
TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

TEX
an

d Grap
hics

Graphics with PSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

http://www.tug.org.in/
http://www.tug.org.in

Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

1. Graphics with PSTricks

LATEX has only limited drawing capabilities, while PostScript is a page descrip-
tion language which has a rich set of drawing commands; and there are programs
(such as dvips) which translate the dvi output to PostScript. So, the natural
question is whether one can include PostScript code in a TEX source file itself
for programs such as dvips to process after the TEX compilation? This is the
idea behind the PSTricks package of Timothy van Zandt. The beauty of it is
one need not know PostScript to use it—the necessary PostScript code can be
generated by TEX macros defined in the package.

http://www.tug.org.in/
http://www.tug.org.in

Graphics with PSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

1.1. Getting the points

Any picture is drawn by stringing together appropriate points. How do we
specify the points we need? We’ve a method of specifying each point in a plane
using a pair of numbers, thanks to the 17th century French mathematicians
Pierre de Fermat and René Descartes. The method is to fix a pair of perpen-
dicular lines (called axes) and label each point with the numbers representing
its distance from these two points (called coordinates) as shown in the figure
below:

Note that the meeting point of the axes (called the origin) has coordinates
(0,0). In order to associate each pair of numbers with a unique point, we make
the convention that horizontal distances to the left of the origin and vertical
distances below the origin are negative as illustrated below:

http://www.tug.org.in/
http://www.tug.org.in

Graphics with PSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

Another fact to note is that the coordinates of points depend on the position
of the axes chosen, so that the same point has different pairs of coordinates
with respect to different set of axes. This is illustrated in the figure below,
where the point which originally had coordinates (3,2) with respect to the axes
shown in gray has new coordinates (1,1) with respect to new axes shown in
black.

The PSTricks package uses coordinates to specify points to plot and then
various other commands to join them.

http://www.tug.org.in/
http://www.tug.org.in

Graphics withPSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

1.2. Drawing Dots

Now let’s see how to draw pictures with PSTricks. The basic package to use
is pstricks and so we assume in all the codes given below that this package
has been loaded with the command \usepackage{pstricks} in the document
preamble.

Let’s start with the simplest of graphical objects—a single dot. Type in the
code below in your document:

Look at this dot \psdots(1,0)

and TEX compile the document. To produce the PostScript, you’ll have to use
the dvips program or any other dvi to PostScript translator available in your
system. With dvips, this done by the command

dvips filename -o

where filename is the name of your file without any extension (or with the
extension .dvi). This creates a PostScript file of the same name but with
the extension .ps which you can view using a PostScript previewer, such as
ghostview. It looks like this:

Some explanations are in order. Evidently the command to draw a dot is
\psdots followed by the coordinates of the point where the dot is to be placed.
But we know that the assignment of coordinates to points (and vice versa)
makes sense only after fixing the axes. So when we specify coordinates such as
(0,1) as above, what are the axes used? By default, PSTricks uses the current
point in TEX as the origin and horizontal and vertical lines through this point
as the axes. Again, the default unit is 1 cm. Thus in the above example, a
point is drawn 1 cm. away from the letter t in dot. This is illustrated in the
figure below, where the (invisible) axes are shown in gray.

A single \psdots command can be used to plot any number of points. For

http://www.tug.org.in/
http://www.tug.org.in

Graphics with PSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

example, the input

Look at these dots \psdots(0,0)(2,0)(1,1)

produce the (PostScript) output
Look at these dots Now suppose we try

Look at these dots \psdots(0,0)(2,0)(1,1) forming the vertices

(corners) of a triangle.

the output produced is
What happened? Why were the dots overwritten? What happened actually

is that TEX did not reserve any space for the picture (recall that the picture is
drawn after the TEX compilation) and so the dots were drawn over the text. (if
you look closely, you can see that the dots are over the letters). This brings up
an important point to be kept in mind: most of the PSTricks commands produce
0-dimensional boxes in TEX. So, we must ensure that TEX leaves enough space
for the pictures to be drawn, by enclosing the picture in a TEX box of suitable
size. PSTricks itself provides a convenient method of doing this, in the form of
the pspicture environment. See how we can modify the previous example:

\begin{pspicture}(-0.5,0)(2.5,1)

