies, 529

Istanbul, 63. See also Constantinople.

Life, 82-91

Combined style

Arstizt';cial intelligence, 70, 76, 82, 91, 526,

Constantinople, 12ff. See also Istanbul.
—alien rule of, 20ff.

—Arab invasion of, 19, 31n.
—Crusades and, 22fF., 57

—founding of, 14, 16ff.

—Golden Age of, 171,
—reek taxeover of, 28-29

—Ottoman conquest of, 29-31
—Persian attack on, 18-19
—Venetian sack of, 31

Darwin, Charles, 82
Darwin, Max, 82
Death. See Eggs, Life.

Eggs

—fried, 530. See also Death.
—scrambled (yuk), 526
Everything else, 70. See aIsoLife. .

Indexing, 70., 527-30

~—cross, 76, 529: strategies, 526; typog-
‘ raphy. 5271?

—strategies, 529

Istanbul, 63 See also Constantinople.

Life, 82-91




In addition to these major style variations, you can modify the TEX macros to control smaller details
as well. For example, you can easily change the manner in which primary references are indicated
from boldface to something else, or you can change the formatting for cross references t0 put them
all in parentheses. Comments in the TEX macros should help you to make the necesssary changes
to get the style you waat.

These examples are the result of merging two index files, one of which came from the source file
on the following page, which was called TESTINDEX.TEX.

The macro “\<" does indexing. It takes two arguments, the first of which is a single character and
the second of which is the entry. The character means:

ordinary reference to the page on which it appears
boldface form of . (for use in giving primary reference)
begin span reference (e.g. ‘23-47°) on this page
boldface form of -
end span reference on this page
‘' reference to this page (e.g., ‘S6ff.")
use this to indicate the page on which a long discussion begins
boldface form of |
‘n’ reference to this page (e.g., ‘78n.")
use this with a page reference to a footnote

—’"ln-o

-

: boldface form of ,
* author reference (see details below) to this page
+ cross reference (see details below)

Each call to “\<’ contains a sequence of terms, separated by semicolons and is terminated with a >".
The exceptions are the author reference (which calls for precisely two terms--last and first names)
and the cross reference (which has the sequence of terms followed by an ‘=" followed by the phrase
to be used in the ‘(see ..)’). Calls to the index macro do not affect the regular TEX output file at
all. This was done because the exact wording of the index term is often not identical to a sequence
of characters appearing in the text. It was more uniform to treat the index and text as always
distinct. Also, the system carries through whatever capitalization you use in the index terms. The
example here uses what is more or less standard in publishing. In this example we have used the
character macro feature (\chcode = 13) to allow the character ‘<’ to stand for the sequence “\{. If
you want to use ‘ normally, you can skip this and simply use “\’ for index items.

TEX SOURCE FILE "TESTINDEX.TEX"

\input <tex>basic

\input index

\def\setpage #1 {\par\vfill\eject\setcount) # 1\setcount? #1}
\openlndex testindex

\setpage 12
Our saga ?egms in the ancient city of Constantinople. <|Constantinopie><+ Constantmople =IstanbuD
\setpage 14
It was founded long ago. <.Constantinople;founding of>
\setpage 16
'{sheere arelglany things to say about its founding. <|Constantinople;founding o>
tpage
The Goldlekn Age of the city lasted for several hundred years. <|Constantinople;Golden Age of>
\setpage
&e begitiging of the end for the city was the fierce Persian attack. <-Constantinople;Persian attack on>
tpage .
After the Persian attack, there was an Arab invasion. <+Constantinople; Pers:an attack
on><.Constantinople;Arab invasion of>




\setpage 20 _

This marked the beginning of a period of alien rule. <|Constantinople;alien rule of>

\setpage 22 Co

The Crusades had a major impact on Constantinople. <|Constantinople;Crusades and>

\setpage 28

The Greeks took over the city. <-Constantinople;Greek takeover of>

\setpage 29

The Ottoman conquest of the city soon followed. <+Constantinople;Greek takeover of<-
Constantinople;Ottoman conquest of>

\sctpage 31 o

The Venetians sacked the city. <+Constantinople;Ottoman conquest 0f><.Constantinople; Venetian
sack of> In a footnote, we compare this to the earlier Arab invasion. €,Constantinople;Arab invasion
of> ‘ :