\psdots(0,0)(2,0)(1,1)

\end{pspicture}

This gives the output
Here the pairs (-0.5,0) and (2.5,1) are the coordinates of the bottom-left and

top-right corners of a box which encloses the picture as shown in the figure
below:

Look at these dots forming the vertexes of a triangle.

http://www.tug.org.in/
http://www.tug.org.in

Graphics with PSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

In fact, the first pair of coordinates is optional and defaults to (0,0). Thus
for example,

\begin{pspicture}(1,2)...\end{pspicture}

is equivalent to

\begin{pspicture}(0,0)(1,2) ... \end{pspicture}

We can also ‘display’ the picture by

\begin{pspicture}(-0.5,-0.5)(2.5,1.5)

\psdots(0,0)(2,0)(1,1)

\end{pspicture}

This produces
Can you see why the second coordinate of the ‘box’ is changed to -0.5 and

1.5 from its values 0 and 1 in the previous example?
The dots we’ve been drawing so far are all circular and black. How about

square and white dots? Change the input of the previous example as follows:

Look at these dots
\begin{center}

\begin{pspicture}(-0.5,-0.5)(2.5,1.5)

\psdots[dotstyle=square](0,0)(2,0)(1,1)

\end{pspicture}

\end{center}

forming the vertices of a triangle.

We then get the output shown below:
Look at these dots

http://www.tug.org.in/
http://www.tug.org.in

Graphics with PSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

forming the vertexes of a triangle.
Thus the shape of the dots is controlled by the parameter dotstyle and

it’s to be specified within square brackets after the \psdots command. The
various possible values of this parameter and the corresponding shape of the
dots is shown in the table below:

Also, dots can be scaled using the parameter dotscale and rotated using
the parameter dotangle. For example

\begin{pspicture}(-0.5,-0.5)(2.5,2.5)

\psdots[dotstyle=+,dotangle=45](0,0)

\psdots[dotstyle=+,dotscale=1.5,

dotangle=45](0.5,0.5)

\psdots[dotstyle=+,dotscale=2,

dotangle=45](1,1)

\psdots[dotstyle=+,dotscale=2.5,

dotangle=45](1.5,1.5)

\psdots[dotstyle=+,dotscale=3,

dotangle=45](2,2)

\end{pspicture}

gives
Instead of scaling, we can explicitly specify the size of dots. But this we’ll

discuss in the next section (with a reason, of course).

http://www.tug.org.in/
http://www.tug.org.in

Graphics withPSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

1.3. Simple Lines

Let’s see how we draw lines next. The command is \psline with the coordinates
of the points to be joined. For example

Look at the line segment below

\begin{center}

\begin{pspicture}(0,0)(3.5,2.5)

\psline(2,1)(3,2)

\end{pspicture}

\end{center}

equally slanted to the horizontal and the vertical.

gives
Look at the line segment below equally slanted to the horizontal and
the vertical.

We can draw dashed or dotted lines using the linestyle parameter. Thus

\begin{pspicture}(0,0)(2,1)

\psline(0,0)(2,0)

\psline[linestyle=dashed](2,0)(1,1)

\psline[linestyle=dotted](1,1)(0,0)

\end{pspicture}

gives
In this and many of the pictures below, we include a “coordinate grid” for

convenience of reference. It is not produced by the code given alongside.
In the dashed style, the length of the black and white segments is controlled

by the parameter dash Thus dash=3pt 2pt produces dashed line with black
segments of length 3 pt. and white segments of length 2 pt. Thus

http://www.tug.org.in/
http://www.tug.org.in

Graphics with PSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

\begin{center}

\begin{pspicture}(-0.5,-0.5)(2.5,1.5)

\psline[linestyle=dashed,dash=2pt 2pt]

(0,0)(2,0)

\psline[linestyle=dashed,dash=2pt 5pt]

(2,0)(1,1)

\psline[linestyle=dashed,dash=5pt 5pt]

(1,1)(0,0)