\setpage 57

Once again the Crusades reached the city. <.Constantinople;Crusades and>

\setpage 63

The city became known as Istanbul. <Istanbul>< + Istanbul==Constantinople>

\setpage 70

This is material on indexing <.Indexing> and artificial intelligence <.Artificial intelligence> and
everything else, <.Everything else> which is what life is all about <+ Everything else=Life>

\setpage 76

This is the main reference to cross indexing <:Indexing;cross> files. It also mentions Al <.Artificial
intelligence> and another reference to cross indexing <.Indexing;cross> happens to fall on the same page
so should not appear redundantly. If it had happened to fall across the page break I would want both
pages to have references.

\setpage 82 i

I begin discussing life <-Life> on this page, quoting from Charles Darwin. <*Darwin;Charles> and at
times from his brother Max <*Darwin;Max> who did research in Al <.Artificial intelligence>

\setpage 91

Here ends our discussion of life <~Life> and Al < Artificial intelligence> and other matters. It contains a
duplicate crossreference having to do with life and everything else. <+ Everything else = Life>

\setpage 94

It also has described death <+ Death = Life> to some extent.

\setpage 526 :
We also want to discuss scrambled eggs, <.Eggs;scrambled (yuk)> Al <.Artificial intelligence) and cross

indexing strategies. <.Indexing;cross;strategies>

\setpage 527

Now I begin the main discussion of indexing < =Indexing> with several pages on the typography of
cross indexes. <|Indexing;cross;typography>

\setpage 529 :

Here 1 mention cross indexing <.Indexing;cross> again, along with some general strategies
<.Indexing;strategies> useful in doing indices. I also both begin and end a discussion of Al <-Artificial
intelligence> <« Artificial intelligence> This could happen with a begin and end that weren’t separated
very far and might end up on either the same or adjacent pages. When they fall on the same page we
want a simple reference, not a span.

\setpage 530 o .

This is the end of indexing, <+ Indexing> which is more complex than fried eggs. <.Eggs;fried> Some
poets of the absurd have argued that death is really just an ultimate form of eggs. <+ Death =Eggs>
<+ Eggs; fried = Death>

\par\vfill\eject\end

% NOTE: the calls to \setpage are not ndrmally used. They are
% included here to create an output that has lots of pages from
% a short test file and to include high page numbers. The system ordinarily

% works with the standard page breaking, indexing things by the page on



% which they appear.

When TEX compiles TESTINDEX.TEX, it produces the regular output TESTINDEX.PRESS, plus a file

TESTINDEX.INDEX which contains:

<12;N;F;Constantinople>
<Istanbul;N;C;Constantinople>
<14;N;P;Constantinople; founding of>
<16;N;F;Constantinople;founding of>
<17;N;F;Constantinople;Golden Age of>
<18;N;S;Constantinople;Persian attack on>
<19;N;E:Constantinople;Persian attack on>
<19;N;P;Constantinople;Arab invasion of>
<20;N;F;Constantinople;alien rule of>
<22;N:F;Constantinople;Crusades and>
<28;N;S;Constantinople;Greek takeover of>
<29;N;E;Constantinople;Greek takeover of>
<29;N:;S;Constantinople;Ottoman conquest of>
<31;N:E;Constantinople;Ottoman conquest of>
<31;N;P;Constantinople; Venetian sack of>
<31;N;N;Constantinople;Arab invasion of>
<57;N;P;Constantinople;Crusades and>
<63;N;P;Istanbul>
<Constantinople;N;C;IstanbubD
<70;N;P;Indexing>

<70;N;P;Artificial intelligence>
<70;N;P:Everything else>
{Life;N;C;Everything else>
<76;B;P;Indexing;cross>

<76;N;P; Artificial intelligence>

<76;N;P; {ndexing;cross>

<82;N;S;Life>

<82;N:P;Darwin, Charles>
<82;N:P;Darwin, Max>

<82;N;P; Artificial intelligence>
<91;N;E;Life>

<91;N;P; Artificial intelligence>
<Life;N;C;Everything else>
<Life;N;C;Death>
<526;N;P;Eggs;scrambled (yuk)>
<526;N;P;Artificial intelligence>
<526;N;P;Indexing;cross;strategies>
<527;B;S;Indexing>
<527;N;F;Indexing;cross; typography>
<529;N;P;Indexing;cross>
<529;N;P;Indexing;strategies>
<529;N;S:Artificial intelligence)

<529;N;E; Artificial intelligence>
<530;N;E;Indexing>

<530;N;P;Eggs:fried>

<Eggs;N;C;Death>
<Death;N;C;Eggs;fried>

This file is then fed to LISP. The transcript in doing this was:
3<LOAD({TEXINDEX.COM]

compiled on 10-JUNE-80 11:57:41
FILE CREATED 10-JUNE-80 11:56:41



TEXINDEXCOMS
<PAXTON>TEXINOEX.COM:20
4«INITIALIZE]

NIL
S5-READINDEX(TESTINDEX]
NIL
GeWRITEINDEX(TESTOUT]
NIL

The program has three user-accessible functions: INITIALIZEQ, READINDEX(NAME) and
WRITEINDEX(NAME). INITIALIZE is called once on starting it up, READINDEX can then be called any
number of times, reading in (and merging) .INDEX files. Finally WRITEINDEX is called once to write
a file with extension .TEX which can then be compiled by TEX to produce the index. The resulting
file, TESTOUT.TEX contains:

\indexStart

\indexChar{A}

\indexEntry0{ Artificial intelligence, 70, 76, 82, 91, 526, 529}{{}-{}}
\indexChar{C}

\indexEntry0{Constantinople, \indexFF 12.\pageNumDot}{{\indexAlso{Istanbul}}+{
\indexEntry1{alien rule of, \indexFF 20.\pageNumDot}{{}-{}}
\indexEntryl{Arab invasion of, 19, \indexN 31.\pageNumDotH{}-{}}
\indexEntry1{Crusades and, \indexFF 22., 57}{{}-{}}
\indexEntryl{founding of, 14, \indexFF 16.\pageNumDot}{{}-{}}
\indexEntry1{Golden Age of, \indexFF 17.\pageNumDot}{{}-{3}
\indexEntryl{Greek takeover of, \indexSpan 28-29.}{{}-{}}
\indexEntryl{Ottoman conquest of, \indexSpan 29-31.}{{}-{}}
\indexEntry1{Persian attack on, \indexSpan 18-19.}{{}-{}}
\indexEntry1{ Venetian sack of, 31}{{}-{}}}}

\indexChar{D}

\index Entry0{ Darwin, Charles, 82}{{}-{}}

\indexEntry0{Darwin, Max, 82}{{}-{}}

\indexEntry0{ Death}{{\indexSee{Eggs, Life}}-{}}
\indexChar{E}

\indexEntry0{ EggsH{{} +{

\indexEntry1{fried, 530}{{\indexAlso{Death}}-{}}
\indexEntryl{scrambled (yuk), 526}{{}-{}}}}

\indexEntry0{ Everything else, 70}{{\indexAlso{Life}}-{}}
\indexChar{I}

\indexEntry0{Indexing, 70, \mainEntry{\indexSpan 527-30.} - {{} +{
\indexEntryl{cross, \mainEntry{76}, 529}{{} +Fm
\indexEntry2{strategies, 526}{{}-{}}

\indexEntry2{typography, \indexFF 527.\pageNumDot}{{}-{}}}}
\indexEntry1{strategies, 529}{{}-{}}}}

\indexEntry0{ Istanbul, 63}{{\indexAlso{Constantinople}}-{}}
\indexChar{L}

\indexEntry0{Life, \indexSpan 82-91.}{{}-{3}

\indexEnd

Finally, this is put back through TEX with the initialization to produce the index.




COMMENTARY

Some of the non-obvious features are:

Page references appear in numerical order, with a simple reference preceding a span that begins on
the same page. You can safely put in multiple references or begin-end pairs without kanowing
whether they will end up on the same page or adjacent pages. If there are multiple references-to
the same page, only one will appear. It will be bold if any of them were. If a span begins and
ends on the same page a simple page reference appears instcad. Unmatched begins and ends will
be noticed by the INTERLISP program as it runs. It also notices and prints a message on the console
about the presence of two spans starting on the same page.

Inclusive page numbers are elided to produce spans such as 107-9, 119-22, 245-49, 800-802. (The

rule is: omit from the second number the digit(s) representing hundreds, except when the first

number ends in two zeros, in which case the sccond number is given in full) If you want page

xfltt:mbexs to be given in full rather than elided, provide a second argument of T to the WRITEINDEX
nction.