\end{pspicture}

\end{center}

gives
The default value of dash is 5 pt 3 pt. Again, in the dotted style, the distance

between dots is controlled by the parameter dotsep whose default value is 3 pt.
We can also alter the thickness of the lines by changing the value of the

parameter linewidth which has a default value of 0.8 pt. Look at the example
below:

\begin{center}

\begin{pspicture}(0,-0.5)(2.5,4.5)

\psline[linewidth=0.2pt](0,0)(0,2)

\psline[linewidth=0.4pt](0.5,0)(0.5,2)

\psline[linewidth=0.6pt](1,0)(1,2)

\psline[linewidth=0.8pt](1.5,0)(1.5,2)

\psline[linewidth=1pt](2,0)(2,2)

\psline[linewidth=1.2pt](2.5,0)(2.5,2)

\psline[linewidth=1.4pt](3,0)(3,2)

\psline[linewidth=1.6pt](3.5,0)(3.5,2)

\psline[linewidth=1.8pt](4,0)(4,2)

\psline[linewidth=2pt](4.5,0)(4.5,2)

\end{pspicture}

\end{center}

produces

http://www.tug.org.in/
http://www.tug.org.in

Graphics withPSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

Table 1.1: Line terminators

1.4. Ends of Lines

Lines can be provided with arrowheads. This is done by the arrows parameter

\begin{center}

\begin{pspicture}(0,-0.5)(2,2.5)

\psline[arrows=->](0,0)(1,2)

\psline[arrows=<->](1,1)(2,1)

\end{pspicture}

\end{center}

produces
Instead of arrowheads, lines can be made to terminate with circles, T-bars

and so on, using the parameter arrows. The available values of this parameter
and the corresponding line terminators are given in the Table 1.1. We can mix
and match these terminators as values for the arrows parameter such as *->

or |-<<.
Certain terminators are clearly seen only for thick lines. For example

\begin{pspicture}(-0.5,-0.5)(2.5,2.5)

\psline[linewidth=0.1cm,arrows=|-|]

(1,0)(1,2)

\psline[linewidth=0.1cm,arrows=|*-|*]

(2,0)(2,2)

\end{pspicture}

gives
To see some other terminators clearly, thicker lines are needed. Thus

http://www.tug.org.in/
http://www.tug.org.in

Graphics with PSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

\begin{pspicture}(-0.5,-0.5)(3.5,2.5)

\psline[linewidth=0.5cm](0,0)(0,2)

\psline[linewidth=0.5cm,arrows=c-c]

(1,0)(1,2)

\psline[linewidth=0.5cm,arrows=cc-cc]

(2,0)(2,2)

\psline[linewidth=0.5cm,arrows=C-C]

(3,0)(3,2)

\end{pspicture}

gives
The arrows parameter can also be specified as an optional argument within

braces after the other options (in square brackets). Thus instead of

\psline[linestyle=dotted,arrows=<->](0,0)(2,0)

we can also write

\psline[linestyle=dotted]{<->}(0,0)(2,0)

Now is the time to talk of (no, not cabbages and kings) the size of dots. The
diameter of a circular dot is 2.5 times the current linewidth plus .5 pt. This can
be changed by the parameter dotsize. Thus for example

\begin{center}

\begin{pspicture}(0,0)(2,2)

\psdot[linewidth=0.1cm,dotsize=1cm 10](1,1)

\end{pspicture}

\end{center}

gives
which is a circular disk of diameters 10 × 0.1 + 1 = 2 centimeters. (We’ll soon
see better method of drawing such disks). The polygonal dots are sized to have

http://www.tug.org.in/
http://www.tug.org.in

Graphics with PSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

the same area as circles. The dotsize is made to depend on linewidth since
dots are often used in conjunction with lines as in arrows (and showpoints

which we will discuss later). Note that the dotsize can be set to any absolute
value independent of the linewidth by setting the second number of the dotsize
parameter to 0.