Upper and lower case do not influence the alphabetical ordering of terms.

Cross-references are combined into a single list, in alphabetical order, regardless of where they were
in the text. The LISP output indicates if there were any references to pages or any subterms so the
TEX macros can produce see in some cases and see also in others. If the same cross-reference is
given more than once in the source file, it appears only once in the output.

Spans (e.g. ‘3-5°) are boxed, so they will not be split across lnm.

Nesting of subterms can go any number of levels (assuming the width assigned for the index can
stand it, and the TEX argument stack doesn t overflow). The deepest example here is ‘Indexing,

Cross, strategies’.

When an entry is too long for its line, it is continued on the next line, indented two steps in the
entry-per-line styles (see ‘Artificial intelligence’).

Spaces can appear in a term (e.g. ‘Cognitive science’), as can parentheses (e.g. ‘scrambled (yuk). In
fact all characters except semicolon, ‘<’ and >’ are treated exactly as TEX would normally treat them
(e.g. single carriage returns, tabs and sequences of spaces become spaces, characters with special
syntax like ‘{’ and ‘\’ have different effects, etc.). Because the TEX \send command is used, some
slightly funny things happen when the text is used. For example, a built in TEX command (like
\char) will get carried through the whole process and eventually produce its effect on the final
output. A defined macro (including those defined in BASIC.TEX) will get expanded before the entry
is sent to the file. If you really need a semicolon, ‘ or >’ (or something else TEX won't let you
use as a normal character), you have to put a \char in the index term. This may do funny things to
the ordering, but then characters like semicolon and ‘>’ are funny to alphabetize anyway.

Before the first entry for a letter, there is a call on the \indexChar macro with the character as
argument. In our example, this macro simply puts out some blank spaoe in a larger index you
might want to redefine \indexChar to put out the character too

PROGRAMS
The TEX macros for the first pass are:

\gdef\lessthan{<}
\gdef\angbr# 1{<#£ 1}
\chcode’74+13 % This allows < to stand for \< and gives us
% an alternative way to put a < into an output (including a send)




\def\<#1>{}% Ignores index terms when index is not being generated.

\gdef\openindex#1 {\openl = #1.INDEX
\gdef\<# #1# #D{\if .# #1{\doIndex{N;P}{ # #2}}\else
{\if :# #1{\doIndex{B;P}{# #2}}\else-
{\if -# #1{\doIndex{N;SH # #2}}\else -
{\if = # #1{\doIndex{B.S}{ # #2}}\else
{\if «# #1{\doIndex{N;E}{# #2}}\else
{\If |# #1{\doIndex{N;FH{ # #2}{\else
{\if 14 #1{\doIndex{B;F}{# #2}}\else
{\if L # #1{\doIndex{N:N}{# #2}}\else
{\if ;# #1{\doIndex{B;N}{# #2}}\clse
{Nif *# #1{\doAuthor# #2>}\else -
{\if + # #1{\doCross# # 2>} \else

{\error}1} 113}

\gdef\doAuthor #1;#2>{\doIndex{N;P}{#1, #2}}
\gdef\doIndex # 1#2{\sendl {\angbr{\count7;#1;#2}}}
\gdef\doCross#1= #2>{\sendl {\angbr{#2;N;C;#1}}}

Index terms will be ignored before a call “\openIndex foo’, which opens the file FOO.INDEX. If no
call to \openIndex appears, all indexing stuff will be ignored. We expect this to be the normal
state--the \openlndex line will be added only when an index is being generated. The macros
assume that there will be a counter (this version uses \count7) which will contain the page aumber.
WARNINGH! at the time the index terms are sent, the \output routine has already been executed,
so if your \output routine bumps the page counter at the end (as many do), everything will be one
off. Rewrite it to bump at the beginning.

The output file produced by these macros is read by the INTERLISP program. That program is
included in full at the end of this memo since it is only a few pages long and since (as everyone
knows) INTERLISP code is self-documienting.

Here are the TEX macros to format the index in the various styles.

% after \indexEntry comes the following:
% level{term and pages}{{crossrefs}<flag>{subterms}}

% {flag>="+" if have subterms, ="-" if don’t
% someone will \let\indexEntry = one of the following

% \indexLine for entry-per-line style

% \indexPar for paragraph style

% \indexComb for combined style

\gdef\indexLine #1 # 2 # 3{\setcount9 # 1\advcount9 by 2\noindent\hangindent\countdwd9 after
I\hskip # 1wd9\gdef\crossIndexDot{.} # 2\indexTail # 3}

\gdef\indexTail #1#2{ #1\par} ¥
% this hack puts out the crossrefs, discards the <flag>, does \par
% and leaves the subterms to be read next

\gdef\indexPar # 1 # 2 # 3{\if 0# 1{\indexPMain{ # 2} # 3} \else
{\indexPSub{ #2} #3}}

\gdef\indexComb # 1 # 2# 3{\if 0# 1{\indexCTop{ #2}{ #3}} \else
{Nif 1#1{\indexPMain{--- # 2} # 3} \else
{\indexPSub{ # 2} #3}}}

\gdef\indexCTop #1# 2{\noindent\hangindent 1wd9 after




1\gdef\crossindexDot{.} # 1\indexTail # 2}

%\indexPMain and \indexPSub
% #1=term&pages, #2=crossrefs, #3=subterms flag, #4=subterms

\gdef\indexPMain # 1 # 2 # 3 # 4{\noindent\hangindent 1wd9 after 1
\gdef\crossindexDot{.} # I\if - # 3{}\else{ \gdef\firstSubEntry{T}: #4} #2\par}

\gdef\indexPSub # 1#2# 3 #4{\if T\firstSubEntry{\gdef\firstSubEntry{F} }\clse{;
HedefcrossindexDot{.} # INif - # 3{}\else{\gdef\crossindexDot{.} \gdef\firstSubEntry{T} \
(\#4)\gdef\crossindexDot{.} }\let\indexSee = \indSee\let\index Also =\indAlso # 2}

\gdef\indexSpan # 1- #2.{\hbox{ #1-- #2}}
% this is for reference to a span of pages

\gdef\indexFF # 1.{ #1ff}
% this is for reference to a long span of pages
% "ff" stands for "following folios"

\gdef\indexN#1.{#1n.}
% this is for reference to footnote
% "n" stands for "note”

\gdef\pageNumDot{\gdef\crossindexDot{}}
% this appears at end of pages for entry if they end wi
% change \crossIndexDot to null so don’t get double "."

\gdef\mainEntry # 1{{\bf #1}}

\gdef\indexSee # 1{\crossIndexDot\ {\it See } #1.}
\gdef\indexAlso# 1{\crossIndexDot\ {\it See also } #1.}
\gdef\indSee# 1{ ({\it See } #1)\gdef\crossindexDot{.}}
\gdef\indAlso# 1{ ({\it See also } # 1)\gdef\crossIindexDot{.}}

\gdef\indexChar# 1{\vskip 12pt} % can be changed if you want to put in letter headings
% parameter is capital letter for next section of index

\gdef\indexStart{} % change this to put in your own heading
\gdef\indexEnd{\par\vfill\eject} % needs to be more complex for multiple columns

Important Note: In addition to loading the previous macros, you must \let\indexEntry= either
\indexLine, \indexPar, or \indexComb depending on which style of index you want. We have used
a box and the "wd" parameter to make it easier to produce indentations that are muitiples of a
constant width. You must do \save9 before you generate the index (e.g., \save9\hbox{---} is the
right thing to do for the combined style). =We have also made use of \count9 for doing the
arithmetic. If you use this counter (or \box9) for other purposes, you need to change these. The
outplt:;L can be put into multiple columns by modifying the \output routine as described in the TEX
mani

A file containing these macros can be found on SCORE <tex.distribdindexer.tex.




- INTERLISP PROGRAM

The following pages contain the complete program. Any functions or constructs uscd in them that is
not defined here can be found in the INTERLISP manual (October 1978 version). A file containing this
program can be found on SCORE <tex.distrib>indexer.lsp.