There are parameters determining the dimensions of the other types of line
terminators also, which are given in Table 1.2. In this, width refers to a dimen-
sion perpendicular to the line and length refers to a dimension in the direction
of the line.

parameter value description
default
value

dotsize = dim num num × linewidth+ dim
the diameter of
a circle or disc

0.5 pt 5

tbarsize = dim num num × linewidth+ dim

the width of a
T-bar, square
bracket or
round bracket

2 pt 5

bracketlength = num number × width
the length of a
square bracket

0.15

rbracketlength = num number × width
the length of a
round bracket

0.15

Table 1.2: Parameters for line terminators

The example below illustrates the use of some of these parameters

\begin{center}

\begin{pspicture}(-1,-1)(9,4)

\psline[tbarsize=1cm 0,bracketlength=0.5]{[-|}(0,0)(3,0)

\psline[tbarsize=1cm 0]{[-|}(0,3)(3,3)

\psline[tbarsize=1cm 0,rbracketlength=0.5]{(-|}(5,0)(8,0)

\psline[tbarsize=1cm 0]{(-|}(5,3)(8,3)

\end{pspicture}

\end{center}

http://www.tug.org.in/
http://www.tug.org.in

Graphics withPSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

which produces the output below.
Note that the coordinate grid in the picture above is not produced by the

given code.
The shape of arrowheads is determined by its length, width and inset and the

parameters controlling them are arrowsize, arrowlength and arrowinset as
shown in the figure below:

arrowsize = dim num

width = num × linewidth+ dim

length = arrowlength × width

inset = arrowinset × length

The default values of the parameters are

arrowsize = 2 pt 3 arrowlength = 1.4 arrowinset = 0.4

The example below illustrates the effect of changing these parameters.

\begin{center}

\begin{pspicture}(0.5,0.5)(5.5,4.5)

\psline[linewidth=2pt,

arrowsize=2pt 2,

arrowlength=5,

arrowinset=0.1]

{->}(1,1)(4,4)

\psline[linewidth=2pt]

{->}(2,1)(5,4)

\end{pspicture}

\end{center}

We can also draw “double lines” by setting the parameter doubleline to
true (by default, it’s false). For example

http://www.tug.org.in/
http://www.tug.org.in

Graphics with PSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

\begin{center}

\begin{pspicture}(-0.5,-0.5)(2.5,2.5)

\psline[linewidth=0.06,

doubleline=true,

doublesep=0.05,

(0,0)(2,2)

\end{pspicture}

\end{center}

gives

http://www.tug.org.in/
http://www.tug.org.in

Graphics withPSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

1.5. Bent Lines and Polygons

As in the case of \psdots we can draw multiple lines with a single \psline

command. For example,

\begin{center}

\begin{pspicture}(0,0)(5,2)

\psline(1,1)(2,2)(3,1)(4,2)(5,1)

\end{pspicture}

\end{center}

gives
Note that the coordinate grid is not produced by the code given alongside.
The corners in the above picture can be rounded by giving a positive value

to the linearc parameter which has default value 0 pt. It is actually the radius
of the arc drawn at the corners. Thus

\begin{center}

\begin{pspicture}(0,0)(5,2)

\psline[linearc=0.25]%

(1,1)(2,2)(3,1)(4,2)(5,1)

\end{pspicture}

\end{center}

gives
Now change the value of linearc to 0.5 in the above code and see what

happens.
Polygons can be drawn with \psline by taking the first and the last points

same. For example

http://www.tug.org.in/
http://www.tug.org.in

Graphics withPSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

\begin{center}

\begin{pspicture}(0,0)(5,3)

\psline(1,1)(2,2)(5,2)(4,1)(1,1)

\end{pspicture}

\end{center}

gives
We can also use the command \pspolygon to draw polygons. Here, we need

not repeat the starting point as in \psline. Thus in the last example above,
the parallelogram could also be drawn by the command

\pspolygon(1,1)(2,2)(5,2)(4,1)

instead of the command

\psline(1,1)(2,2)(5,2)(4,1)(1,1)

The \pspolygon command also has a “starred” version which draws a “filled
up” polygon. For example

\begin{center}

\begin{pspicture}(0,0)(5,3)

\pspolygon*(1,1)(2,2)(5,2)(4,1)