(RECORD INDEXENTRY (UTERM TERM PAGES CROSSES SUBS))
(RECORD INPUTENTRY (PAGE BOLD TYPE . TERMS))

(RECORD PAGEREF (PAGEREFTYPE BOLD PAGENUM))
(RECORD SPANREF (PAGEREFTYPE BOLD PAGENUM ENDNUM))

(DEFINEQ

{INITIALIZE [LAMBDA NIL (* sets up readtable and creates empty index)

{SETQ INDEXREADTABLE (COPYREADTABLE T))

{for X from 1 to 127 do (SETSYNTAX X (QUOTE OTHER) .

INDEXREADTABLE))

{SETSYNTAX (QUOTE ){QUOTE LEFTPAREN) INDEXREADTABLE)

(SETSYNTAX (QUOTE >) (QUOTE RIGHTPAREN) INDEXREADTABLE)

(SETSYNTAX (QUOTE ;)
[QUOTE (MACRO (LAMBDA (FL RDTBL) (RSTRING FL. RDTBEL]
INDEXREADTABLE)

)(SETSYNTAX (QUOTE %

(QUOTE SEPR) INDEXREADTABLE)
{SETQ WHOLEINDEX NIL])

{SPANREF? [LAMBDA (X) (* distinguishes SPANREFs from PAGEREFs)
(CDDDR X])

{SAMEREF? [LAMBDA (X Y) (* ignores BOLD and PAGEREFTYPE properties)
{AND X Y (EQUAL (CDDR X) (CDDR Y})

(MAINENTRY? [LAMBDA (X)
(COND

((EQUAL "B" (FETCH BOLD OF X)) T)
(T NILD

(CONVERTSPANTOPAGE [LAMBDA (X) (* deletes field for ENONUM)
(RPLACD (CDDR X) NIL])

(READINDEX [LAMBDA (FILLENAME) (* reads one index file, merging it into index)
{PROG (INDEXFILE INPUT ENTRY TERM UTERM)
{SETQ INDEXFILE (OPENFILE (PACKFILENAME (QUOTE BODY) FLLENAME
{QUOTE EXTENSION) (QUOTE INDEX))
{QUOTE INPUT) (QUOTE OLD)))
(WHENCLOSE INDEXFILE (QUOTE EOF) (FUNCTION FILEND))
{while (SETQ INPUT (READ INDEXFILE INDEXREADTABLE))
do (SETQ TERM (CAR (fetch TERMS of INPUT)))
(SETQ UTERM TERM)
(SETQ TERM (MKATOM TERM))
[COND -
{INOT (SETQ ENTRY (GETPROP TERM (QUOTE ENTRY]
(SETQ ENTRY (create INDEXENTRY TERM + TERM UTERM «(U-CASE UTERM)))
(PUTPROP TERM (QUOTE ENTRY) ENTRY)
(SETQ WHOLEINDEX (CONS ENTRY WHOLEINDEX]
(PUTINDEX ENTRY INPUT (CDR (fetch TERMS of INPUT])

{FILEND [LAMBDA (FILE) (* handles end of file on input)
{(CLOSEF FILE)
(RETFROM (QUOTE READ]))

(PUTINgEX [LAMBDA (ENTRY INPUT SUBTERMS) (* puts one entry into index, checking for unmatched ends)

(
{(NOT SUBTERMS)
(SELECTQ (MKATOM (fetch TYPE of INPUT))
[P (replace PAGES of ENTRY
with (CONS (create PAGEREF BOLD «{MAINENTRY? INPUT)
PAGEREFTYPE « NiL. PAGENUM «(fetch PAGE of INPUT))

10




(fetch PAGES of ENTRY])
[F (replace PAGES of ENTRY
with (CONS (create PAGEREF BOLD «(MAINENTRY? INPUT)
PAGEREFTYPE «(QUOTE F) PAGENUM «(fetch PAGE of IM’UT))
(fetch PAGES of ENTRY]
(N (replace PAGES of ENTRY
with (CONS (create PAGEREF BOLD «{MAINENTRY? INPUT)
PAGEREFTYPE «(QUOTE N) PAGENUM «(fetch PAGE of INPUT))
(fetch PAGES of ENTRY]
[C (replace CROSSES of ENTRY with (CONS (fetch PAGE of INPUT)
(fetch CROSSES of ENTRY]
[S {replace PAGES of ENTRY
with (CONS (create SPANREF BOLD ‘-(MAINENTRY" INPUT)
PAGEREFTYPE « NIL PAGENUM +«(fetch PAGE of INPUT))
(fetch PAGES of ENTRY])
(E {for P in (fetch PAGES of ENTRY) when (SPANREF? P)
do [COND
{(tetch ENDNUM of P) (UNMATCHED INPUT))
((EQ (fetch PAGENUM of P) (fetch PAGE of INPUT))
(CONVERTSPANTOPAGE P))
(T (replace ENDNUM of P with (fetch PAGE of INPUT]
(RETURN)
finatly (UNMATCHED INPUT)))
(SHOULDNT)))
(T (PROG (SUBENTRY TERM UTERM)
{SETQ TERM (CAR SUBTERMS))
(SETQ UTERM (U-CASE TERM))
[COND
(INOT (SETQ SUBENTRY (SASSOC UTERM (fetch SUBS of ENTRY)
(SETQ SUBENTRY (create INDEXENTRY TERM « TERM UTERM e UTERM))
(replace SUBS of ENTRY with (CONS SUBENTRY (fetch SUBS of ENTRY)
(PUTINDEX SUBENTRY INPUT (CDR SUBTERMS])

(WRITEINDEX [LAMBDA (FILENAME NOELISION) (* writes entire index onto an output file)
(* if NOELISION then dont elide second number in span)
{bind {LASTCHAR NEXTCHAR (ACODE «(CHCON1 (QUOTE A)))
(ZCODE «(CHCON1 (QUOTE 2)))
(TEXFILE «(OPENFILE (PACKFILENAME (QUOTE BODY) FILENAME
(QUOTE EXTENSION) (QUOTE TEX))
(QUOTE OUTPUT) (QUOTE NEW)))
{(OLDLEN «(LINELENGTH 1500)))
first {(printout TEXFILE "\indexStart") for ENTRY in (SORT WHOLEINDEX T)
do gE‘l’Q NEXTCHAR (CHCONT (fetch UTERM of ENTRY)))
(COND
{{OR (EQ NEXTCHAR LASTCHAR) (LESSP NEXTCHAR ACODE)
(L)ESSP ZCODE NEXTCHARY))
NIL
(T (SETQ LASTCHAR NEXTCHAR)
(TERPRI TEXFILE)
{printout TEXFILE "\indexChar{" (CHARACTER NEXTCHAR) "}")))
{(WRITEENTRY 0 (fetch TERM of ENTRY) ENTRY)
finally (TERPR! TEXFILE) (printout TEXFILE “\indexEnd™ T)
{CLOSEF TEXFILE) (LINELENGTH OLDLEN) (CLEANINDEX])

(CLEANINDEX [LAMBDA NIL (* after finish writing index)
(for ENTRY in WHOLEINDEX do (REMPRORP (fetch TERM of ENTRY) (QUOTE ENTRY))
finally (SETQ WHOLEINDEX NIL])

{WRITEENTRY [LAMBDA (DEPTH TERM ENTRY)
(* writes a top-level entry along with its subentries.
suppresses duplicates and checks for unmatched begins)
(PROG (REFJUSTPRINTED CROSSREFS NORFF)
(TERPRI TEXFILE)
{printout TEXFILE "\indexEntry" DEPTH "{" TERM)
[conD
({fetch PAGES of ENTRY)
(for REF in (SORT (fetch PAGES of ENTRY) {(FUNCTION REFBEFORE))
when (NOT (SAMEREF? REF REFJUSTPRINTED))
do (printout TEXFILE ",” (COND
{(fetcr)t )BOLD of REF) " \mainEntry{")
T"" )
(SETQ NORFF NIL)

11




(COND
[(SPANREF? REF)
COND

((NOT (fetch ENDNUM of REF)) (UNMATCHED (LIST TERM REF)))
(T (ELIDESPAN (fetch PAGENUM of REF) (fetch ENDNUM of REF]

((EQ (fetch PAGEREFTYPE of REF) {QUOTE F))

(printout TEXFILE "\indexFF " (fetch PAGENUM of REF) ".")

(SETQ NORFF T))

((EQ (fetch PAGEREFTYPE of REF) (QUOTE N)}

(printout TEXFILE "\indexN " (fetch PAGENUM of REF) *.")