\end{pspicture}

\end{center}

gives
For drawing rectangles, there’s a simpler command \psframe in which we

need only specify the bottom-left and top-right coordinates. There’s also a
\psframe* command for a filled-up version. For example,

http://www.tug.org.in/
http://www.tug.org.in

Graphics withPSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

\begin{center}

\begin{pspicture}(0,0)(6,4)

\psframe(1,1)(3,3)

\psframe*(1,1)(2,2)

\psframe*(2,2)(3,3)

\end{pspicture}

\end{center}

gives
The corners of a frame can also be rounded. The parameter to set is

framearc. If we set framearc=number, then the radius of the rounded cor-
ners is half the number times the width or height of the frame, whichever is
less. Thus

\begin{center}

\begin{pspicture}(-0.5,0.5)(5.5,3.5)

\psframe[framearc=0.5](0,0)(5,3)

\psframe[framearc=0.5](1,1)(4,2)

\end{pspicture}

\end{center}

gives
Note that the corners of the larger rectangle are more rounded, as should

be obvious from the definition of the framearc parameter. The radius of the
corners can be made he same by setting the parameter cornersize to absolute

(its default setting is relative) and then setting the radius using the linearc

parameter as in the example below:

http://www.tug.org.in/
http://www.tug.org.in

Graphics with PSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

\begin{center}

\begin{pspicture}(-0.5,-0.5)(5.5,3.5)

\psframe[cornersize=absolute,%

linearc=0.5](0,0)(5,3)

\psframe[cornersize=absolute,%

linearc=0.5](1,1)(4,2)

\end{pspicture}

\end{center}

There are also commands to draw isoceles triangles (that is, triangles in
which two sides are equal) and rhombuses (diamonds). The command

\pstriangle((x, y)(b, h))

draws an isoceles triangle with its base horizontal, the mid-point of its base at
(x, y), length of base b and height h while the command

\psdiamond((x, y)(d1, d2))

draws a rhombus with its diagonals along the horizontal and the vertical, which
meet (x, y) and have lengths 2d1 and 2d2. Thus

\begin{center}

\begin{pspicture}(0,0)(5,5)

\pstriangle(1,0)(2,3)

\pstriangle*(4,1)(2,1.732)

\psdiamond(3,4)(2,1)

\end{pspicture}

\end{center}

gives
So far we’ve been drawing only straight lines (except for smoothing some

corners). We’ll discuss curves in the next few sections.

http://www.tug.org.in/
http://www.tug.org.in

Graphics withPSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

1.6. Simple Curves

Circles, ellipses, circular arcs and so on can be easily drawn in PSTricks, using
preset commands. Let’s start with circles. The command is \pscircle (what
else?) and we’ve to specify the coordinates of the center and the length of the
radius. Recall that the default unit is centimeter, so that to produce a circle of
radius 0.5 cm centered at (2,1), we write

\pscircle(2,1){0.5}

Since a circle is only a curved “line”, various line parameters discussed earlier
can also be used. There is also a starred version \pscircle* which gives a
“solid” circle. See the example below:

\begin{center}

\begin{pspicture}(-1,-1)(3,8)

\pscircle*(1,0.25){0.25}

\pscircle[linewidth=0.33]%

(1,1){0.5}

\pscircle[linewidth=0.25]%

(1,2.25){0.75}

\pscircle(1,4){1}

\pscircle[linestyle=dotted]%

(1,6.25){1.25}

\end{pspicture}

\end{center}

Pieces of circles can also be easily drawn. For example, the command \psarc

draws a circular arc of specified center and radius from a given angle to another
going counterclockwise. Note that the angles are measured from the horizontal.
In the example below, we show the radii and the angles in gray along with the
grid. (note that these are not produced by the given code).

http://www.tug.org.in/
http://www.tug.org.in

Graphics with PSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

\begin{center}

\begin{pspicture}(-1,-1)(3,3)

\psarc(0,0){3}{30}{60}

\end{pspicture}

\end{center}

There’s also a starred version \psarc* which draws a solid “segment” of a
circle. For example,

\begin{center}

\begin{pspicture}(-2,-2)(2,2)