(SETQ NORFF T))

((NULL {fetch PAGEREFTYPE of REF))

(printout TEXFILE (fetch PAGENUM of REF)))

((T {SHOULDNT)))

((fetch BOLD of REF) (printout TEXFILE "}"))
(SETQ REFJUSTPRINTED REF))
(COND
(NORFF (printout TEXFILE "\pagaNumbDot")
{printout TEXFILE “H{")
COND

{{fetch CROSSES of ENTRY)
{SETQ CROSSREFS (SORT (tetch CROSSES of ENTRY)))
(printout TEXFILE "\index" (COND
((OR (fetct)\)PAGES of ENTRY) (fetch SUBS of ENTRY)) "Also{")
(T "See{”
(CAR CROSSREFS))
(SETQ REFJUSTPRINTED (CAR CROSSREFS))
(for REF in (COR CROSSREFS) when (NEQ REF REFJUSTPRINTED)
do (printout TEXFILE », " REF) (SETQ REFJUSTPRINTED REF))
{printout TEXFILE "}")))
(printout TEXFILE *}")
(COND
{(NOT (tetch SUBS of ENTRY)) (printout TEXFILE "-{}"))
(T (printout TEXFILE “ +{")
{for ENT in {SORT (tetch SUBS of ENTRY) T)
do (WRITEENTRY (ADD1 DEPTH) (fetch TERM of ENT) ENT))
(printout TEXFILE "}")))
{printout TEXFILE *}"])

{ELIDESPAN [LAMBDA (X Y) (* print efided form of span)
(COND

((OR NOELISION (ZEROP (REMAINDER X 100))

NI(CI)EQ {QUOTIENT X 100) (QUOTIENT Y 100)))

(T (SETQ Y (REMAINDER Y 100]
{printout TEXFILE “\indexSpan " X"-" Y “."])

(REFBEFORE [LAMBDA (X Y)
(* ordering function used to sort page references.

‘ slr;glepagesarebeforespansandboldworemn -boid Itpaoelsthom)

[((%%geotch PAGENUM of X) (fetch PAGENUM of Y))
((SPANREF? X)
COND

((SPANREF?Y)
(printout T "TWO SPANS START TOGETHER" TX TY))
{T NIL)))
((SPANREF?Y) T)
(T (tetch BOLD of X]
(T (LESSP {fetch PAGENUM of X) (fetch PAGENUM of Y1)

(UNMATCHED [LAMBDA (INPUT) (* prints error message on terminaf)
)(printout T "UNMATCHED ENTRY" T INPUT))

STOP

12




» NOTICE <

Panel Discussion on Ays-TEX

Friday, January 9, 1981, 4:30 p.m.
Continental Ballroom, San Francisco Hilton

3
4

At the 87th Annual Meeting of the American Mathematical Society,
a session will be devoted to a discussion of AMS-TEX (see page 10).

Panelists:

Donald Knuth
Robert Morris
Richard Palais
Arnold Pizer
Michael Spivak




TUGBOAT ' VOLUME 1, NUMBER 1

Contents
October 1980
Robert Welland. Editor’s Comments . . . . . ............ 2
General Delivery
Richard Palais. Message from the Chairman . ... ... e e e s 3
Ellen Swanson. Publishing £ TEX . . . .. ... ... ... .. T
Michael Spivak. AMS-TEX-“A Very Friendly Product” . . . . . . . 10
Robert Morris. Minutes of the TUG Meeting . . . . .. ... ... 12

Interface Software

Ignacio Zabala and Luis Trabb-Pardo.
The Status of the Pascal Implementationof TEX .. ..... 18

David Fuchs. The Format of TeX’s DVIFiles. . . . . . .. .. .. 17
Thea Hodge. University of Minnesota CDC Site Report . . . . . . 19
Warnings & Limitations

Barbara Beeton. Troubles with Trace and Other Oddities . . . . . 20
Macros . . . . . . e e e e e e e e e 20
Terry Winograd and Bill Paxton.

An Indexing Facility for TgX . ............ Appendix A
Michael Spivak. The Joyof TRX .. ... ... ... ... order form
Questions & Answers . . . . . . .. . ... ... e e 21
Letters . . . . . . . . . . . . i it e et e e e 21
Gérard Emch and Arnold Pizer . ... ... ............ 22
Miseellaneous . . . . . . ... ... .. . ... 21
Order Form for The Joy of TEX
TEX Errata

TUG Mailing List