\psframe(-1,-1)(1,1)

\psarc*(-1,-1){1}{0}{90}

\psarc*(1,-1){1}{90}{180}

\psarc*(1,1){1}{180}{270}

\psarc*(-1,1){1}{270}{360}

\end{pspicture}

\end{center}

gives
While making a picture containing circular arcs, it may sometimes be con-

venient to “see” the center and radii. If the parameter showpoints is set to
true (its default value is false), then the command \psarc (or \psarc) draws
dashed lines from the center to the extremities of the arc. (This setting can be
used with other commands also, where it will draw appropriate control points
or lines). See the example below:

\begin{center}

\begin{pspicture}(0,0)(3,3)

\psarc[showpoints=true]%

(1,1){2}{30}{60}

\end{pspicture}

\end{center}

http://www.tug.org.in/
http://www.tug.org.in

Graphics with PSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

If we want to draw an arc with its bounding radii, we can use the \pswedge

command. The starred version \pswedge* draws a solid sector as shown in the
example below:

\begin{center}

\begin{pspicture}(-1.5,-1.5)(1.5,1.5)

\pswedge(0,0){1}{90}{360}

\pswedge*(0.1,0.1){1}{0}{90}

\end{pspicture}

\end{center}

The line terminators discussed earlier can be used with arcs also. If we want
to show the angle between two (thick) intersecting lines using an arc with an
arrowhead, we’d like to have the tip of the arrow would just touch the line. For
this, we can use the parameters arcsepA and arcsepB. If we set arcsepA=dim,
then the first angle in the \psarc command would be adjusted so that the arc
would just touch a line of width dim from the center of the arc in the direction of
this angle. The parameter arcsepB makes a similar adjustment in the second
angle. The parameter arcsep adjusts both the angles. The example below
illustrates this.

\begin{center}

\begin{pspicture}(-2,0)(2,2)

\psline[linewidth=2pt]%

(2,2)(0,0)(-2,2)

\psarc[arcsepB=2pt]{->}%

(0,0){1}{45}{135}

\end{pspicture}

\end{center}

To see the difference, try the same code without the setting of arcsepB.
An ellipse is a sort of a stretched circle and can be drawn much the same

way as s circle. The command is \psellipse and we have to specify the center

http://www.tug.org.in/
http://www.tug.org.in

Graphics with PSTricks
Getting the points

Drawing Dots

Simple Lines

Ends of Lines

Bent Lines and Polygons

Simple Curves

Online LATEX Tutorial

Part II – Graphics

c©2002, The Indian TEX Users Group
This document is generated by pdfTEX with
hyperref, pstricks, pdftricks and pdfscreen
packages in an intel pc running gnu/linux
and is released under lppl

The Indian TEX Users Group
Floor iii, sjp Buildings, Cotton Hills
Trivandrum 695014, india

http://www.tug.org.in

� � � � � � 	

and half the width and height (technically, the “semi-major” and “semi-minor”
axes). Thus to draw an ellipse centered at (1,1) with width width 4 cm and
height 2 cm, we type

\begin{center}

\begin{pspicture}(-1,0)(3,2)

\psellipse(1,1)(2,1)

\end{pspicture}

\end{center}

which gives
There’s also a \psellipse* which, as you’ve probably guessed, draws a solid

black ellipse.

\begin{center}

\begin{pspicture}(-2,-1)(2,1)

\psellipse(0,0)(2,1)

\psellipse*(0,0)(0.5,1)

\end{pspicture}

\end{center}

Another curve for which a preset command is available is a parabola (the
path of a stone thrown at an angle, for example). It is drawn by the command
\parabola (surprise!). We must specify the starting point and the maximum
or minimum. As usual, we have a \parabola* also. Thus

\begin{center}

\begin{pspicture}(0,0)(4,2)

\parabola(0,0)(2,2)

\parabola*(1,1.5)(2,0)

\end{pspicture}

\end{center}

gives

http://www.tug.org.in/
http://www.tug.org.in

	Getting the points
	Drawing Dots
	Simple Lines
	Ends of Lines
	Bent Lines and Polygons
	Simple Curves

